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Abstract

Cardiac computed tomography angiography (CTA) is a non-invasive method for anatomic 

evaluation of coronary artery stenoses. However, CTA is prone to artifacts that reduce the 

diagnostic accuracy to identify stenoses. Further, CTA does not allow for determination of the 

physiologic significance of the visualized stenoses. In this paper, we propose a new system to 

determine the physiologic manifestation of coronary stenoses by assessment of myocardial 

perfusion from typically acquired CTA images at rest. As a first step, we develop an automated 

segmentation method to delineate the left ventricle. Both endocardium and epicardium are 

compactly modeled with subdivision surfaces and coupled by explicit thickness representation. 

After initialization with five anatomical landmarks, the model is adapted to a target image by 
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deformation increments including control vertex displacements and thickness variations guided by 

trained AdaBoost classifiers, and regularized by a prior of deformation increments from principal 

component analysis (PCA). The evaluation using a 5-fold cross-validation demonstrates the 

overall segmentation error to be 1.00±0.39mm for endocardium and 1.06±0.43mm for epicardium, 

with a boundary contour alignment error of 2.79±0.52. Based on our LV model, two types of 

myocardial perfusion analyses have been performed. One is a perfusion network analysis, which 

explores the correlation (as network edges) pattern of perfusion between all pairs of myocardial 

segments (as network nodes) defined in AHA 17-segment model. We find perfusion network 

display different patterns in the normal and disease groups, as divided by whether significant 

coronary stenosis is present in quantitative coronary angiography (QCA). The other analysis is a 

clinical validation assessment of the ability of the developed algorithm to predict whether a patient 

has significant coronary stenosis when referenced to an invasive QCA ground truth standard. By 

training three machine learning techniques using three features of normalized perfusion intensity, 

transmural perfusion ratio, and myocardial wall thickness, we demonstrate AdaBoost to be slightly 

better than Naive Bayes and Random Forest by the area under receiver operating characteristics 

(ROC) curve. For the AdaBoost algorithm, an optimal cut-point reveals an accuracy of 0.70, with 

sensitivity and specificity of 0.79 and 0.64, respectively. Our study shows perfusion analysis from 

CTA images acquired at rest is useful for providing physiologic information in diagnosis of 

obstructive coronary artery stenoses.

Graphical Abstract
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Index Terms

Cardiac Imaging; Computed Tomography Angiography; Rest Perfusion; Coronary Artery Disease; 
Left Ventricle Segmentation; Perfusion Network; Perfusion Prediction; Perfusion Analysis

1. Introduction

Despite improvements in therapies targeted at reducing disease burden, coronary artery 

disease (CAD) continues to afflict >16 million US adults, accounting for more than 1/3 of 

all deaths and responsible for ~1.2 million hospitalizations annually (Lloyd-Jones et al., 

2010). Numerous non-invasive physiologic imaging tests exist for assessment of CAD, 

including echocardiography, magnetic resonance imaging (MRI) and myocardial perfusion 

scintigraphy by either single photon emission computed tomography (SPECT) or positron 

emission tomography (PET) (Berman et al., 2006)(Gershlick et al., 2007). These modalities 

identify stress-induced wall motion abnormalities or regional myocardial perfusion defects 

to determine individuals who may have severe coronary stenoses. Recently, computed 

tomography (CT) of >64-detector rows has become a promising non-invasive option for 

coronary angiography, now allowing for acquiring virtually motion-free images at isotropic 

spatial resolution of 0.5mm in a few seconds (Min et al., 2010).

Compared to an invasive reference standard, coronary CT angiography (CTA) demonstrates 

excellent diagnostic performance in stenosis detection (Budoff et al., 2008). Yet CTA is 

prone to artifacts—including those from motion, beam hardening and mis-registration—

which reduce the diagnostic accuracy of CTA. Further, CTA is prone to overestimation of 

stenosis severity and more recent data has suggested that an anatomic stenosis visualized on 

CTA is not necessarily associated with interruption of coronary blood flow. Quantitative 

coronary angiography (QCA) is the most common clinical reference standard to determine 

the diameter percentage of luminal stenosis, which is performed by computer-assisted 

calculation of the ratio of the minimal lumen diameter of a stenosis to the reference vessel 

diameter on conventional X-ray angiographic images (Reiber et al., 1984). Fractional flow 

reserve (FFR) is an emerging reference standard to determine if a stenosis significantly 
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limits the blood flow, which is defined by the ratio of maximal blood flow distal to a 

stenosis to normal maximal flow in the same vessel (Pijls et al., 1996). However, both tests 

require invasive insertion of a catheter in the artery and thus should only be used when 

necessary. To identify functionally significant stenoses non-invasively, new computational 

and imaging methods have been developed. For example, a technique to compute FFR by 

computational fluid dynamics has been shown to improve diagnostic performance over 

using CTA alone (Taylor et al., 2013), yet it requires lengthy processing times and is unable 

to reveal abnormal myocardial perfusion caused by microvascular diseases. Stress CT 

perfusion imaging shows great promise in this area but requires additional imaging sessions 

thus leads to increased radiation exposure (George et al., 2006).

No previous work has been performed to determine the diagnostic value of myocardial 

perfusion quantified using CTA alone acquired at rest. This is desirable if myocardial 

perfusion noninvasively evaluated at rest provides useful information about the severity of 

coronary artery lesions while requiring no additional imaging. In this regard, automated and 

quantitative analysis of myocardial perfusion is ideal to maximize diagnostic accuracy, 

reduce burden of manual interpretations and enhance objectivity and reproducibility of such 

analyses. Previous CT perfusion analyses have been primarily carried out manually (Mehra 

et al., 2011), while sometimes assisted by semi-automated tools (George et al., 2006)

(George et al., 2009)(Kachenoura et al., 2009). Automatic and fast methods to quantify 

perfusion abnormalities have been lacking. Precise delineation of endocardium and 

epicardium of the left ventricle (LV) is mandatory for accurate perfusion analysis because 

false detection may occur in intraventricular or pericardial regions with low or high 

attenuation densities. In contrast, all previous studies followed straightforward approaches to 

define presence and severity of a perfusion deficit, either by visual inspection with the help 

of a chosen window level or quantification using a defined threshold. However, the 

distribution of CT perfusion intensity varies significantly in different regions of the 

myocardium within a group of normal subjects (shown in Fig. 1). Because of low contrast, it 

is generally difficult to reliably distinguish a hypoattenuated area from neighboring normal 

regions. In addition, several confounding factors—including noise or other artifacts—can 

resemble or hide perfusion abnormalities. Beam hardening is one of the most common ones, 

and causes hypoattenuated shadowing effects within the myocardium. Therefore, the use of 

a global window level or threshold is indeed questionable. Furthermore, no consensus has 

been presently established as the optimal variable to characterize perfusion defects, which 

leads to multiple possibilities.

In this study, we propose a new system to analyze myocardial perfusion using CTA alone 

acquired at a rest state and assess its diagnostic value to identify severe coronary lesions that 

cause myocardial perfusion deficits. Our myocardial perfusion analysis is based on the 

contrast enhancement information in CTA images, instead of absolute myocardial perfusion 

(in ml/min/g), which is not available in a single resting scan. From CTA images, we develop 

a compact representation of LV by subdivision surfaces, which ensure the smoothness even 

with small number of vertices. The thickness of the myocardium is explicitly modeled in this 

representation, enabling the coupling between endocardial and epicardial layers. We then 

divide the myocardium automatically into American Heart Association (AHA) 17-segment 

model (Cerqueira, 2002) using mesh parameterization. We perform two independent studies 
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to assess the usefulness of quantifying myocardial perfusion from different perspectives. 

Using a new concept of perfusion network analysis, we measure the degree of correlations 

of perfusion among different segments in order to assess the heterogeneous perfusion 

network structure exhibiting in normal subjects, as well as the disturbed perfusion network 

in the diseased subjects. Finally, normalized perfusion intensity, transmural perfusion ratio, 

and myocardial wall thickness are calculated in all segments as features, and the ability to 

predict the existence or absence of a significant coronary stenosis is explored using machine 

learning techniques. Our key contributions are threefold:

1. LV segmentation: Based on the subdivision surfaces and machine learning, our 

new method allows both automatic segmentation and interactive editing of LV 

surfaces. Our model has significantly fewer control points than previous methods, 

which allows for faster automatic fitting. We support interactive editing by 

allowing the user to drag the control points of LV surfaces and modify the 

thickness associated with any control point. In this paper, interactive editing was 

used to generate manual annotations, but all the evaluation results are only based 

on automatic segmentation. The explicit thickness representation allows precise 

thickness measurements by ensuring the segment between corresponding points on 

endocardial and epicardial surfaces is always perpendicular to the mid-epicardial 

surface. The mapping from a 3D myocardial model into an AHA model is driven 

by mesh parameterization as opposed to most conventional techniques of planar 

cutting, and thus ensuring better coverage in the basal regions. Finally, our 

principal component analysis (PCA) prior of deformation increments, avoids the 

need to run Procrustes analysis and is concise, reducing the degrees of freedom (3D 

coordinates on both surfaces) per point from 6 to 2 (normal displacement and 

thickness for internal vertices and normal and tangent displacements for boundary 

vertices).

2. Network analysis: The coronary vascular tree provides essential blood flow to the 

myocardium. Under normal physiologic conditions, coronary flow is well 

maintained to satisfy the metabolic demand of myocardial tissue. The rate of 

perfusion through the myocardium is driven by aortic pressure and controlled by 

the morphology and resistance of distal vascular beds. Inspired by widely 

recognized functional connectivity among different regions of brain during rest and 

task-related activities (Greicius et al., 2003)(Buckner et al., 2008), we propose a 

new concept to create a rest perfusion network by characterizing the correlation 

relationship of myocardial perfusion among different myocardial regions. We 

compare the structure of the perfusion network in the normal and diseased group of 

patients and identify differences in network patterns.

3. Prediction analysis: It is well known from SPECT and MRI studies that perfusion 

defects visualized in the rest scans are associated with severe ischemia or 

infarction. However, the ability of using rest CT perfusion to predict ischemia-

causing coronary lesions that are identified by invasive QCA has not been 

explored. For the first time, we evaluate myocardial perfusion and thickness 

quantitation from noninvasive CTA to predict patients with high-grade disease by 

invasive QCA using machine learning techniques. We show the invasive 
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measurements are indeed predictable and the performance of prediction is carefully 

evaluated.

2. Related Work

2.1 Automated 3D Segmentation of the Heart from CT Images

Numerous algorithms for 3D heart segmentation have been published in the past. We refer 

the readers to a survey in (Frangi et al., 2001) for the early work in this area, especially for 

SPECT, MR, and Ultrasound. We will focus on a summary of existing methods for 

automated segmentation of the heart from CT images (Kang et al., 2012). Two major 

approaches have been proposed. One is model-based, in which a template mesh model is 

first transformed to the proximity of the target heart in the new image and then the model is 

adjusted to fit the boundary. From the landmark work in (Lorenz and von Berg, 2006), a 

comprehensive heart model including four chambers and trunks of the attached vessels were 

constructed semi-automatically by landmark-driven model initialization and energy-

minimizing surface adaption. In (Ecabert et al., 2008), whole heart segmentation was 

introduced, in which generalized Hough transform was used to localize the heart. Parametric 

and deformable adaptations were then performed to match the heart boundary. This work 

has been extended to segment the attached great vessels (Ecabert et al., 2011). In (Zheng et 

al., 2008), four-chamber heart segmentation was proposed. Learning-based methods were 

described to search the similarity transform to locate the heart and delineate the boundary. 

The other approach of heart segmentation is atlas-based, in which manual labels of 

segmented atlas images are propagated into the new image by image registration and the 

final segmentation is obtained by a voting procedure at each voxel. In (Isgum et al., 2009), 

whole heart regions were isolated from chest CT scans using multiple atlases and the local 

votes were derived from local assessment of the registration success. In (van Rikxoort et al., 

2010), the same task was performed by selecting the most appropriate atlases and locally 

deciding a subset of atlases are needed. In (Kirişli et al., 2010), a multi-atlas heart and 

chamber segmentation method was evaluated on a large number of patients. In 

(Hoogendoorn et al., 2013), a detailed atlas and spatio-temporal statistical model of the 

human heart based on a large population of 3D+time CT sequences by registering a 

synthesized population mean image to all subjects in the population. Although these 

methods have been proposed for automatic contouring for cardiac CT imaging data to 

statistically analyze cardiac shapes as well as measure cardiac function such as stroke 

volume, injection fraction, and thickness, their utility and accuracy of defining myocardial 

regions for perfusion analysis have not been evaluated.

2.2 Myocardial Perfusion Analysis from CT Images

Cardiac CT perfusion imaging is a novel non-invasive technique to assess the blood flow to 

the myocardium, originating from the seminal work in (George et al., 2006)(George et al., 

2009). When adding this essential physiologic information to traditional anatomical 

assessment of CAD, CT perfusion leads to a new rationale for comprehensive evaluation 

using only one modality. A typical CT perfusion protocol includes image acquisition under 

stress and rest states. By visual inspection, a myocardial region with perfusion defects shows 

low contrast concentration. By comparing the same region under the two states, reversible or 
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fixed perfusion defects can be distinguished (Techasith and Cury, 2011). CT perfusion 

analysis is primarily performed by visual inspection of hypoattenuated areas in the 

myocardium using user-defined window levels and slice thickness. In most studies, the 

existence and severity of perfusion defects is qualitatively graded into categorical variables 

(Blankstein et al., 2009)(Ko et al., 2012). In some studies, normal myocardial attenuation of 

the patient as an internal reference (Tamarappoo et al., 2010). Yet selection of this normal 

reference may be biased because the distribution of normal attenuation in each segment is 

different. Quantitative perfusion analysis is very limited. Transmural perfusion ratio was 

introduced in (George et al., 2009), which is defined as the ratio of mean attenuations in 

subendocardial to subepicardial layers. Another extent and severity of perfusion abnormality 

index was proposed by analyzing the histogram of attenuations within each segment and 

compared to a normal segment. In this paper, our focus is the analysis of myocardial 

perfusion at rest states, for which the scan protocol is equivalent to a typical CTA scan.

3. Materials and Methods

3.1 Data

From a previously completed clinical trial, we obtained 140 CTA images from 140 patients 

(Gender: 52.1% male, Age: 54.2±11.0). When multiple phases exist, the phase with best 

quality close to end-diastole was used. The data were acquired using standard coronary CTA 

protocol on either Siemens Definition or GE Discovery scanners. Image volumes may 

contain 153–357 slices, while the dimension of each slice is identically 512×512 pixels. For 

different volumes, the in-slice resolution is isotropic and varies between 0.28 to 0.49 mm 

with a slice thickness from 0.30 to 0.63 mm. Five landmarks and LV endocardial and 

epicardial surfaces in all volumes were manually annotated by several expert users, which 

was used as the ground-truth data for evaluating our automated LV segmentation algorithm. 

The manual annotations were generated using an in-house computer program by completely 

manual definition of the landmarks and LV segmentations. Any volume is only annotated by 

one user. Each patient also underwent invasive coronary angiography and the coronary tree 

was analyzed using a 19-segment coronary model on all coronary segments 2.0 mm in 

diameter. The percentage luminal diameter stenosis was visually and quantitatively graded 

in each segment and the degree of vessel obstruction for the patient or for each of LAD, 

LCX, and RCA territories by QCA (CAAS, Pie Medical Imaging, Maastricht, Netherlands) 

is calculated by the most severe obstruction of the attributed segments. The numbers of 

patients with 0–25%, 26–49%, 50–70%, and 71–100% stenoses by QCA are 17, 65, 27, and 

31, respectively. To provide unbiased evaluation of landmark detection and LV 

segmentation, a separation set of 15 images (scanned with the same protocol and manual 

annotation process, in-slice resolution: 0.31 to 0.52 mm, slice thickness: 0.40 to 0.60 mm, 6 

images with ≥50% stenoses by QCA) were used to determine the optimal parameters (e.g. 

the number of decision trees and maximal depths of each tree, etc.) for machine learning and 

the parameters were fixed when performing evaluations by cross-validation. To build the 

template model (in Section 3.4) used for LV segmentation, another representative image 

(scanned with the same protocol, in-slice resolution: 0.31 mm, slice thickness: 0.60 mm, 

with <50% stenosis by QCA) was used.
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3.2 Left Ventricle Modeling

Triangular meshes have been predominantly used in model-based heart segmentation. We 

observe at least three limitations need improvements for the application of perfusion 

analysis:

3.2.1 The meshes are dense (e.g. 545 points in (Zheng et al., 2008))—This leads 

to more computation in automatic segmentation due to the additive computational cost 

associated with each mesh point. It may also cause mesh distortion in manual editing when 

the movement of individual mesh point intersects with neighing triangles.

3.2.2 Myocardial thickness is not explicitly modeled—Because the endocardial and 

epicardial surfaces are separately modeled, perpendicular directions through the 

myocardium cannot be defined by the corresponding vertices on both surfaces, leading to 

difficulty in thickness measurements and the split between endocardial and epicardial layers.

3.2.3 The basal portion of the myocardium is missing—Models with flat basal 

openings were sometimes used but a complete LV model is necessary since perfusion 

defects may exist at the base of the heart.

We represent the left ventricle model as a subdivision surface based on a control mesh  = 

{VC, EC, QC}, where  is a set of NC control vertices, EC is the edge 

connectivity, and QC is a collection of scalar or vector properties associated with each 

vertex. Many subdivision surface schemes have been developed, which differs in terms of 

the type of the control mesh (triangular or rectangular), the nature of fitting (interpolation or 

approximation), and the smoothness (C1 or C2 continuity). In the current work, a Loop 

subdivision scheme (shown in Fig. 2(a)) based on a triangular  is used (Loop, 1987) 

because it is C2 continuous everywhere except at extraordinary vertices, where they are C1-

continuous. Although it is an approximation scheme, our experiments showed it is more 

tolerant to vertex distortion than interpolation scheme, e.g. the Butterfly scheme. In Fig. 

2(b), the weights to compute the finer surface in one step are shown for both internal and 

boundary vertices, in which two types of vertices are differentiated. Odd vertices are those 

newly inserted during subdivision, whereas even vertices are those exist in the previous 

subdivision step. Because the standard Loop weights are used for internal vertices, the 

corresponding vertices in  do not lie on the subdivision surface. Nevertheless, we modify 

the weights for the boundary vertices to make the boundary curve always interpolate the 

control vertices on the boundary. Using the weights, a sequence of refined surfaces can be 

computed,  = , , , ···. The relationship of vertex coordinates or other properties 

(e.g. thickness) between two subsequent refinements can be established by linear mapping:

(1)

where qj and qj+1 are vectors including properties (e.g. vertex coordinates and thickness) in 

all vertices of  and , respectively. Note the dimension of qj+1 is larger than qj due to 

the insertion of new vertices.  is a sparse matrix containing the weights. Conversely, if 

qj+1 is known, qj may be estimated by solving a least squares problem:
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(2)

Strictly, the subdivision surface is the limit surface  after an infinite number of 

refinements. In our experiments,  was used for a good tradeoff between speed and 

accuracy. The LV model is shown in Fig. 3(a). In total, the control mesh  has 86 vertices 

and 160 triangles. The thickness of the myocardium is explicitly modeled as one of the 

properties  associated with each vertex in . Three surfaces 

are delineated to split the myocardium into two layers, enclosed by mid-myocardial , 

endocardial , and epicardial  surfaces, respectively. In our model,  is set to . 

 and  are implicitly generated by warping inwards and outwards along normal 

directions by half of the thickness in  (computed using Eq. (2)), respectively. The three 

surfaces coincide at a boundary contour by locally enforcing the thickness to be zero. The 

boundary contour consists of two curves. One follows mitral valve annulus and the other 

passes the aortic level. Using this representation, our LV model is uniquely defined by 

specifying two sets of parameters: coordinates  and thickness 

 of the control vertices, which allows a user or an algorithm to fit the 

model to an image by interactively or automatically modifying these parameters.

3.3 Overview of Automatic Left Ventricle Segmentation

The goal of automatic LV segmentation is then to determine {VC, ΘC} in a given image. Our 

segmentation algorithm has two steps (shown in Fig. 4): (1) LV initialization: Five anatomic 

landmarks are defined and automatically detected using trained classifiers. A template 

model is transformed by aligning the corresponding anatomic landmarks defined on the 

template and detected in the figures. (2) LV boundary delineation: The boundary of the 

transformed model is further refined to fit the actual LV boundary in the image by 

deformation increments including control vertex displacements and thickness variations 

guided by trained classifiers, and regularized by a prior of deformation increments from 

principal component analysis (PCA) analysis.

3.4 LV initialization by landmark detection and alignment

We reconstruct a template model from one representative image (described in Section 3.1). 

Five anatomic landmarks are defined on the model (which are also mesh vertices): vAP is the 

apex point, vMV is the midpoint along the mitral valve annulus curve, vAV is the midpoint 

along the aortic valve level curve, vAT and vPT are the most anterior and posterior points on 

the boundary contour separating the two curves, respectively. We detect these landmarks in 

the image by learning-based using Haar-like wavelet features and an AdaBoost classifier for 

each landmark (100 decision trees with 5 maximal depth). Similar to (Zheng et al., 2008), 

the classifiers were used to scan through the whole image and the locations with maximal 

likelihoods was selected to the detected landmarks. The corresponding landmarks in the 

template space and in the image space allow us localize the LV in the image and transform 

the template model in the proximity of the true LV location to prepare for boundary 
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delineation introduced in Section 3.5. An affine transform T is estimated in a least squares 

sense to best fit the detected landmarks in the image space when mapping from the template 

space. Let { } be the coordinates and thickness associated with the control vertices 

in the transformed model by T.

3.5 LV boundary delineation

The main goal of boundary delineation is to search for the best combination { } to 

make  and  fit the actual LV endocardial and epicardial boundaries. Because 

and  directly relates to , it is more convenient to determine { } on 

instead and then obtain { } through Eq. (2). Therefore, there are four unknown 

parameters for each vertex on . To save computational cost, we choose to only search 

for the even vertices that originate from . Although the vertices may be freely moved, 

constraints on the search directions must be enforced to avoid vertex distortion while 

achieving a good fit as shown in Fig. 4. For any vertex on , the normal vector n⃗ is well 

defined and used as the search direction. However, only searching in n⃗ may not result in an 

adequate fit for boundary vertices. For those vertices, we can define two vectors: t⃗ is the 

tangent vector of the boundary contour, and b⃗ = n⃗ × t⃗ is the binormal vector of the boundary 

contour. We allow the boundary vertices move along both n⃗ and b⃗, yet only n⃗ for internal 

vertices. Considering the constraints of zero thickness on the boundary vertices mentioned 

before, we reduce the number of unknown parameters for each vertex into two, namely the 

distance along n⃗ for all vertices Δn, the thickness change for internal vertices Δθ, and the 

distance along b⃗ for boundary vertices Δb.

We refer to the two parameters (i.e. Δn and Δθ for internal vertices, Δn and Δb for boundary 

vertices) for each vertex as deformation increments. To determine the deformation 

increments, a classifier is trained to capture the characteristics of the boundary appearance 

and search for the best fit in a new image. Let I(x) and ∇I(x) be the image intensity and 

gradient at a point x. As shown in Fig. 5, a feature vector is created which includes I, , 

I2, I3, ∇I, , |∇I|2, |∇I|3, ∇I · n⃗ sampled at each of the five points {x − θ · n⃗, , 

x, , x + θ · n⃗}. A sample used in training is positive only when both x and θ match 

ground truths and otherwise are negative. Negative samples are generated by varying ground 

truth x by a maximal distance of 20 voxels in both directions along n⃗ at increment of 1 voxel 

and varying ground-truth θ between 2 voxels and 5 times θ at an increment of 2 voxels. For 

boundary vertices, negative samples are also generated by a maximal distance of 20 voxels 

in both directions along b⃗ at increment of 1 voxel but with a fixed θ of 5 voxels. Positive and 

negative samples with their features are used to train an AdaBoost classifier to determine the 

deformation increments for each vertex, which lead to maximal class probabilities belonging 

to the true boundary:

For internal vertices:
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(3)

For boundary vertices:

where vi is the i-th vertex, vj is a vertex in the one-ring neighborhood (vi) of vi on 

, and (·) is the probability belonging to the true boundary estimated by the 

classifier. Note we train one classifier for each vertex to account for the considerable 

spatial appearance difference. Equation (3) generally performs well when the boundary 

is strong. However, it may lead to false negatives in case of weak boundaries. We 

alleviate this problem by enforcing a prior of deformation increments by PCA:

(4)

where  is the vector of all deformation increments 

projected into PCA subspace, ϕ̄ is the mean of all samples of ϕ in the training data, Φk 

the eigenvector corresponding to the k-th largest eigenvalue, and tk is the coefficient. 

We retain the largest K which captures 98% of total variance in our experiment. To 

generate the training data, we utilized  from manually annotated ground-truths 

and the deformation increments can be obtained (shown in Fig. 6) by calculating the 

difference between  and , the latter of which is initialized with manually 

identified landmarks. Specifically, we search in both directions of n⃗ for any internal 

vertex xinit of  for the intersection point xtruth on . Then, Δn is the signed 

distance between xtruth and xinit and Δθ is the thickness difference. For any boundary 

vertex of , we search for the closest point on the boundary contour of and 

project this vector on n⃗ and b⃗ to get Δn and Δb. The corrected deformation increments ϕ̃ 

is then used to determine {VC, ΘC} of the control mesh  using Eq. (2).

3.6 Perfusion Network Analysis

Using the AHA 17-segment model, we subdivide the myocardium and quantify perfusions 

in each segment. In order to subdivide our LV model, we parameterize  by assigning {u, 

v} coordinates to every control vertices. The {u, v} coordinates of vertices on the boundary 

contour are fixed on a unit circle. The vertex corresponding to the apex point is assigned to 

{0,0}. The {u, v} coordinates of all other control vertices are assigned based on weighting 

the ratio between the geodesic distances from the vertex to the boundary contour dBC and to 

the apex dAP and rotating by the relative angle φ along the LV short axis, i.e. 

. The parameterization of  can be computed using 

Eq. (1). As shown in Fig. 7, the {u, v} coordinates can be used to subdivide  into 17 
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segments Si, i = 1,2, ···,17. To quantify perfusion in a segment PSi, we first average the 

image intensities of any point x (with thickness θ and normal n⃗) on the line segment between 

 and , and then average over all points belonging to Si.

To characterize contrast concentration in the proximal ascending aorta (right after aortic 

valve) and the LV blood pool (in the mid cavity), we also compute the medians of image 

intensities PAorta and PLV within two spherical regions of locations and sizes automatically 

adjusted based on the LV geometry. Medians are used to reduce the influences of lower 

intensities caused by valves, chordae tendineae, or papillary muscles. We combine all 

intensity measurements in a vector P = {PS1, PS2, ··· PS17, PAorta, PLV}. Note these 

measurements are directly calculated from image intensities without any normalization. The 

correlation matrix (P) is defined by computing Pearson correlation coefficients among all 

pairs considering each patient as one sample. The perfusion network is constructed by 

analyzing the strength of correlation relationship (as network edge) between each perfusion 

measurement in P (as network node). Large positive correlation shows a strong agreement in 

the level of perfusion between a pair of myocardial regions, i.e. being hyperperfusion or 

hypoperfusion together frequently. Low correlation may indicate perfusion in two regions 

are independent or lack linear dependence, i.e. one being hyperperfusion, while the other 

being hypoperfusion frequently. The latter can happen naturally or be disturbed by disease, 

e.g. ischemia or myocardial infarction. It should be emphasized that our perfusion network 

analysis is based on information obtained during the short period when CTA data were 

acquired. The nature of our data does not allow us to analyze temporal relationship. The 

method of dynamic helical CT imaging may permit a temporal analysis but requires 

significantly increased radiation exposure to the patient and thus is not favored. We also 

note the strong correlation may or may not indicate the two regions are adjacent or the blood 

flow is supplied by the same coronary artery. To reveal the disease-induced changes in the 

perfusion network, the topology and connectivity strength can be compared between two 

groups of patients discriminated by QCA results:

1. Normal group: Patients with <50% luminal stenosis.

2. Disease group: Patients with ≥50% luminal stenosis.

3.7 Perfusion Prediction Analysis

Using machine learning techniques, we also assess the ability to predict the existence of 

significant coronary artery stenosis (≥50% luminal diameter reduction) suggested by 

invasive QCA by using myocardial perfusion and thickness from noninvasive CTA imaging 

at rest alone. Our work aims to elucidate how the information gained from noninvasive 

imaging informs the invasive measurements.

Specifically, we extract totally 51 features—three features in each of the 17 segments from 

the LV segmentation:

1. Normalized perfusion intensity (NPI): It is computed by first averaging the minimal 

image intensity on the line segment between  and  over all points 

belonging to Si and then normalizing by dividing PAorta. Different from the 

perfusion computation in perfusion network analysis, we compute the minimal 
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intensity on the line segment because it is known that stenosis-induced perfusion 

deficits often exhibit reduced image intensity. The normalization is performed to 

remove the dependence of the different absolute contrast concentration among 

patients. Essentially, both PAorta and PLV can be used for this purpose because the 

high correlation between them. We use PAorta in our experiment.

2. Transmural perfusion ratio (TPI): It is the ratio of subendocardial perfusion to 

subepicardial perfusion. Subendocardial perfusion is computed by averaging the 

minimal image intensity on the line segment between x and  over all points 

belonging to Si. Epicardial perfusion is computed similarly but between x and 

. RSi is selected as one of the features because the endocardial layer of the 

myocardium is more susceptible to perfusion deficits than the epicardial layer.

3. Myocardial wall thickness (MWT): It is computed as the averaged thickness θ over 

all points belonging to Si. Myocardial thickness is added because the wall thinning 

has been associated with adverse left ventricular remodeling due to different stages 

of myocardial infarction.

The prediction task is to predict whether the patient will have significant stenosis by QCA. 

By considering positive samples as the patients who have any coronary luminal stenosis 

≥50% by QCA and negative being absent, the prediction becomes a classification problem. 

We test and compare three widely-used supervised machine learning techniques, namely 

Naive Bayes, Random Forest (Breiman, 2001), AdaBoost (Kearns and Vazirani, 1995). For 

both Random Forest and AdaBoost, 100 decision trees with 5 maximal depths are used as 

the base learners. Features will be also tested in combination and individually to assess their 

contributions of the prediction performance.

4. Experiments and Results

In this section, we first quantitatively evaluate the performance of our landmark detection 

and LV segmentation methods using the 140 images with manually identified ground-truths. 

Next, we present the results of constructing perfusion networks using the same data and 

show the difference between the normal and disease groups. Finally, we assess the ability to 

predict coronary stenoses by invasive QCA using the information of myocardial perfusion 

and thickness obtained from noninvasive CTA images.

4.1 Evaluation of Landmark Detection and LV Segmentation

Detection of the five landmarks is evaluated using 5-fold cross-validation. The datasets are 

randomly split into 5 sets of equal size. Testing is done using the classifiers trained on the 

other 4 sets. Other cross-validation evaluations in the subsequent sections are performed in 

the same manner. The detection error is measured by the average Euclidean distance from 

each detected landmark to the ground truth. The mean, standard deviation, and median of the 

errors are listed in Table 1. The four landmarks on the boundary contour have higher errors 

than the apex point due to the large anatomical variation around the aortic and mitral valves. 

Fig. 8 shows the detection results on two example datasets.
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After LV initialization with the detected landmarks, we evaluate our LV segmentation 

method by 5-fold cross-validation. Both the boundary classifiers and PCA prior are trained 

and tested with the split datasets by cross-validation. We define two types of segmentation 

error. One is the error over the whole model Ep2m, which is the common point-to-mesh 

distance between the segmented mesh (  or ) and the ground-truth mesh ( 

or ). For every point on a mesh, the closest point on the other mesh (not necessarily 

mesh vertices) is located and the distance is averaged over the entire mesh. This error is 

symmetric by averaging the distance computation in both directions. The other error Ep2c is 

defined only over the boundary contour to evaluate the fitting of this contour. It is also 

computed in both directions as the point-to-contour distance between the contours on the 

segmented mesh and the ground-truth mesh. For every point on a contour, the closest point 

on the other contour (not necessarily contour vertices) is located and the distance is averaged 

over the whole contour. Table 2 lists the results of Ep2m for the segmentation of LV 

endocardium and epicardium. After LV initialization with the transformation from the 

landmarks, the mean of Ep2m for LV endocardium (3.29mm) is slightly higher than 

epicardium (3.19mm). But after vertex displacement by learned classifiers, both Ep2m are 

reduced significantly to 1.00mm and 1.11mm. Also, the standard deviations of Ep2m 

decreases (from 0.84 to 0.43mm for LV endocardium and from 0.77 to 0.50mm), which 

indicates that the errors tend to be closer to the mean Ep2m. Finally, the PCA prior further 

decreases the mean and standard deviations of Ep2m for both LV endocardium and 

epicardium, showing that the PCA prior for constraining the deformation increments is able 

to reduce the errors caused by misclassification in case of weak boundaries. Table 3 lists the 

results of Ep2c. The boundary contour deviates largely from the ground-truth (4.31mm). The 

error reduces to 3.82mm if the boundary vertices are only displaced in the normal direction. 

As a comparison, the error reduced by almost 1mm to 2.90mm with the displacement of 

vertices in the direction of b⃗. Finally, the error is further reduced to 2.79mm by enforcing the 

PCA prior on the displacements. Fig. 9 shows three examples of segmentation results.

To quantify perfusion and thickness from the LV segmentation, we show an interesting 

example in Fig. 10. The perfusion in this case is computed as the average image intensity 

between  and  for any point x on the mesh, where thickness θ is readily 

available in our model. Mapping the measurements at all points on the AHA 17-segment 

model, the segmental perfusion and thickness are calculated as all measurements within each 

segment. Clearly, two segments (#13: apical anterior and #14: apical septal) manifest lower 

image intensity suggesting the contrast concentration in both segments is low. In 

comparison, the thickness in corresponding regions also clearly decreases, using 

neighboring regions in the same segment as a reference. It suggests that hypoperfusion may 

have caused wall thinning as a consequence of myocardial infarction.

4.2 Perfusion Network Analysis

Using the segmental perfusions, the aortic and LV blood pool perfusions, the correlation 

matrix (P) is computed in normal (n=84) and diseased groups (n=56). Fig. 11 shows 

distributions of the correlation coefficients on each group, where coefficients on the 

diagonal are always one and thus ignored. The perfusions in different regions are positively 
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correlated, with similar correlation coefficients ranges for the normal (from 0.36 to 0.90) 

and disease group (from 0.27 to 0.93). However, we find highly correlated region pairs (with 

correlation coefficients greater than 0.75) in the disease group differ significantly compared 

to the normal group using perfusion network analysis, as shown in Fig. 12. The 

interconnections in the normal group is more evenly distributed than the disease group, 

where the interconnections are weakened in LAD and RCA territories, but elevated in LCX 

territories. The potential reason for this difference may be because of the reduction of 

coronary flow, the flow compensation mechanism by collateral vessels or the remodeling of 

the microcirculation in myocardial wall. Furthermore, there is a strong correlation between 

intensities in LV blood pool and aorta in both groups. However, their interconnections to the 

myocardial segments are more prominent in the disease than in the normal group. 

Quantitatively, we define intra-territory and inter-territory connection strengths as the 

average correlation coefficient within every pair of segments within one territory and 

between two territories. Table 4 lists the connection strengths, which confirms our findings. 

In addition, the segment #4 does not have large correlation to any other segment in both 

groups, which may be caused by the beam hardening artifact, which is unrelated to 

myocardial perfusion.

4.3 Perfusion Prediction Analysis

We evaluated three learning methods using leave-one-out cross validation. For any sample 

(any image in the dataset of 140 images) to be predicted, a classifier was trained on the 

remaining samples until all samples were predicted. Therefore, a total of 140 classifiers were 

trained for this purpose. The probability of a sample being positive was calculated by the 

corresponding classifier and the receiver operating characteristics (ROC) was formed 

together with the ground-truth label of the sample. Fig. 13 shows the ROC curves for Naive 

Bayes (NB), Random Forest (RF), and AdaBoost (ADA), where AdaBoost performs slightly 

better than two other classifiers in terms of the area under the curve (AUC). In addition, 

AdaBoost is superior in all four metrics of specificity (SPE), accuracy (ACC), positive 

predictive value (PPV), and negative predictive value (NPV) at the level of sensitivity 

(SEN) equal to 0.6, 0.7 and 0.8 as shown in Table 5. The best accuracy achieved by the 

AdaBoost classifier is 0.70, with the associated SEN, SPE, PPV, NPV being 0.79, 0.64, 

0.59, and 0.82, respectively. To assess the contributions of different sets of features in the 

prediction analysis, we train three new AdaBoost classifiers, with only NPI, TPR, or MWT 

feature. Fig. 14 shows the ROC curves of these three classifiers as compared to the classifier 

trained with all three features. It is clear that the classifier with three features performs better 

than the one with only one feature in terms of the AUC. Interestingly, the NPI feature is 

more effective in the high sensitive end of the curve by improving the specificity. In 

contrast, the TPR and MWT features improve the sensitivity when the specificity is 

intermediate or high. It is noted that the ROC curves for TPR and MWT have similar trends, 

which indicates that their contributions to the prediction performance are comparable and 

only one may be needed in practice. Although both NPI and TPR are computed from image 

intensities, their contributions are different and complementary. We thus indirectly show the 

subtlety of how CT image intensities should be used to evaluate myocardial perfusion. On 

the other hand, MWT features indeed show certain prediction ability, in spite of being 

purely geometric.
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5. Discussion and Conclusion

In this paper, we have developed a novel framework in order to analyze myocardial 

perfusion using standard cardiac CTA images acquired at rest. The system includes a model-

based segmentation method for delineating the left ventricle surfaces automatically. The 

surfaces are modeled by subdivision surfaces, which allow us to reduce the number of 

control vertices and still maintaining the smoothness. The explicit thickness specification of 

the myocardial wall in our model leads to a compact and coupled representation for both 

endocardium and epicardium. A template LV model was reconstructed from one image. The 

model is adapted to a target image by first applying affine transformation with automatically 

detected five anatomical landmarks and then displacing the control vertices and varying the 

thicknesses driven by a trained AdaBoost classifier. To be more reliable on weak 

boundaries, we propose a PCA-based prior to regularize the vertex displacement and 

thickness variation. Although bias may be created towards the image for template 

reconstruction, such bias will be minimized by landmark-based affine transformation and 

boundary alignment by vertex displacement. The evaluation using cross-validation has 

shown that the overall segmentation error is 1.00±0.39 mm for endocardium and 1.06±0.43 

mm for epicardium, respectively.

Based on our LV model, two independent types of myocardial perfusion analysis have been 

performed, based on the QCA reference standard. One is exploratory, which we propose a 

new concept of “perfusion network analysis” to discover the relationship between the 

perfusion intensities among different pairs of myocardial segments defined in AHA 17-

segment model. The perfusion network is constructed by considering the segments as nodes 

and large correlation coefficients as edges. Using the absence and presence of ≥50% stenosis 

by invasive QCA results, we divide the patients in the normal and disease groups. We find 

the perfusion network displays different patterns in the two groups, which may be attributed 

to the impact of disturbing the myocardial perfusion by ischemia or myocardial infarction. It 

is well known that the metabolic demand and perfusion are not homogenously distributed. 

Therefore, we expect that the perfusion network exhibits heterogeneity even in normal 

subjects. Furthermore, this baseline connectivity may be even disturbed by significant 

obstruction of coronary arteries causing acute ischemia or chronic myocardial infarction. 

Although our preliminary results are interesting, the findings should be carefully interpreted 

since our goal in this paper is to provide a new perspective to understand normal and 

diseased physiology of the heart, especially the relationship of myocardial perfusion among 

different territories. Future work should be to investigate using dynamic CT perfusion data 

and larger patient cohort to verify the prevalence and consistency of such difference in 

myocardial perfusion network. From this, another interesting possibility is to establish the 

covariance matrix of perfusion values using a population of normal subjects and determine 

whether perfusion in a new patient is abnormal by computing the Mahalanobis distance. In 

addition, other techniques used in the brain network analysis can be explored to build the 

network weights beyond correlation, e.g. sparse inverse correlation (Liu et al., 2009), mutual 

information, etc. (Zhou et al., 2009).

The other analysis is confirmatory which aims to assess the ability to predict whether a 

patient has significant coronary stenosis by QCA by quantification of perfusion and 
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thickness using noninvasive CTA images acquired at rest. By extracting three features, 

namely, normalized perfusion intensity, transmural perfusion ratio, and myocardial wall 

thickness, we have shown that noninvasive quantification is indeed able to predict the 

invasive measurement results using standard machine learning techniques. Our experiment 

shows that a classifier based on AdaBoost is able to obtain a moderate accuracy of 0.7 with 

sensitivity and specificity equal to 0.79 and 0.64, which is slightly better than Naive Bayes 

and Random Forest. We also find that the prediction performance benefits by using all three 

features instead of only one feature. Our results demonstrate that myocardial perfusion 

quantified on noninvasively acquired CTA images at rest indeed has reasonable predictive 

ability for information obtained using invasively acquired QCA data. Utility of the 

prediction analysis in addition to other routine image interpretation tasks on CTA is 

straightforward with our automatic method. In this paper, we have predicted the existence of 

significant stenosis by invasive QCA on the patient level. Future work will be to study the 

reliability of per-vessel prediction using supervised classification techniques, as well as the 

feasibility of predicting the degree of stenosis severity as a continuous variable or the 

presence of stenosis at single or multiple locations using supervised regression techniques. 

In addition, the performance of identifying stenosis visually by CTA has been widely 

examined using QCA as reference standard. Because the focus of this paper is to show the 

prediction ability of the automatically quantified perfusion alone, the incremental value of 

perfusion analysis to visual CTA-based stenosis is not examined but will be our future work. 

Furthermore, our current work is limited to predict the anatomic significance by invasive 

QCA. Since QCA is not considered as a reference standard of physiologic significance, our 

ongoing work is to utilize a reference standard of more hemodynamic relevance, e.g. FFR 

(Tonino et al., 2009). Finally, our approaches can be also extended to analyze myocardial 

perfusion under stress and dynamic CT perfusion data, where quantitative measurements of 

contrast concentration are available. We believe such analysis will improve the prediction 

ability of coronary artery stenoses, especially those of intermediate grades between 50% and 

70%. In summary, we have demonstrated the usefulness of myocardial perfusion analysis 

from typically-acquired CTA images at rest.
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Highlights

• We proposed a new system the physiologic manifestation of coronary stenoses 

by assessment of myocardial perfusion from typically acquired CT images at 

rest.

• We developed an automated segmentation method based on subdivision 

surfaces and machine learning.

• We performed perfusion network analysis which shows different patterns of 

connectivity in the normal and disease groups.

• We also performed the analysis of using perfusion and thickness features to 

predict the outcomes of invasive coronary angiography with accuracy, 

sensitivity and specificity of 0.70, 0.79 and 0.64, respectively.
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Fig. 1. 
(a) The difference of segmental myocardial perfusion distribution in normal patients 

(without 50% coronary stenosis defined by QCA). With correction for multiple comparison, 

the pairs with significant differences (p-value<0.005) are 2-17, 2-15, 2-12, 2-4, 2-16, 2-7, 

2-13, 2-10, 2-6, 3-17, 3-15, 2-11, 2-14, 2-9, 3-12, 2-5, 8-17, 8-15, 2-1, 3-4, 3-16, 8-12, 3-7, 

1-17, 1-15, 2-8, 5-17, 3-13, 5-15, 3-10, 3-6, 8-4, 8-16, 9-17, 9-15, 14-17, 14-15, 1-12, 5-12. 

(b) AHA 17-segment model with territory assigned to left anterior descending (LAD), left 

circumflex (LCX), and right coronary (RCA) arteries.
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Fig. 2. 
(a) The modified Loop subdivision scheme splits each triangle into four triangles. In each 

subdivision step, a new vertex is generated on each edge, denoted as odd vertex, whereas 

existing ones are even vertices. (b) The weights used to position internal and boundary 

vertices, where , and k is the number of incident vertices.
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Fig. 3. 
(a) LV model with the control mesh (vertices in red and edges in black). The blue boundary 

contour passes mitral valve annulus on one side and the aortic valve level on the other side. 

(b) The midcardial surface is modeled as subdivision surface. The endocardial and epicardial 

surfaces are represented by warping inwards and outwards along normal directions by half 

of the thickness each.
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Fig. 4. 
Overview of the automatic LV segmentation algorithm. (1) LV initialization by 

transforming a template model using landmark correspondences. (2) LV boundary 

delineation by adjusting internal vertices along n⃗ for and boundary vertices along both n⃗ and 

b ⃗.
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Fig. 5. 
Feature extraction at five points (black dots) for a vertex x with thickness θ and surface 

normal n⃗. The red curves are endo-, mid-, and epicardial surfaces. (a) Positive sample with 

both ground-truths of x and θ. (b) (c) Negative samples with x or θ deviated from ground-

truth.
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Fig. 6. 

Generation of training data for PCA analysis of deformation increments.  and 

are  after LV initialization using manually identified landmarks and from manually 

annotated ground-truth surface.
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Fig. 7. 
Mapping between a 3D point x on  to a 2D point {u, v} within a unit circle. The 

perfusion for any point is calculated by averaging the image intensities within the thickness 

in both directions along normal.
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Fig. 8. 
Examples of detected landmarks on two datasets (left and right columns). The colored lines 

in both planes represent corresponding locations of the other plane.
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Fig. 9. 
Examples of segmented LV endocardial, midcardial, and epicardial surfaces on three 

datasets. Each row shows views of one dataset from horizontal long axis, vertical long axis, 

and short axis.
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Fig. 10. 
An example of perfusion and thickness quantified using our model. The color maps show 

the measurement at each point on the mesh, mapped values on the AHA 17-segment model 

and measurements averaged within each segment.
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Fig. 11. 
The distribution of correlation coefficients in normal and disease groups.
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Fig. 12. 
Perfusion network analysis in normal and disease groups.

Xiong et al. Page 32

Med Image Anal. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
ROC curves of perfusion prediction analysis using Naive Bayes, Random Forest and 

AdaBoost.
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Fig. 14. 
ROC curves of AdaBoost classifiers using different sets of features. The classifier using all 

three features performs better than that using only one feature.
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Table 2

The mean and standard deviation (±) of segmentation errors for the whole model Ep2m in different steps (in 

millimeters). Note Ep2m is computed from all vertices in the model.

Step LV Endocardium LV Epicardium

After LV Initialization 3.29±0.84 3.19±0.77

After vertex displacement 1.04±0.43 1.11±0.50

After PCA prior 1.00±0.39 1.06±0.43

Med Image Anal. Author manuscript; available in PMC 2016 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xiong et al. Page 37

Table 3

The mean and standard deviation (±) of segmentation errors for the boundary contour Ep2c in different steps 

(in millimeters). Note Ep2c is computed from only the vertices on the boundary contour.

Step Boundary Contour

After LV Initialization 4.31±0.98

After vertex displacement without movement along b⃗ 3.82±1.03

After vertex displacement with movement along b⃗ 2.90±0.55
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