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ABSTRACT

Nucleic acids are under constant assault from endogenous and environmental agents that alter their physical and chemical
properties. O6-methylation of guanosine (m6G) is particularly notable for its high mutagenicity, pairing with T, during DNA
replication. Yet, while m6G accumulates in both DNA and RNA, little is known about its effects on RNA. Here, we investigate
the effects of m6G on the decoding process, using a reconstituted bacterial translation system. m6G at the first and third
position of the codon decreases the accuracy of tRNA selection. The ribosome readily incorporates near-cognate aminoacyl-
tRNAs (aa-tRNAs) by forming m6G-uridine codon–anticodon pairs. Surprisingly, the introduction of m6G to the second
position of the codon does not promote miscoding, but instead slows the observed rates of peptide-bond formation by >1000-
fold for cognate aa-tRNAs without altering the rates for near-cognate aa-tRNAs. These in vitro observations were recapitulated
in eukaryotic extracts and HEK293 cells. Interestingly, the analogous modification N6-methyladenosine (m6A) at the second
position has only a minimal effect on tRNA selection, suggesting that the effects on tRNA selection seen with m6G are due to
altered geometry of the base pair. Given that the m6G:U base pair is predicted to be nearly indistinguishable from a Watson-
Crick base pair, our data suggest that the decoding center of the ribosome is extremely sensitive to changes at the second
position. Our data, apart from highlighting the deleterious effects that these adducts pose to cellular fitness, shed new insight
into decoding and the process by which the ribosome recognizes codon–anticodon pairs.
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INTRODUCTION

Cellular nucleic acids are exposed to numerous chemical and
environmental insults including ultraviolet radiation, reac-
tive oxygen species, and alkylating agents. Endogenous and
exogenous alkylating agents are known to react with and
modify the nitrogen and oxygen atoms of all nucleobases
(for review, see Wurtmann and Wolin 2009). RNA appears
to be more vulnerable to damage presumably due to its prev-
alent single-stranded nature exposing the Watson-Crick face
of the nucleobases (Parsa et al. 1987; Hofer et al. 2005).
Unlike programmed methylation of specific nucleotides in
rRNA and tRNA, aberrant methylation has the potential to
deleteriously alter an RNA’s function. Depending on the
position, methylation can prevent base-pairing or alter the
nucleotide’s base-pairing preferences (Ougland et al. 2004).
The existence of mechanisms that repair RNA methylation
suggests that these modifications are recognized by cells as
problematic. The bacterial oxidative demethylase AlkB and
its human homolog hABH3 demethylate 1-methyladenine
(m1A) and 3-methylcytosine (m3C) in RNA (Aas et al.
2003; Ougland et al. 2004). In DNA, 1-methyladenine can

base pair with thymine but stalls the DNA polymerase where-
as 3-methylcytosine cannot base pair with guanine.
The methylated adduct O6-methylguanosine (m6G) is

particularly notable for its toxicity due to its high rate of mu-
tagenicity during DNA replication. Upon encountering m6G,
DNA polymerases preferentially incorporate thymidine, re-
sulting in GC to AT transitions (Fig. 1; Eadie et al. 1984).
This mutagenicity has long been exploited by cancer chemo-
therapeutics, including the glioblastoma therapy temo-
zolomide (O’Reilly et al. 1993). Moreover, organisms from
bacteria to man have evolved specific mechanisms to mediate
m6G lesions in DNA, underscoring the risk of its accumula-
tion (Sedgwick et al. 2007). And yet, despite having known
for a number of years that m6G also accumulates in RNA
(Parsa et al. 1987), almost nothing is known about its effects
on mRNA and specifically how it is decoded by the ribosome.
During elongation, ribosomes successfully identify and in-

corporate the appropriate cognate aminoacylated tRNA (aa-
tRNA) from among a large pool of competing aa-tRNAs,
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release factors, and other A-site binding proteins with re-
markable accuracy (error rate of 10−3–10−6) (for review,
see Zaher and Green 2009a; Voorhees and Ramakrishnan
2013). To discriminate effectively, the ribosome utilizes
both thermodynamic and kinetic strategies to achieve this
level of fidelity (Pape et al. 1999; Ogle et al. 2002; Gromadski
and Rodnina 2004; Nierhaus 2006; Ninio 2006; Johansson
et al. 2008). The tRNA selection process is divided into two
main phases, initial selection and proofreading, which are
separated by the nearly irreversible step of GTP hydrolysis
by elongation factor Tu (EF-Tu). In the initial phase of selec-
tion, the incoming aa-tRNA is delivered to the ribosome in a
ternary complex with EF-Tu and GTP. Upon recognition of
the codon–anticodon interaction, EF-Tu is activated and
GTP is rapidly hydrolyzed. The second phase of selection
commences with the release of inorganic phosphate followed
by conformational rearrangement in the elongation factor re-
sulting in fast dissociation of EF-Tu. In this proofreading
phase, naked ribosome bound aa-tRNAs either “accommo-
date” into the active site of the ribosome and participate in
peptidyl transfer, or dissociate from the ribosome. During
both phases of the selection process, near-cognate aa-tRNAs
are destabilized through increased dissociation rates. In addi-
tion, the key forward rates of GTPase activation and accom-
modation are significantly accelerated for cognate aa-tRNAs,
allowing translation to proceed rapidly and accurately (Pape
et al. 1999; Ogle et al. 2002; Gromadski and Rodnina 2004).
High-resolution crystal structures of the ribosome have

provided important molecular details about this induced-fit
mechanism. Binding of cognate aa-tRNA in the A site is ac-
companied by conformational changes in the decoding cen-
ter. The universally conserved residues A1493 and A1492 of
the 16S rRNA rearrange to interact with the minor groove
of the first- and second-position base pairs, respectively
(Wimberly et al. 2000; Carter et al. 2001; Ogle et al. 2002).
The second position is also inspected through additional in-

teractions with G530 of the 16S rRNA and S50 of ribosomal
protein S12. These interactions ensure that only Watson-
Crick base pairs are allowed at the first and second position
of the codon. Recognition of the third position is less strin-
gent, allowing certain wobble base pairs in the codon antico-
don helix. These interactions in the decoding center are
thought to initiate conformational changes in the small sub-
unit that ultimately trigger GTP hydrolysis by EF-Tu and
subsequent accommodation of the aa-tRNA into the active
site of the ribosome (Schmeing et al. 2009).
While much has been learned about how the ribosome dis-

tinguishes cognate aa-tRNAs from near-cognate and non-
cognate aa-tRNAs, relatively little study has been devoted
to understanding how the ribosome decodes aberrant
mRNAs. However, it is clear from the limited studies that
the ribosomal response to damaged mRNA does not always
recapitulate the responses of DNA polymerases to damaged
DNA. For instance, our laboratory has recently shown that
the oxidized base 8-oxoguanosine, which mispairs with A
during DNA replication, instead stalls the translation ma-
chinery (Simms et al. 2014).
In this study, we explore the effects of the methylation ad-

duct m6G on the decoding process. We characterize its effects
on the key steps of aa-tRNA selection, including accommoda-
tion andGTPase activation, aswell as on theprocess of release-
factor mediated termination. We then compare these param-
eters to those measured in the presence of the related modifi-
cation m6A. Our data show that m6G has differential effects
on decoding depending on its position within the codon. At
the first and third position, m6G results in efficient miscoding
where it pairs with U in the anticodon; at the second position,
m6G stalls the ribosome. These observations demonstrate
that the alkylation lesion m6G is detrimental to both ribo-
some speed and fidelity. Our results also highlight the unan-
ticipated distinctions in how the ribosome monitors the first
and second positions of the codon–anticodon interface.
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RESULTS

Effects of m6G on the fidelity of tRNA selection

To gain a better understanding of the consequences of m6G
on the decoding process, we used our bacterial reconstituted
translation system to program ribosomes with a single adduct
at the first, second, or third position of the A-site codon.
Briefly, initiation complexes were generated by loading ribo-
somes with the initiator tRNA [35S]-fMet-tRNAfMet in the
P site in the presence of the appropriate mRNA, initiation
factors, and GTP followed by purification over a sucrose
cushion. To begin our studies, we set out to explore the over-
all effects of the adduct on the accuracy of tRNA selection.
We utilized a surveying approach wherein the initiation com-
plexes were reacted with individual ternary complexes
comprising all of the 20 canonical aa-tRNA isoacceptors.
Dipeptide products were then resolved by electrophoretic
TLC and the overall efficiency of peptide-bond formation
assessed by quantifying the amount of dipeptide products
relative to unreacted fMet (Youngman et al. 2004). This ap-
proach has been recently used by our laboratory to monitor
the efficiency of incorporation of every
single amino acid and, importantly, re-
capitulates to a large extent the level of
fidelity measured in vivo (Simms et al.
2014).

We began our surveys by compar-
ing the reactivity of a pair of initiation
complexes displaying the intact GUG
or the alkylated m6GUG codon in the
A site (Fig. 2A; Supplemental Fig. S1).
The GUG codon is decoded by Val-
tRNAVal

VAC. The m6GUG codon, if
m6G pairs with U in the anticodon of
the tRNA, is expected to be decoded by
Met-tRNAMet

CAU. As predicted, for the
intact GUG we observed dipeptide for-
mation only in the presence of the cog-
nate Val-tRNAVal ternary complex (Fig.
2A). In contrast, for m6GUGwe observed
no accumulation of dipeptide in the pres-
ence of Val-tRNAVal ternary complex but
instead found robust fMet-Met produc-
tion (Fig. 2A; Supplemental Fig. S1).
This corroborated what has been seen
previously for DNA polymerases (Snow
et al. 1984). It is worth noting that be-
yond this switch in reactivity, the modifi-
cation had no obvious effect on reactivity
with other ternary complexes (Supple-
mental Fig. S1). To ensure that these
effects were not specific to the GUG
Val codon, we examined two additional
mRNAs with m6G in the first position

(Fig. 2A; Supplemental Figs. S2, S3). Consistent with our ear-
lier results, complexes displaying the intact Glu GAA and
Gly GGC codons in the A site reacted efficiently only with
the corresponding Glu-tRNAGlu

UUC and Gly-tRNA
Gly ternary

complexes, respectively; complexes displaying m6GAA and
m6GGC codons in the A site reacted efficiently with the
near-cognate Lys-tRNALys

UUU and Ser-tRNASer
GCU ternary

complexes, respectively (Supplemental Figs. S2, S3).
Although the first and second positions of the codon are

both decoded by monitoring strict Watson-Crick base-pair-
ing interactions, the ribosome utilizes different strategies to
inspect the minor groove at each position (Ogle et al. 2001;
Demeshkina et al. 2012). To determine whether m6G imparts
codon–anticodon mispairing, we generated two pairs of ini-
tiation complexes with modifications to the second position.
The first pair displayed either the intact CGC Arg codon or
the equivalent methylated Cm6GC codon in the A site; the
second pair displayed the AGU Ser codon or the equivalent
methylated Am6GU codon (Supplemental Figs. S4, S5). For
both pairs, the unmodified complexes (CGC and AGU) re-
acted efficiently only with the corresponding cognate ternary
complexes (Arg-tRNAArg and Ser-tRNASer, respectively), but

FIGURE 2. m6G affects the accuracy and speed of the ribosome. (A–C) Phosphorimager scans of
electrophoretic TLCs used to follow dipeptide formation in the presence of the indicated initia-
tion and ternary complexes.
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both second-position m6G initiation complexes displayed
little detectable reactivity with any ternary complexes, includ-
ing cognates (Fig. 2B; Supplemental Figs. S4, S5). Thus, even
though modification of the second position is predicted to
allow m6G:U pairing, the effects on tRNA selection and
translation were markedly different than the effects of m6G
in the first position.
In contrast to the first and second positions, wobble pair-

ing for most codons permits either A or G in the third posi-
tion to be read by the same aa-tRNA, preventing us from
testing the majority of sense codons for the effects of third-
position modification on aa-tRNA selection errors. However,
both Met and Trp are each encoded by only one codon
(AUG and UGG, respectively). Here, the presence of m6G
in the third position would result in codons (AUA and
UGA) that are decoded by Ile-tRNAIle

k2CAU and release fac-
tor 2 (RF2), respectively. As before, we generated two pairs of
initiation complexes, intact and m6G-damaged, and tested
their reactivities with ternary complexes and release factors
(Fig. 2C; Supplemental Figs. S6, S7). For both intact AUG
and UGG complexes, we observed robust dipeptide for-
mation only in the presence of cognate Met-tRNAMet

CAU

and Trp-tRNATrp
CCA ternary complexes and not with any

near- or non-cognates. Surprisingly, the damaged AUm6G
and UGm6G complexes reacted efficiently with both the cog-
nates and the m6G:U near-cognates (Ile-tRNAIle

k2CAU and
RF2, respectively) (Fig. 2C; Supplemental Figs. S6, S7).
Thus, at the wobble position, the ribosome tolerates both
m6G:U and m6G:C base pairs.

Kinetics of peptide-bond formation
and proofreading

Because the end-point assays provide little information
about the comparative rates of control and m6G aa-tRNA
selection, we used pre-steady state quench-flow kinetics
to compare the observed rates of cognate and near-cognate
dipeptide formation for intact and m6G-containing
mRNAs. This observed rate of peptide-
bond formation (kpep) reports on the
combined rates of aa-tRNA accommoda-
tion (k5) (rate-limiting step for peptidyl
transfer) and rejection (k7) during the
proofreading phase of the selection,
whereas the end point of the reaction re-
ports on the effectiveness of proofreading
(Fp), i.e., k5 relative to kpep (Pape et al.
1999). As expected, under our experi-
mental conditions (see Materials and
Methods) complexes displaying intact
codons in the A site reacted rapidly
with their cognate ternary complexes
with little to no rejection of aa-tRNAs.
We measured kpep and Fp values of 10–
40 sec−1 and 0.4–0.7, respectively (Figs.

3, 4A; Supplemental Fig. S8). With near-cognate aa-tRNAs,
the intact complexes exhibited much slower observed rates
of peptide-bond formation (0.01–0.05 sec−1) and higher
rates of rejection (0.14–0.34 Fp). Notably, and consistent
with our end-point analysis, the first-position m6G complex-
es also reacted slowly (0.007–0.08 sec−1) and with high rates
of rejection (0.04–0.17 Fp) with cognate ternary complexes
(Fig. 4A; Supplemental Fig. S8A). In contrast, the m6G com-
plexes reacted much faster (0.2–3.0 sec−1) with near-cognate
ternary complexes that preserve m6G:U base pairs between
the damaged base at the first position of the codon and
the third position of the anticodon (Fig. 4A; Supplemental
Fig. S8A). These reactions, compared to the intact com-
plexes, also displayed reduced rates of rejection with Fp val-
ues from 0.14 to 0.55 for all three complexes (Supplemental
Fig. S8A). These findings indicate that m6G at the first po-
sition of the codon is efficiently recognized as an A, highlight-
ing the deleterious effects of the adduct on translational
fidelity.
In contrast to the first position, our end-point surveys in-

dicated that initiation complexes programmed with m6G at
the second position of the codon react with neither cognate
nor near-cognate ternary complexes (Fig. 2B). In full agree-
ment with these initial observations, we measured much
slower rates of dipeptide formation for both cognate and
near-cognate aa-tRNAs and reduced Fp values typical of in-
creased rates of aa-tRNA rejection (Fig. 4B; Supplemental
Fig. S8B). The observed rates of peptide-bond formation be-
tween the alkylated Arg Cm6GC and Ser Am6GU complexes
and the corresponding cognate ternary complexes were de-
termined to be ∼1000-fold slower (∼0.02 sec−1) than those
measured for the analogous intact complexes (Fig. 4B). Fur-
thermore, we observed increased rates of rejection for the
methylated complexes as evidenced by the lower Fp values
of ∼0.2, versus ∼0.8 for the intact complexes (Supplemental
Fig. S8B). As for reactions with the near-cognate ternary
complexes, the apparent rates of peptide-bond formation re-
mained slow (0.003–0.01 sec−1, Fig. 4B) in the presence of
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m6G. Thus, it appears that the addition of m6G at the second
position stalls the translational machinery and does not pro-
mote miscoding.

At the third position, m6G had limited effects on the rate of
cognate aa-tRNA incorporation but substantially increased
reactivity with near-cognate aa-tRNAs. AUm6G Met initia-
tion complexes reacted only approximately twofold slower
with the cognate Met-tRNAMet ternary complex (28 versus
13 sec−1) and had limited effect on the end point of the reac-
tion (Fig. 4C; Supplemental Fig. S8C). However, the AUm6G
complex reacted significantly faster with the near-cognate
Ile-tRNAIle (0.07 versus 1.7 sec−1) relative to the control
complex and with decreased rejection (0.04 versus 0.15
Fp). Similarly, the rate of peptide-bond formation between
the UGm6G initiation complex and Trp-tRNATrp was only
fivefold slower than the intact UGG complex (1 versus
5 sec−1), again with little effect on the rate of rejection (Fig.
4C; Supplemental Fig. S8C). Furthermore, the maximal
rate of RF2-mediated release was fivefold faster for the meth-
ylated complex than its intact control, suggesting that decod-
ing m6G as A is not limited to RNA–RNA interactions but
also includes RNA–protein interactions (Fig. 4C). Collec-
tively, these observations are consistent with what we have
known for decades about the promiscuous nature of the
process by which the ribosome recognizes the third position
of the codon.

m6G modulates GTP hydrolysis to promote
miscoding and stalling

So far our analysis of m6G’s effects on decoding has focused
on the end result of the tRNA selection process, and any ef-
fects on steps preceding the proofreading phase could have
been missed. To address this, we measured the rates of the
key step of GTP hydrolysis by EF-Tu (kGTP), which reports
on activation of EF-Tu by the decoding center (Pape et al.
1998). Similar to the peptide-bond formation analysis, ob-
served rates of GTP hydrolysis were determined for control
and m6G-containing initiation complexes with cognate and
near-cognate aa-tRNAs. We found that the trends in the rates
of GTP hydrolysis are similar to those observed for the rates
of peptide-bond formation. More specifically, for complexes
with m6G in the first position, m6G slows GTP hydrolysis of
cognate aa-tRNAs ∼300-fold (30 versus 0.1 sec−1) while in-
creasing kGTP for near-cognates ∼30-fold (0.1 versus 3
sec−1) (Fig. 5). Likewise, mRNAs harboring m6G at the sec-
ond position reflect an almost identical pattern as their cor-
responding kpep rates, with kGTP rates for near-cognate and
cognate both at least 60-fold slower than for intact mRNAs.
As well, m6G at the third position does not have a significant
effect on cognate selection kGTP (11 versus 13 sec

−1) but does
increase kGTP for near-cognate selection 10-fold (0.3 versus 3
sec−1). Given the effects we see on proofreading and GTPase
activation, m6G appears to alter both phases of the tRNA
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selection process. This is not unexpected as both phases are
well documented to depend critically on proper base-pairing
geometry between the codon and anticodon (Gromadski
et al. 2006), and m6G is highly likely to disturb this geometry.

Effects of m6G are recapitulated in eukaryotic
extracts and mammalian cell culture

To explore whether the effects that we observed for m6G in
our bacterial translation system were conserved in eukaryotes
and could be recapitulated in a more in vivo–like setting, we
designed model reporter mRNAs encoding an N-terminal
HA and C-terminal Flag tag with a single m6G residue (Fig.
6A; Supplemental Fig. S9). In addition to the HA-Stop
mRNA, three sets of mRNAs that harbored m6G at the first,
second, and third position of a codon were synthesized (HA-
m6GAA, HA-Cm6GA, and HA-ACm6G, respectively). The
second- and third-position modified reporters were syn-
thesized by inserting 1 and 2 nucleotides (nt), respectively,
upstream of the Flag epitope, generating +1 and +2 frame-
shifted constructs and hence do not generate Flag-tagged
protein products (i.e., see Materials and Methods). We
then translated these mRNAs together with the correspond-
ing unmodified control reporters in wheat germ extracts that
were supplemented with 35S-methionine and separated the
peptide products by Bis-Tris PAGE. As predicted, the full-
length HA-Flag, HA-GAA, and the first-position modified

reporter (HA-m6GAA) mRNAs yielded peptides of identical
length, while the control HA-Stop peptide yielded a truncat-
ed product (Fig. 6B). The control HA-CGA mRNA yielded a
significantly extended peptide as a result of the frameshift
removing the stop codon. In contrast, HA-Cm6GA mRNA
yielded a shorter product of approximately the same length
as the HA-Stop peptide (Fig. 6B). This suggests that the
Cm6GA codon stalls translation and results in a prematurely
truncated peptide. Finally, m6G at the third position did not
appear to affect the production of full-length peptides, cor-
roborating the results of our bacterial ribosome experiments
(Fig. 6B).
To test whether first-position m6G is misread as A, wemu-

tated the central lysine residue (AAA codon) in the Flag epi-
tope to glutamate (GAA codon) and probed the resulting
peptide products with the M2 anti-Flag antibody. As predict-
ed, HA-GAA was only recognized by anti-HA antibody, but
not with the anti-Flag antibody (Fig. 6C). In direct agreement
with our bacterial reconstituted system, the first-position
modified reporter HA-m6GAA was efficiently recognized
by the anti-Flag antibody, producing a robust signal in the
Western blot (Fig. 6D). To provide further support for these
observations in a system that closely resembles in vivo condi-
tions, we electroporated the reporters along with a control
GFP plasmid into HEK293T cells. Again, we found that
only the HA-Flag andHA-m6GAAmRNAs produced peptide
products that could be recognized by the anti-Flag antibody
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(Fig. 6E). We note, however, that we failed to see a signal with
the anti-HA antibody, presumably due to the poor yield and
the small size of the reporters (Fig. 6E). Nevertheless, because
the anti-Flag antibody has no reactivity with the HA-GAA
(Glu) reporter product (Fig. 6C), any detectable Flag epitope
produced by the HA-m6GAA reporter strongly suggests that
m6G at the first position is misread as an A during translation
in human cells. Therefore, m6G appears to affect the speed
and fidelity of aa-tRNA selection by both bacterial and eu-
karyotic ribosomes.

m6G does not affect peptide release

Because of the significant effect m6G has on the speed and fi-
delity of peptide bond formation, especially at the second po-
sition, we wondered if m6G might also affect the decoding of
stop codons, which utilize protein–mRNA interactions to
mediate peptide release. To test this, we programmed initia-
tion complexes with fMet-tRNAfMet in the P site and either
control UGA or alkylated Um6GA codons in the A site
(Supplemental Fig. S10). We note that RF2 recognizes A
and G at the second position of the codon (UGA and UAA
are decoded by RF2). In agreement with this, but in contrast

to what we saw with second-position
modified sense codons, we found that
themaximal rate of peptide releasewas al-
most completely unaffected by the pres-
ence of m6G in the second position (2.6
versus 2.0 sec−1, Fig. 7). This supports
the results of the structural and biochem-
ical studies suggesting that peptide re-
lease, which is regulated by protein–
mRNA and not tRNA–mRNA interac-
tions, utilizes a distinct mechanism to
recognize the codon than those used for
aa-tRNA selection (Youngman et al.
2006; Korostelev et al. 2008; Laurberg
et al. 2008; Weixlbaumer et al. 2008).
Moreover, these findings lend further
mechanistic insights into the process by
which m6G affects decoding of sense co-
dons. In particular, the observation that
rate of release is not affected by m6G sug-
gests that the modification does not alter
the decoding center significantly on its
own, although the decreased fraction of
released peptide suggests the occasional
formation of a nonproductive complex
(Fig. 7). Ultimately, our data suggest
that the reduced rates of peptide-bond
formation observed with the equivalent
sense-codon complexes (Gm6GC and
Am6GU) aremost likely due to the altered
geometries of m6G:C and m6G:U base
pairs between the codon and anticodon.

N6 methylation of adenosine at the second
position has limited effect on decoding

To further explore our hypothesis that the inhibition of aa-
tRNA selection observed with the second-position-modified
codon is due to altered base-pairing geometry rather than to a
steric effect of a bulky methyl group at the O6 position, we
examined the effect of N6 methylation of adenosine (m6A)
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on the decoding process. It is worth noting that m6A has
emerged recently as an abundant and reversible RNA modi-
fication (∼1.7 m6A per transcript) (Fu et al. 2014; Meyer and
Jaffrey 2014). Interestingly, m6A has been found in both the
coding sequence and near the stop codon, suggesting that the
modification is likely to be encountered by actively translat-
ing ribosomes (Dominissini et al. 2012; Meyer et al. 2012).
Important to our studies is the fact that in contrast to m6G,
m6A is not predicted to have a drastic effect on the base-pair-
ing properties of the nucleobase (m6A pairs with U).
Therefore, any effects we observe for m6A on the decoding
process would likely be due to the presence of a hydrophobic
methyl group rather than altered base-pairing geometry. We
programmed initiation complexes with mRNAs containing
the enriched sequence Gm6AC, coding for aspartic acid,
and examined its reactivity with all 20 aa-tRNA isoacceptors.
Analysis of dipeptide products revealed that m6A had little ef-
fect on the fidelity of tRNA selection with cognate fMet-Asp
being the major dipeptide product (Supplemental Fig. S11).
Moreover, m6A had only a modest effect on the rate of fMet-
Asp dipeptide formation (33 versus 7 sec−1, Fig. 8). These re-
sults demonstrate that m6A does not decrease fidelity or stall
translation as we observed for m6G.

DISCUSSION

Our study provides important insights into the effects of m6G
on tRNA selection by the ribosome. A priori, we predicted
that, similar to DNA polymerases, m6G would prefer to
pair with U at all codon positions, resulting in the misincor-
poration of near-cognate aa-tRNAs. Instead, our results dem-
onstrate that m6G affects translation in a position-dependent
manner within the codon. When m6G is present at the first
position, the ribosome readily decodes m6G as A and incor-
porates the appropriate near-cognate aa-tRNA. However,
m6G at the second position stalls the ribosome, preventing
it from reacting efficiently with any of the 20 aa-tRNA isoac-
ceptors. At the third position, m6G had little to no effect on
the incorporation of cognate aa-tRNAs, yet significantly in-

creased the incorporation of near-cognate aa-tRNAs. These
discrepancies, especially between the first and second posi-
tion of the codon (both requiring strict Watson-Crick base-
pairing), suggest that the ribosome recognizes distinct aspects
of the base pair geometries at all three positions and is
uniquely affected when the geometries are perturbed. These
distinctions will be discussed in greater detail below.
Regardless of its position within the codon, m6G was

found to affect both phases of the tRNA selection process.
For instance, modification of the first position of the codon
was found to significantly decrease the observed rate of
GTPase activation and peptide-bond formation for cognate
aa-tRNAs, with rates 100- to 3000-fold lower than intact co-
dons (Figs. 4A, 5A). Furthermore, the complexes exhibited
higher rates of rejection as evidenced by the decreased end-
point values (Supplemental Fig. S8A). On the other hand,
the rates of GTPase activation and peptide-bond formation
for near-cognate ternary complexes preserving m6G:U
base-pairing were 20- to 100-fold faster than control codons
(Figs. 4A, 5A). These observations suggest that the geometry
of the m6G:U base pair at the first position is similar enough
to a Watson-Crick pair to activate the decoding center.
Notably, based on studies of DNA polymerases with m6G:T,
we would predict that the minor groove of the m6G:U base
pair would be nearly identical to that of a G:C base pair
(Figs. 1, 9; Leonard et al. 1990;Warren et al. 2006), suggesting
that the interaction with A1493 would be maintained. This
interaction is central to the transmission of signals required
for EF-Tu activation/GTP hydrolysis and aa-tRNA accom-
modation/peptidyl transfer (Schmeing et al. 2009).
At the third position we found that m6G increased ribo-

somal promiscuity during tRNA selection. Our results sug-
gest that both m6G:C (Met-tRNAMet) and m6G:U (Ile-
tRNAIle; actually m6G:lysidine) base pairs at the third posi-
tion are recognized as cognate interactions. While it is easy
to explain why the m6G:U base pair is deemed “sufficiently
cognate,” since it is very similar to a Watson-Crick base
pair, explaining the correct recognition of m6G:C is not as
trivial. However, at physiological pH the m6G:C base pair
can adopt a geometry similar to a wobble base pair (Figs. 1,
9A; Leonard et al. 1990), which at the third position is recog-
nized as a cognate. Surprisingly, the m6G:CWobble base pair
is even preferred over m6G:lysidine, as peptide bond forma-
tion of fMet-Met is ∼10-fold faster than fMet-Ile. However,
we cannot rule out the possibility that this effect is due to a
steric clash between the bulky lysidine residue and m6G. It
would be interesting to determine what effect the lysidine
modification may have on the tRNA selection parameters
for the cognate A:lysidine base pair compared to those of ca-
nonical Watson-Crick base pairs.
Wewere surprised by the dramatic differences in howm6G

affected tRNA selection at the first and second positions.
Correct codon–anticodon interactions at the first and second
positions are monitored by a “molecular caliper mechanism”
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hydrogen bond with the minor groove of the base pair to as-
sess Watson-Crick pairing (Fig. 9A; Ogle et al. 2001). Yet de-
spite their similar mechanisms of recognition, we observed
robust miscoding at the first position and stalling at the sec-
ond. One possible explanation for this is that the residues
surrounding the first position of the A site allow greater steric
flexibility for a bulky methyl group than does the second po-
sition. However, we observed only a modest effect (approxi-
mately sixfold) with m6A at the second position (Fig. 8),
despite the methyl group of m6A occupying the same steric
space as that of m6G. Thus, it seems unlikely that second-po-
sition m6G stalls translation because of the inability of the A
site to tolerate the methyl group.

The observation that the ribosome is more sensitive to
changes at the second position than at the first position of
the codon agrees with biochemical and structural studies of
the tRNA selection process. Kinetic analysis of ribosomal re-
sponse to mismatches by the Rodnina group revealed that
while the ribosome discriminates exceptionally well against
mismatches at all positions, mismatches at the second posi-
tion result in much slower rates of GTPase activation and ac-
commodation relative to mismatches at the first and third
position (Gromadski et al. 2006). Furthermore, whereas the
minor groove of the first-position base pair is inspected
through A-minor interaction with only one ribosomal resi-
due (A1493), the minor groove of the second-position base
pair is closely inspected through interactions with multiple

residues, including A1492 and G530 of
16S rRNA. These residues are then them-
selves stabilized through hydrogen bond
interactions with C518 of 16S and
S50 of ribosomal protein S12 (Fig. 9A;
Ogle et al. 2001). Structures of a high-fi-
delity DNA polymerase in complex with
m6G show that the incoming m6G:T
base pair adopts a conformation that is
nearly indistinguishable from canonical
Watson-Crick base pairs (Warren et al.
2006). Moreover, after replication, the
m6G:T base pair is similar enough to
G:C that it is not detected by the mis-
match-repair machinery (Leonard et al.
1990) but is instead detected by proteins
devoted entirely to removingm6G lesions
(Demple et al. 1982). How could the
m6G:T base pair trick the DNA replica-
tion machinery and yet m6G:U at the sec-
ond codon position of the A site stall the
ribosome? One possibility is that the
m6G:T base pair deviates slightly from
planarity relative to a G:C Watson-Crick
base pair (Fig. 9C; Warren et al. 2006).
The effect of this twisting is detectable
during DNA replication. Specifically,
while the kcat/Km for dTMP incorpora-

tion across m6G is much higher than that of dCMP, it is sig-
nificantly lower than the normal incorporation of dCMP
across G (Warren et al. 2006). It is tempting to speculate
that the ribosome recognizes this slight geometric change
through the intricate hydrogen bonding network that forms
around the base pair. Alternatively, it is feasible that the
change is transmitted though the mRNA structure itself to
the adjacent positions. Whatever the mechanism, it is clear
that m6G at the second position slows translation at least
1000-fold. Such a strong roadblock would likely engage the
ribosomal rescue pathways (tmRNA in bacteria and No-Go
Decay in eukaryotes) (Doma and Parker 2006; Moore
and Sauer 2007; Tsuboi et al. 2012) as we have observed re-
cently for mRNAs containing the oxidation adduct 8-oxo-
G (Simms et al. 2014). Further study will be necessary to
delineate how m6G at the second position stalls translation
and to assess what effect this would have on cellular fitness.
In addition to aa-tRNA selection, we also examined the ef-

fects of m6G on peptide release by the class I release factor
RF2. Surprisingly, we found that RF2 recognized UGA and
Um6GA equally well. Although this observation on its own
is not surprising (RF2 recognizes both UGA and UAA co-
dons), it was unexpected given the striking effect of m6G at
the second position during aa-tRNA selection. This finding
also supports our hypothesis that m6G stalls aa-tRNA selec-
tion due to its distorted base-pairing interactions and not
through other independent interactions. Moreover, the data
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highlight a key difference between the recognition of sense
and nonsense codons: release factors engage stop codons
through protein–RNA interactions (Korostelev et al. 2008;
Laurberg et al. 2008; Weixlbaumer et al. 2008). Specifically,
RF2 interacts with the second-position G of the UGA stop co-
don via hydrogen bonds between T203/S204 and N2 and be-
tween S193 and N1 and O6 (Fig. 9B). Importantly, threonine
and serine residues can serve as both hydrogen bond donors
and acceptors. Thus, during recognition of the UAA stop co-
don the hydrogen bond directionalities of S193 are reversed,
allowing the factor to recognize A (Fig. 9B). Inspection of the
70S ribosome crystal structure in complex with a UGA stop
codon and RF2 suggests that m6G at the second position
would still permit hydrogen bonding between T203/S204
and N2 and one hydrogen bond between S193 and either
O6 or N1 to maintain RF2 stabilization. We also note that
the third-position codon UGm6G was decoded by RF2 five-
fold faster than control UGG (0.60 versus 0.12 sec−1), al-
though this rate was still fourfold slower than that of an
authentic UGA stop codon (2.6 sec−1). At the third position,
T203 of RF2 accepts a hydrogen bond from N6 and donates
one to N7 of A; R201 also likely donates a hydrogen bond to
N1 of the A (Fig. 9B; Weixlbaumer et al. 2008). Methylation
of O6 would restore some of these interactions as N1 would
no longer be a hydrogen bond donor but instead serve as a
hydrogen bond acceptor. However, the hydrogen bond ac-
cepting of O6 does not change upon methylation and as a re-
sult it is unable to donate to T203, explaining why the rate of
release on UGm6G, although faster than on UGG, is slower
than on the UGA stop codon.
Our data show that m6G has dramatic effects on mRNA

decoding at all positions of the codon. At the second position,
m6G essentially stalls translation while at the third and first
positions m6G impairs selection fidelity. The efficient incor-
poration of near-cognate aa-tRNAs by m6G at the first posi-
tion would rapidly result in the production of potentially
deleterious protein products. Moreover, this miscoding
would be magnified as each mRNA is translated numerous
times over the course of its lifespan. In the case of DNA rep-
lication, it is clear that m6G’s mutagenic potential poses a sig-
nificant risk to organismal fitness if not repaired. However,
whether cells also detect damaged RNA remains unclear.
Several studies have in fact demonstrated that certain RNA
modifications including N1-methyladenosine (m1A) and
N3-methyladenosine (m3A) are efficiently repaired by the
bacterial oxidative demethylase AlkB and its human ortholog
ABH3 (Aas et al. 2003; Ougland et al. 2004). In addition, the
natural modificationm6A is also removed by the demethylase
FTO (Jia et al. 2011). Taken together, these studies raise the
exciting possibility that cells have evolved pathways to detect,
decode, modulate, and repair nucleobase modifications in
both DNA and RNA. It will be interesting to determine
whether the systems that detect and repair the mutagenic ad-
duct m6G in DNAmight also serve to protect the cell from its
deleterious effects in RNA.

MATERIALS AND METHODS

Reagents

All experiments were performed in 1× polymix buffer containing
95 mM KCl, 5 mM NH4Cl, 5 mM Mg(OAc)2, 0.5 mM CaCl2,
8 mM putrescine (pH 7.5), 1 mM spermidine (pH 7.5), 10 mM
K2HPO4 (pH 7.5), and 1 mM DTT (Jelenc and Kurland 1979).
70S ribosomes were purified fromMRE600 Escherichia coli by the

double-pelleting technique as described previously (Zaher and
Green 2010). E. coli translation factors were overexpressed and pu-
rified as described previously (Zaher and Green 2009b).
Control mRNAs were transcribed from dsDNA templates by

T7 RNA polymerase and purified by denaturing PAGE (Zaher
and Unrau 2004). Experimental mRNAs containing either m6G or
m6A were purchased from GE Healthcare and examined before
use by denaturing PAGE to ensure purity. The final mRNAs
had the following sequence: CAGAGGAGGUAAAAAAAUG (X)
UUGUACAAA, where X represents the variable A-site codon.
Control reporter mRNAs for wheat germ and HEK293 experi-

ments were transcribed from dsDNA templates as described above.
Reporter mRNAs with m6G were synthesized using RNA ligation
as described previously (Simms et al. 2014). Briefly, an upstream
RNA encoding a 3′ hammerhead ribozyme was PCR amplified
and transcribed with T7 RNA polymerase and then purified by
denaturing PAGE. The 2′/3′ phosphate was removed with T4
PNK. The downstream RNA oligo containing the m6G residue
was purchased from GE Healthcare, purified by denaturing PAGE,
and 5′ phosphorylated using T4 PNK. The two fragments were
then combined, along with a 60-mer reverse complement DNA
oligo splint, annealed, and ligated using T4 RNA ligase 2 (NEB).
For the HEK293 experiments, the reporter mRNAs were capped us-
ing the Vaccinia capping system (NEB) and polyadenylated with E.
coli poly(A) polymerase (NEB) followed by phenol–chloroform
purification.

aa-tRNA charging

Individually purified tRNAs (Glu, Lys, Val, Met, Arg) were pur-
chased from Chemical Block and aminoacylated using purified aa
tRNA synthetases from E. coli in 100 mM K-HEPES (pH 7.6),
20 mMMgCl2, 10 mM KCl, 1 mM DTT, and 10 U thermostable in-
organic pyrophosphatase (Walker and Fredrick 2008). Additional
aa-tRNAs were charged individually using total E. coli MRE600
tRNAs (Roche) and individual amino acids as above. AA-tRNAs
were generally charged for 30 min at 37°C followed by phenol/chlo-
roform extraction. AA-tRNAs were resuspended in 20 mM KOAc
(pH 5.2), 1 mM DTT and used immediately for peptidyl transfer
or GTP hydrolysis assay.

Generation of initiation complexes

Initiation complexes (ICs) were prepared by incubating 2 μM 70S
ribosomes with 6 μM mRNA, 3 μM [35S]fMet-tRNAfMet, 3 μM of
each IF1, IF2, and IF3, and 2 mM GTP in polymix buffer for
15min at 37°C. The ICs were then layered over 700 μL sucrose cush-
ions (1.1 M sucrose, 20 mM Tris-Cl [pH 7.5], 500 mM NH4Cl, 10
mMMgCl2, and 0.5 mMNa-EDTA [pH 7.5]) and centrifuged in an
MLA-130 rotor at 267,000g for 2 h at 4°C. Pelleted ICs were resus-
pended in polymix buffer at a final concentration of 2 μMand stored
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at−80°C until use. ICs were stable for at least 1 mo at−80°C. IC for-
mation efficiency was assessed by the fraction of radiolabeled [35S]
fMet-tRNAfMet in the ribosome pellet and was typically >75%.

Ternary complexes reactivity survey

Individual ternary complexes were first prepared by incubating
40 μM EF-Tu and 2 mM GTP in polymix buffer for 10 min at
37°C. Individually charged Roche total aa-tRNAs were then added
to a final concentration of 2 μM (80 μM total tRNA, reasoning
that there are ∼40 equally distributed tRNA isoacceptors) and incu-
bated for another 10min at 37°C. 4 μL of ICs (2 μM)were then com-
bined with 4 μL of each TC in 96-well plates using a multichannel
pipette and reacted for 30 sec at 37°C before being quenched with
2 μL of 1 M KOH. 0.5 μL of each product was spotted at the center
of cellulose TLC plates (Merck) and resolved using an electrophoret-
ic TLC system containing PyrAc buffer (3.48 M acetic acid, 62 mM
pyridine) and Stoddard’s solvent at 1200 V (Youngman et al. 2004).
TLC plates were analyzed by phosphorimaging and quantified using
Bio-Rad Quantity One software.

Kinetics of peptidyl transfer

Tomeasure rates of peptidyl transfer, ternary complexes (TCs) were
prepared as described above. Reactions were initiated by combining
equal volumes of TCs and ICs (prepared as above) using a quench-
flow instrument (RQF-3, KinTek Corporation) and quenched with
1 M KOH. Reactions were spotted, resolved, and quantified as de-
scribed above and reaction rates were calculated using GraphPad
Prism software.

Kinetics of GTP hydrolysis

To measure GTP hydrolysis, we programmed ICs as above with the
exception of using only a trace amount of radiolabeled [35S]fMet-
tRNAfMet (just sufficient to quantify charging efficiency). TCs
were prepared by incubating 20 μM EF-Tu with 20 μCi (6000
Ci/mmol) [γ-32P]-GTP, and 50 μM cold GTP, 2× polymix in a
20 μL volume at 37°C for 10 min. An equal volume (20 μL) of
40 μM aa-tRNA was then added and further incubated at 37°C for
10 min. TCs were then layered over polymix-equilibrated P-30 gel
filtration spin columns (Bio-Rad) and centrifuged at 1000g for
1 min at 4°C. The flow through was then applied to a second spin
column. The final flow through was diluted to 400 μL (1 μM EF-
Tu final) with polymix buffer kept on ice until use. To measure
rates, ICs and TCs were combined at 20°C using a quench-flow in-
strument and quenched with 2% formic acid. Products were spotted
(0.5 μL) on PEI-cellulose TLC plates (Sigma), separated in 0.5 M
KH2PO4 (pH 3.5), and analyzed by phosphorimaging. Rate con-
stants were calculated using GraphPad Prism.

Kinetics of peptide release

ICs (2 μM) programmed with a stop codon in the A site were reacted
with an equal volume of 20 μM RF2 at 37°C using a quench-flow
apparatus and quenched with 50 mM K-EDTA (pH 6.0). 0.5 μL
of each reaction was spotted and resolved as above using the elec-
trophoretic TLC system. Rate constants were calculated using
GraphPad Prism.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article
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