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Background: NRG1 and its receptor ErbB4 are schizophrenia susceptibility genes.

Results: NRG1 induced the up-regulation of EAAC1 with an increase in glutamate uptake. Conclusion: NRG1/ErbB4 signaling
influences glutamate uptake by increasing the EAAC1 protein level.

Significance: These results contribute to understanding of a possible mechanism of NRG1/ErbB4 signaling that may be linked

to the neural circuitry disruption in schizophrenia.

Neuregulin 1 (NRG1) is a trophic factor that is thought to have
important roles in the regulating brain circuitry. Recent studies
suggest that NRG1 regulates synaptic transmission, although
the precise mechanisms remain unknown. Here we report that
NRG1 influences glutamate uptake by increasing the protein
level of excitatory amino acid carrier (EAAC1). Our data indi-
cate that NRG1 induced the up-regulation of EAAC1 in primary
cortical neurons with an increase in glutamate uptake. These in
vitro results were corroborated in the prefrontal cortex (PFC) of
mice given NRG1. The stimulatory effect of NRG1 was blocked
by inhibition of the NRG1 receptor ErbB4. The suppressed
expression of ErbB4 by siRNA led to a decrease in the expression
of EAACI. In addition, the ablation of ErbB4 in parvalbumin
(PV)-positive neurons in PV-ErbB4 ™/~ mice suppressed EAAC1
expression. Taken together, our results show that NRG1 signal-
ing through ErbB4 modulates EAACI. These findings link pro-
posed effectors in schizophrenia: NRG1/ErbB4 signaling per-
turbation, EAACI1 deficit, and neurotransmission dysfunction.

Neuregulin 1 (NRG1)? signaling proteins contain an epider-
mal growth factor (EGF)-like motif, which binds to and acti-
vates the ErbB receptor tyrosine kinase. NRG1 has multiple
actions during synaptogenesis in the developing brain. Recent
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studies have clearly shown its role in the regulation of synaptic
plasticity and neurotransmission (1). NRG1 acts to suppress the
induction of long-term potentiation (LTP) (2, 3) in the hip-
pocampus (2-5). In vitro studies have shown that NRG1 sup-
presses NMDA receptor-mediated currents in prefrontal cor-
tex (PFC) neurons (6). NRG1 has also been shown to induce the
internalization of surface AMPA receptors in hippocampal
neurons (2). ErbB4 expression in the brain is mainly restricted
to y-amino butyric acid (GABA) ergic interneurons (4, 7).
NRGI has been shown to stimulate GABA release in PFC slices
through the ErbB4 receptor (8). NRG1 suppresses LTP by
enhancing GABA release. Interestingly, these effects require
ErbB4 in parvalbumin (PV)-positive neurons (9). ErbB4 is
located predominantly in the PV-positive interneurons (4, 10)
that contribute to regulate the neuronal network balance.
Which synaptic molecules are linked with the NRG1-mediated
regulation of neuronal activity remains unclear.

The concentrations of synaptic glutamate are tightly regu-
lated by Na*-dependent high affinity glutamate transporters
that ensure crisp synaptic neurotransmission. This family con-
sists of five members: GLAST, GLT-1, EAAC1, EAAT4, and
EAATS5 (also known collectively as EAAT1-5). Excitatory
amino acid carrier 1 (EAAC1) is a glutamate transporter pres-
ent in the presynaptic pool, in opposition to two other main
transporters, GLAST and GLT1, that are expressed at the excit-
atory amino acid synapse by surrounding astrocytes (11).
EAACI is found throughout the brain on the somas and den-
drites of small and large pyramidal neurons (12—14). EAAC1 is
also localized to presynaptic GABA containing terminals and
may have a metabolic role in providing glutamate for GABA
metabolism (13, 15). The loss of brain EAAC1 expression inter-
feres with GABA synthesis and results in epilepsy (12, 16).
Moreover, EAACI expression is altered in pathological condi-
tions, such as hypoxia/ischemia, multiple sclerosis, schizophre-
nia, and epilepsy (17). These findings suggest that EAAC1 may
be important for the function or development of GABAergic
metabolism and neurotransmission in the brain.
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Our study demonstrates that NRG1/ErbB4 signaling influ-
ences glutamate uptake by regulating EAAC1 and suggests that
this pathway can contribute to neurotransmission and to the
etiology of schizophrenia.

Experimental Procedures

Materials and Animals—NRG1BEGEF-like domain peptide
was obtained from Prospec-Tany TechnoGene. Antibodies
were supplied by Santa Cruz Biotechnology Inc. (Santa Cruz,
CA) (ErbB4, sc-283; ErbB2, sc-284; EAATI1, sc-15316; EAAT2,
sc-7760; EAAT3, sc-25658; ERK2, sc-100752; Mouse IgG,
sc-2025; Rabbit IgG, sc-66931; B-actin, sc-47778; HRP-conju-
gated anti-rabbit IgG, sc-2004; HRP-conjugated anti-mouse
IgG, sc-2005 and HRP-conjugated anti-goat IgG, sc-2020), Mil-
lipore Corp. (Chemicon, MA) (EAAT3(EAAC1), MAB1587),
Abcam (Cambridge, MA) (PV, ab11427), and Synaptic System
(Gottingen, Germany) (PV, 195011C3). AG1478 and AG879
were from Calbiochem. (3S)-3-[[3-[[4-(trifluoromethyl) ben-
zoyl] amino]phenyl]methoxy]-L-aspartic acid (TFB-TBOA)
was from Tocris. DMSO was from Sigma. PV-ErbB4 mice and
GAD (glutamic acid decarboxylase)-GFP mice were kindly pro-
vided by Prof. Lin Mei at Georgia Regents University (9). Exper-
iments with animals were performed in accordance with insti-
tutional and Eulji University guidelines.

Cell Culture—Primary cortical neurons were cultured essen-
tially as described (8). Dissociated cortical neurons from E18
Sprague-Dawley rat embryos were cultured for 14 days after
seeding (DIV) in Neurobasal medium supplemented with B27
(Gibco, Carlsbad, CA). Rat C6 glioma cells were obtained from
the Korean cell line bank (Seoul, Korea) and grown in DMEM
supplemented with 10% fetal bovine serum and a penicillin-
streptomycin mixture.

RT-PCR and Quantitative Real-time PCR (qRT-PCR)—Total
RNA was isolated from primary cortical neurons and C6 cells
with TRIzol (Invitrogen). The following primers were used for
PCR: slclal (S), 5'-atgcttetgectegtetttggac-3', (AS), 5'-atge-
ccagcgattaggaacaaaa-3'. All of the primers were designed with
the help of primer 3 programs according to the known or pre-
dicted rat sequences reported in GenBank™. qRT-PCR was
performed using Bio-Rad Bio-Plex Systems with the DyNAmo
SYBR Green qRT-PCR Kit (Finnzymes). For all of the probands,
each cycle consisted of a denaturation step at 95 °C for 10 s,
followed by separate annealing (20 s) and extension (30 s) steps
at a temperature characteristic for each proband. Fluorescence
was monitored at the end of each extension step. The specificity
of each PCR product was verified by performing dissociation
reaction plots. Data were normalized to GAPDH. Real-time
PCR data presented here had a p < 0.05 in Student’s ¢ test.

Small Interfering RNA (siRNA) Transfection—siRNAs target-
ing rat ErbB4, negative control (AllStars Negative Control
siRNA) and positive control (Mapkl Control siRNA) were
designed and synthesized by Qiagen with the following
sequences: ErbB4-1, 5'-AAGGATAACATCGGATCACAA-
3’; ErbB4-2, 5'-ACCGAGTTAGTCGAGCCCTTA-3'; ErbB4 —
3,5'-TACGCATTATTCGTGGGACAA-3'; ErbB4 -4, 5'-TCG-
CTATGCCTTAGCAATATT-3". Cells were transfected with
each siRNA using HiPerFect transfection reagent according to
the manufacturer’s protocol (Qiagen).
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Western Blotting—Immunoblotting was performed as previ-
ously described (8). Samples were separated on a polyacryl-
amide gel and transferred to PVDF membranes. The mem-
branes were blocked with TBS containing 0.05% Tween-20 and
5% skim milk. The blots were then reacted with primary anti-
bodies overnight at 4 °C and subsequently incubated using sec-
ondary antibodies conjugated with horseradish peroxidase and
an enhanced chemiluminescent substrate (Amersham Biosci-
ences Pharmacia).

Immunofluorescence—Immunostaining of ratprimary corti-
cal neurons (E18, DIV14), C6 glioma cells, and brain sections
were performed as described (8). Briefly, the cells were reacted
in the blocking solution containing antibodies against ErbB4
(1:100), EAAC1 (1:100), and EAAT1 (1:100) at 4 °C overnight.
The cells were then incubated with FITC-conjugated goat anti-
mouse IgG or Cy3-conjugated goat anti-rabbit IgG (Jackson
ImmunoResearch Laboratories, Inc., 1:200) in buffer for 2 h at
room temperature. Nuclei were counterstained with Hoechst
(10 wm in PBS) for 30 min. PFC sections (20 wm) were prepared
and incubated in the blocking solution containing rabbit
anti-PV and mouse anti-EAAC1. GAD-GFP-positive terminals
were examined by excitation at 488 nm. Immunoactivity were
visualized by Oyster 550 fluorescence-labeled anti-PV and
Alexa 488 or Alexa 595-conjugated secondary antibodies for
anti-EAACI. Stained cells were mounted in Vectorshield (Vec-
tor Laboratories) and observed under the LSM 510 laser scan-
ning microscope (Carl Zeiss, Germany).

In Vitro Glutamate Uptake Assay—Glutamate uptake was
measured as described previously (18). After the cells were
washed twice with uptake buffer (pH 7.4, 10 mm glucose, 5 mm
KCl, 127 mm NaCl, 10 mm Hepes, 2.5 mm CaCl,, 1.2 mm
MgSO,, and 1.3 mm KH,PO,), glutamate uptake measure-
ments were initiated by adding ;-[?H]glutamate (250 uCi/
umol, PerkinElmer Life Sciences, Boston, MA) at 5 uM final
concentration (4 uM cold plus 1 uMm radioactive glutamate).
L-Glutamate uptake was terminated after 2 min incubations at
37 °C. The reaction was stopped by adding cold, sodium-free
buffer. To dissolve the cells, 1 N NaOH was added to the culture
dishes and the radioactivity was measured by a Liquid Scintil-
lation Analyzer Tri-Carb 2900TR (PerkinElmer). The values of
.-[PH]glutamate incorporation were divided by protein con-
tent. Na*-dependent uptake was calculated as the difference in
radioactivity accumulated in the presence and absence of Na™.

Biotinylation—The biotinylation assay was performed as
described previously (18). In brief, cells were rinsed three times
with ice-cold PBS containing 0.1 mum calcium and 1.0 mM mag-
nesium (Ca/Mg PBS). The cells were then incubated with 1
mg/ml sulfo-NHS-SS-biotin in Ca/Mg PBS for 20 min at 4 °C
with gentle shaking. The unreacted biotin was removed, and
the biotin was quenched using Ca/Mg PBS containing 100 mm
glycine. The cells were lysed with RIPA buffer containing pro-
tease and phosphatase inhibitors. The lysates were centrifuged
at 16,500 X g for 30 min to remove cellular debris. Aliquots of
the lysate were further incubated with an equal volume of a 50%
slurry of avidin beads for 1 h and centrifuged at 16,500 X g for
10 min at 4 °C. SDS sample buffer was added to the cell lysate,
biotinylated proteins (cell surface proteins), and non-biotiny-
lated proteins (intracellular proteins). Each of these fractions
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was diluted and loaded so that the sum of immunoreactivity in
the non-biotinylated and biotinylated fractions equaled the
immunoreactivity in the lysate (if the yield from avidin extrac-
tion was 100%).

Intracerebroventricular (ICV) Infusion of NRGI using an
Osmotic Pump—The ICV infusion experiments were carried
out with Alzet Micro-Osmotic Pumps (model 1004, DURECT,
with a capacity of 100 ul and at a pump rate of 0.11 ul/h for 4
weeks) as described previously (19). The osmotic pumps were
filled with NRG1 peptide (28 ng/kg) or PBS according to the
manufacturer’s instructions. A group of mice underwent ICV
cannulation with the Alzet Brain Infusion kit (DURECT), and
subcutaneous osmotic pumps were used to infuse into the right
lateral ventricle of the brain. Mice were anesthetized via an
intramuscular injection of Rompun (17.5 mg/kg) and Zoletil
(12.5 mg/kg) and were sacrificed after infusion of NRG1 for
4-weeks. The mice were immediately intracardially perfused
with PBS containing heparin. After perfusion, each brain was
removed and stored at —70 °C.

Statistical Analysis—The results are expressed as the mean *
S.E. The differences between several groups were analyzed by
one-way ANOVA followed by Bonferroni’s post-hoc test. Com-
parisons between two groups were performed with Student’s
paired ¢ test. Significance was accepted for a p value of < 0.05.

Results

NRG]1 Induces the Up-regulation of EAACI—Several previ-
ous studies have shown that NRGL1 signaling regulates neu-
rotransmission (8). However, it is not clear how NRG1 signaling
controls the GABA circuit. Because EAAC1 expression has
been found on presynaptic GABA terminals (20, 21), where the
transporter is thought to supply glutamate as a precursor for
GABA synthesis (11, 16), we hypothesized that NRG1 signaling
may be involved in the regulation of EAACI. Based on this
hypothesis, we investigated the effect of NRG1 on the regula-
tion of glutamate transporters in C6 cells. EAAC1 represents
the predominant glutamate transporter expressed by C6 cells,
although the expression of GLT1 and GLAST is also detectable
at very low levels in these cells (22).

NRG1 showed no effect on the protein levels of the astroglial
transporters (GLAST and GLT1); however, NRG1 treatment in
C6 cells increased the neuronal transporter EAAC1. Moreover,
this effect was shown in a concentration-dependent manner
(Fig. 1, A and B). As shown in Fig. 1, C and D, NRG1 also
up-regulated EAAC1 in primary cortical neurons.

To verify these results in vivo, we infused vehicle or NRG1
into the lateral ventricle of mice brains using an osmotic pump
with a stereotaxic apparatus. Consistent with the in vitro result,
NRGI1 dramatically increased EAAC1 protein levels in PFC
of NRG1-infused mice brain (Fig. 1, E and F). Treatment with 5
nM NRG1 showed a maximal response in 30 min; this dose was
used for further experiments (Fig. 2, A and B).

The surface expression of EAAC1 is important for its func-
tion, so we investigated whether NRG1 affects the protein level
of EAACI in the cell membrane by performing a biotinylation
assay. NRG1 increased the surface expression of EAACI and
increased the EAACI expression in total cell lysates (Fig. 2, C
and D). However, NRG1 increased not only the expression of
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surface EAAC1 but also the intracellular expression of EAAC1
(Fig. 2, E and F). These results indicate that NRG1 regulates
EAACI1 expression in the brain without affecting the astroglial
transporters, GLAST and GLT1.

ErbB4 Is Necessary for EAACI Up-regulation by NRG1—We
investigated the possible role of ErbB receptors in the NRG1-
mediated regulation of EAAC1 expression. The cells were
treated with AG1478 (an inhibitor of ErbB4) and AG879 (an
inhibitor of ErbB2) (8). First, we confirmed that EAAC1, ErbB2,
and ErbB4 were expressed in C6 cells (Fig. 3A4). Treatment with
AG1478 prevented NRG1 from up-regulating EAAC1 in C6
cells, but treatment with AG879 did not (Fig. 3, B and C).

In addition, we investigated whether ErbB4 was involved in
the EAAC1 up-regulating effect of NRGlin primary cortical
neurons. Similar to C6 cells, treatment with AG1478, prevented
NRG1 from up-regulating EAAC1 in the cells (Fig. 3, D and E).
We checked the mRNA level of EAAC1 by performing RT-PCR
and qRT- PCR after treating C6 cells and primary cortical neu-
rons with 5 nMm NRG1. NRG1 did not affect the mRNA level of
EAACI in the cells (Fig. 3, F and G). These data suggest that
ErbB4 activation is required for NRG1-mediated regulation of
EAACI, whereas ErbB2 is not involved.

We performed immunocytochemistry to investigate EAAC1
immunoreactivity and localization in primary cortical neurons
and found that NRG1 significantly increased EAAC1 immuno-
reactivity in comparison to control and that EAAC1 co-local-
ized with ErbB4 in primary cortical neurons (Fig. 4, A and B).

NRG1 Increases Glutamate Uptake in Primary Cortical
Neurons—To confirm that EAAC1 up-regulated by NRG1 is
functional, we measured glutamate uptake in primary cortical
neurons by employing a [*H]glutamate in vitro uptake assay
system. NRG1 treatment increased glutamate uptake in pri-
mary cortical neurons in a dose-dependent manner (Fig. 5A4).
To further investigate the involvement of EAAC1, we charac-
terized the glutamate uptake assay by treatment with TFB-
TBOA (a selective non-transportable EAAT inhibitor) at a con-
centration of 50 nM, which is known to block GLAST and GLT1
without affecting EAAC1 (23). In the presence of TFB-TBOA,
the effect of NRG1 was not affected (Fig. 5B). Moreover, treat-
ment with AG1478 prevented NRG1 from increasing gluta-
mate uptake. In contrast, AG879 had no effect (Fig. 5C).

Knock-down of ErbB4 by siRNA Inhibits NRG1 from Up-reg-
ulating EAACI1—To investigate the involvement of endoge-
nous ErbB4, we employed siRNA to knock down ErbB4 (24, 25).
Four different siRNA reduced the ErbB4 protein expression to
different degrees (Fig. 6, A and B), and ErbB4 -1 and ErbB4 -3
siRNA were effective (Fig. 6, C, D, and E). ErbB4-3 specific
siRNA (33 nm) down-regulated ErbB4 in C6 cells by ~82% (Fig.
6, D and E). Knock-down of ErbB4 significantly reduced the
total amount of EAAC1 in C6 cells (control, 1 = 0.17; ErbB4 -3
siRNA, 0.19 = 0.1, n = 8; p < 0.05; Fig. 6, D and F). Further-
more, transfection with ErbB4 —3 siRNA prevented NRG1 from
increasing EAACI expression (NC + NRGI, 2.38 * 0.18;
ErbB4 -3 siRNA+ NRG1, 0.24 = 0.1, n = 8; p < 0.01; Fig. 6, D
and F).

We performed immunocytochemistry to investigate EAAC1
immunoreactivity in C6 cells and found that ErbB4 siRNA sig-
nificantly decreased EAAC1 immunoreactivity in comparison
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to control (Fig. 6, G and H). These observations confirm a role
of endogenous ErbB4 in the NRG1-mediated up-regulation of
EAACL.

EAACI Is Remarkably Reduced in PV-ErbB4~"~ Mice—We
checked the protein level of EAACI in PV-ErbB4 ™/~ mice to
investigate the involvement of ErbB4 in vivo. ErbB4 is predom-
inantly located in PV-positive interneurons (7, 9, 10, 26).
PV-ErbB4 ™/~ mice are PV-specific ErbB4 knock-out mice. In
PV-Cre mice, the expression of Cre recombinase is activated at
postnatal day 13 (27, 28). As shown in Fig. 7, A and C, ErbB4 was
reduced in the various brain areas. In addition, PV was also
reduced in the brains of PV-ErbB4 /™ mice (Fig. 7, A and D),
which is in agreement with previous studies (9), Importantly,
EAAC1 was dramatically reduced but not GLT1 and GLAST in
several brain regions (prefrontal cortex, cortex, hippocampus,
and striatum) of PV-ErbB4 /" mice ( Fig. 7, A-F).
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EAAC1 was found to be remarkably reduced in same region
of PV-ErbB4~/~ (Fig. 7, A and B), indicating that ErbB4 in PV-
positive neurons is required for EAACI expression. In addition,
we stained PFC sections of mice that express GFP in inhibitory
neurons (GAD 67 mice, Jackson Lab) to examine the subcellu-
lar localization of EAAC1 in GABAergic neurons. EAAC1
immunoreactivity colocalized with GFP fluorescence when
stained with either anti-mouse antibodies (Fig. 8, A and B). In
total, 37% of GAD-GEFP clusters were colocalized with EAAC1,
and 72% of EAACI cluster was colocalized with GAD-GFP pos-
itive puncta-ring-like staining neurons in the PFC (Fig. 8, A and
B). These observations suggest that EAAC1 is expressing at
presynaptic GABAergic neurons in the PFC.

In addition, we stained coronal sections of the PFC of control
(PV-ErbB4™"'™; top panels) and PV-ErbB4 '~ (bottom panels)
mice with anti-PV and anti-EAACI. In total, 48 and 78% of
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EAACI clusters colocalized with PV in the control and PV-
ErbB4 ™/~ positive puncta-ring like staining neurons in the
PEC, respectively (Fig. 8, C and D). On the other hand, the
colocalization of PV clusters with EAAC1 did not significantly
differ. However, EAAC1 immunoreactivity decreased in the
PFC of the PV-ErbB4 /™ mice (Fig. 8E). These results indicate
that the reduction in EAACI1 expression is not only observed in
PV neurons but also in non-PV neurons. Taken together, these
results indicate that ErbB4 expression in PV-positive interneu-
rons may be critical for EAAC1 expression.

Discussion

A prominent hypotheses as to the underlying pathophysiol-
ogy of schizophrenia is that disturbances in GABAergic and
glutamatergic neurotransmission play causal factors. Patients
with schizophrenia have been shown to have decreased expres-
sion of GAD 67 mRNA (29) and of the GABA transporter
GAT-1 (30) in the PFC. The expression of PV is also reduced in
the brains of schizophrenia patients (31). Accumulating evi-
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dence supports the action of NRG1/ErbB4 signaling as a stim-
ulator of GABAergic transmission, which may contribute to
compensating for abnormal GABAergic circuitry. In humans,
reducing glutamatergic transmission can mimic schizophrenia
(32), while enhancing glutamatergic transmission can alleviate
symptoms (33). Patients with the disease show decreased excit-
atory synaptic function in hippocampal and cortical regions
(34-36). NRG1 functions by activating the ErbB family of tyro-
sine kinase receptors, including ErbB2, ErbB3, and ErbB4.
ErbB2 cannot bind to NRG1 but forms an activated het-
erodimer with ErbB3 or ErbB4. ErbB3, and ErbB4 can bind to
NRG1; in this case, ErbB4 homodimers take on the activating
form, whereas ErbB3 is kinase-inactive (9). Recent studies have
provided strong evidence that NRG1/ErbB4 signaling is a schizo-
phrenia susceptibility pathway. NRG1/ErbB4 signaling is a
schizophrenia susceptibility pathway. NRG1 and ErbB4 have
been identified as candidate genes for schizophrenia (9). In ani-
mal models, mice lacking of NRG1, or ErbB gene cause various
behavioral deficits including hyperactivity, prepulse inhibition
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(PPI), social behavior, and working memory (1, 37-39). In par-
ticular, the lack of ErbB4 in PV-positive neurons also showed
schizophrenia-like behavioral abnormalities (9) similar to the
traits exhibited by NRG1 or ErbB4 mutant mice. These genetic
studies have suggested a link between NRG1/ErbB4 signaling
and schizophrenia.

In the brain, glutamate serves as an excitatory neurotrans-
mitter, a metabolic substrate for GABA, and as an amino acid
for general cellular metabolism. Glutamate transporters main-
tain low extracellular glutamate and influence the kinetics of
glutamate receptor activation. The function of EAACI in the
CNS has not yet been established. Recent studies indicate that
EAACI1 functions as a cysteine transporter, maintains neuronal
glutathione metabolism and has a unique anti-apoptotic activ-
ity in injured neurons (40). Knock-out of EAACI in rodent

20238 JOURNAL OF BIOLOGICAL CHEMISTRY

leads to the development of epilepsy, resulting from the
reduced synthesis of the neurotransmitter GABA (16), dicar-
boxylic aminoaciduria, and significant motor impairment (15).
Changes in the glutamate transport activity of EAACI1 are asso-
ciated with LTP and fear conditioning (41). Increased EAAC1
transcripts and proteins were reported in schizophrenic sub-
jects (dorsolateral prefrontal and anterior cingulated cortex)
(42). In contrast, decreased SLC1A1 transcript expression in
the striatum was observed in schizophrenia (and in bipolar dis-
order) (43) and confirmed in patients with schizophrenia in a
later study (44). This study provides evidence that EAAC1 may
play an important role in synaptic plasticity, maintenance, or
regulation. Despite advances in the field, a mechanism has not
been identified that can link GABAergic and glutamatergic
neurotransmission to NRG1 signaling.
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In this study, we investigated the function of NRG1 signaling
in the regulation of neuronal glutamate transporters in the
brain. The predominant neuronal glutamate transporter,
EAACI, may play a role in regulating GABA synthesis because
glutamate is a precursor to GABA. We demonstrated that
NRGI regulates glutamate uptake by up-regulating EAAC1 in
neuronal cells. NRG1 showed no effect on the protein level of
astroglial transporters (GLAST and GLT1). These results pro-
vide a direct link between NRG1 and the glutamatergic system
in neuronal cells. Inhibition of ErbB4 signaling by the specific
ErbB4 inhibitor AG1478 or by knocking-down ErbB4 by siRNA
prevented NRG1 from up-regulating EAAC1 expression and
glutamate uptake in neuronal cells. Moreover, EAAC1 immu-
noreactivity was increased by NRG1 and colocalized with
ErbB4 in primary cortical neurons. Therefore, we propose that
NRGI regulates EAAC1 by the direct activation of ErbB4
receptors. Altered NRG1-ErbB4 signaling is shown to contrib-
ute to NMDA hypofunction in schizophrenia (45—47). Based
on the previous findings above, our findings support the notion
that up-regulation of EAAC1 by NRG1 may provide a potential
mechanism of glutamatergic hypofunction in schizophrenia.

We found an interesting relationship between ErbB4 and
EAACI in PV-positive interneurons. The specific absence of
ErbB4 in PV interneurons inhibited EAAC1 expression, indi-
cating a crucial role of ErbB4 in PV-positive interneurons in the
regulation of EAAC1 expression. EAAC1 is localized to the
dendrite and soma of many neurons. Rare presynaptic localiza-
tion is restricted to GABA terminals (16). A previous study
found that ErbB4 is located in presynaptic GABAergic neurons
in the PFC and that ErbB4 is mainly expressed in PV-positive
interneurons, which are involved in neurotransmission and
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FIGURE 7. Reduced levels of EAAC1 in PV-ErbB4~/~ mice. A, reduced levels of ErbB4, PV and EAAC1 (but not GLT1 and GLAST) in the brains of PV-ErbB4 "/~
mice. The prefrontal cortex, cortex, hippocampus, and striatum were collected from PV-ErbB4 /™ mice and control littermates (PV-ErbB4*/*). The lysates (40
g of protein) were used for Western blot analysis. Western blots of protein extracts probed with specific ErbB4 antibodies as well as with EAACT, PV, GLTT,
GLAST, and B-actin antibodies as specificity and loading controls. B, quantification analysis of EAAC1 expression datain A.n = 10.*,p < 0.05; **, p < 0.01.C,
quantification analysis of ErbB4 expression data in A.n = 10.*, p < 0.05; **, p < 0.01. D, quantification analysis of PV expression datain A.n = 10.*,p < 0.05.
E, quantification analysis of GLT1 expression data in A. n = 10. F, quantification analysis of GLAST expression data in A.n = 10.

synaptic plasticity (9). In accordance with these results, we this notion. In addition, the ratio of PV-positive clusters co-ex-
found that EAACI was expressed in presynaptic GABAergic pressed with EAAC1 was increased in the PFC of PV-ErbB4 '~
neurons, including PV-positive neurons in the PFC. The pres- mice compared with controls, and EAACI immunoreactivity
ence of EAACI1 in GAD-GFP-positive neurons and its colocal-  decreased in the PFC of PV-ErbB4~/~ mice. These results sug-
ization with PV provides anatomical evidence that supports gestthat EAACI expression remained decreased in the remain-

FIGURE 6. Suppression of NRG1-induced EAAC1 expression by ErbB4 siRNA. A, ErbB4 and MAPK1 expression levels after transfection with each ErbB4 siRNA
(ErbB4-1, ErbB4 -2, ErbB4 -3, or ErbB4-4), negative control (NCsiRNA) and positive control (PCsiRNA). B, quantification of ErbB4 siRNA (ErbB4-1, ErbB4-2,
ErbB4 -3, or ErbB4-4) in C6 cells. ErbB4-1 and ErbB4 -3 efficiently suppressed ErbB4 expression. n = 8. %, p < 0.05. C, ErbB4 and EAAC1 protein levels after
transfection with ErbB4-1 siRNA and NCsiRNA. C6 cells were treated with NRG1 (5 nm, 30 min). After 36 h, an immunoblot analysis was performed on the
ErbB4-1 siRNA-transfected C6 cells. D, ErbB4 and EAACT expression levels after transfection with ErbB4-3 siRNA and NCsiRNA. E, quantification of ErbB4
expression data in Cand D, respectively. n = 8. %, p < 0.05. F, quantification of EAAC1 expression data in C and D, respectively. n = 8. %, p < 0.05; **, p < 0.01.
G, C6 cells were transfected with ErbB4 -3 siRNA for 36 h. C6 cells were treated with 5 nm NRG1 for 30 min after ErbB4 -3 siRNA transfection, and then stained

with anti-EAAC1T and anti-GLAST antibodies. Scale bar, 20 um. H, bar graph summarizing data from C6 cells with EAAC1 fluorescence. ErbB4 siRNA transfection
inhibits NRG1-induced EAACT expression.n = 8. %, p < 0.05; **, p < 0.01.

AUGUST 14, 2015-VOLUME 290-NUMBER33  SASBMB JOURNAL OF BIOLOGICAL CHEMISTRY 20241



Neuregulin 1 Regulates EAACT
A

GAD GFP EAAC1

&
=]
=
75 =
:
s £ 5 B
L B [
B 2
3
o
¢ ?
o\
& ,9‘6
& &
& &
& F
c EAAC1

Control

PV-ErbB4 -/~

O

— Control
1004 . PY-ErbB4-/-

Cluster Colocalizaion, %
o
(=13

PV/EAACL EAACL/PV

Hoechst

Hoechst

Merge

Merge

Demsitom etric value of
EAACI
(ratio vs. Control )

FIGURE 8. Ablation of ErbB4 in PV-positive neurons prevented EAAC1 expression. Ablation of ErbB4 in PV neurons prevented EAACT expression. A, coronal
sections of the PFC from GAD-GFP mice were stained with anti-EAAC1. The arrows indicate colocalization of EAACT and GAD-GFP. Scale bar, 20 uwm; inset,
enlarged areas. Scale bar, 5 wm. B, quantification analysis of the colocalization of EAAC1 with GAD-GFP. The results are presented as the means = S.E. C, coronal
sections of the PFC of control (PV-ErbB4*/*; top panels) and PV-ErbB4 '~ (bottom panels) mice were stained with anti-PV and anti-EAAC1. Immunoreactivity
was visualized via Oyster 550 fluorescence-labeled anti-PV and Alexa 488-conjugated secondary antibodies for anti-EAACT. Scale bar, 15 um; inset, enlarged
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in C. The results are presented as the means = S.E.

ing PV clusters, which decreased in PV-ErbB4 /" mice. How-
ever, a recent study has revealed that the spine density and the
number of excitatory synapse are reduced in PV-ErbB4 '~
mice (47), which may contribute to the reduction in EAAC1
expression in the mouse model. Therefore, further study is
required to determine whether it is a direct effect or whether it
is an effect caused by the changes of synapse in PV-ErbB4 '~
mice. Nevertheless, we found that NRG1/ErbB4 signaling is

20242 JOURNAL OF BIOLOGICAL CHEMISTRY

critical to EAACI expression and function. More work is
required to determine the mechanism of protein levels and
transport activity through NRG1/ErbB4 signaling.

In conclusion, our results reveal a novel function of NRG1/
ErbB4 in the modulation of EAAC1 expression and function.
These results suggest that the regulation of EAAC1 by NRG1
may participate in normal GABA or glutamate transmission
and that the alterations in EAAC1 may also contribute to the
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GABAergic or glutamatergic dysfunction implicated in schizo-
phrenia. These results contribute to a better understanding of
how abnormal NRG1/ErbB4 signaling may be involved in the
pathogenesis of schizophrenia.
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