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Abstract

Multi-dimensional transfer functions are widely used to provide appropriate data classification for 

direct volume rendering. Nevertheless, the design of a multi-dimensional transfer function is a 

complicated task. In this paper, we propose to use parallel coordinates, a powerful tool to visualize 

high-dimensional geometry and analyze multivariate data, for multi-dimensional transfer function 

design. This approach has two major advantages: (1) Combining the information of spatial space 

(voxel position) and parameter space; (2) Selecting appropriate high-dimensional parameters to 

obtain sophisticated data classification. Although parallel coordinates offers simple interface for 

the user to design the high-dimensional transfer function, some extra work such as sorting the 

coordinates is inevitable. Therefore, we use a local linear embedding technique for dimension 

reduction to reduce the burdensome calculations in the high dimensional parameter space and to 

represent the transfer function concisely. With the aid of parallel coordinates, we propose some 

novel high-dimensional transfer function widgets for better visualization results. We demonstrate 

the capability of our parallel coordinates based transfer function (PCbTF) design method for direct 

volume rendering using CT and MRI datasets.

1. Introduction

Transfer functions (TF), as an important classification method, have been proposed to 

produce images that display or highlight the region of interest in the dataset. Some 

significant experience has been accumulated on how to identify the accurate boundaries 

between different materials, such as 1D scalar values based TF and various 2D TFs with 

respect to gradient magnitude, directional first and second derivative [KD98], curvature 

[KWTM03] and statistical measures [TLM01]. However, the specification of a transfer 

function to accurately identify different objects in a complex volume dataset is still a 

challenging task.

In this paper, we propose a novel multi-dimensional (nD) TF design method, termed parallel 

coordinates based transfer function (PCbTF) design method, and a new dimension reduction 

technique to simplify the TF design using local linear embedding (LLE) [RS00]. LLE maps 

its inputs into a single global coordinate system of lower dimensionality, and thus its 

optimizations do not involve local minima, which leads to the ability of learning the global 

structure of nonlinear manifolds (details in Section 3.3). A simple but effective user 

interface has also been developed to assist in the nD TF design. Through our framework, a 

carefully designed nD TF can emphasize details which are difficult to visualize by other 

approaches.
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The pipeline of PCbTF is shown as Figure 1. First, for each voxel of input dataset, various 

high dimensional parameters are calculated. Next, parameters are selected according to the 

patterns of corresponding polylines drawn in PC. For the high dimensional TF design, the 

user can choose to either interactively design special widgets on the coordinates directly or 

automatically project all the attribute parameters to the 2D space by the LLE technique as 

dimension reduction, and then assign colors and opacities to the classes calculated by a k-

mean algorithm in the 2D space.

Following the pipeline, our paper is organized as follows: Section 2 presents the related 

work. Section 3 describes our approach in details. Section 4 discusses the implementation. 

Section 5 analyzes results obtained by our method. Section 6 draws the conclusions and 

points out future work.

2. Related Work

Multi-dimensional transfer function design

The transfer function design, especially the multi-dimensional TF design, has become a 

fundamental and important research thrust. Kniss et al. [KKH02] have introduced dual 

domain interaction to facilitate identification of 3D boundaries using a probe that facilitates 

manual segmentation of various materials. Roettger et al. [RMS05] have used the voxel 

barycenter and the region variance to assist in manual specification of colors for similar 

features in the process of volume rendering. Canban et al. [CR08] have used first-, second-, 

and high-order local statistical texture properties to effectively assign voxels to different 

opacities and colors using texture-based transfer function. Maciejewski et al. [MWCE09] 

have proposed a novel non-parametric clustering method to design TF. Although only 2D 

TF shown as examples, the clustering method can also be extended to design nD TF. For the 

high dimensional computation, He et al. [HHKP96] and Marks et al. [MAB*97] have 

proposed a solution to the parameter selection problem, where by the user choosing TF by 

browsing through many rendered images. Tzeng et al. [TLM05] have presented a new 

approach to the volume classification problem, relying on an intelligent system to abstract 

high dimensional mapping functions from the user. For all the above methods, however, the 

user only specifies the classification in parameter space directly, limiting the visualization 

effects of data properties that can be used simultaneously. As an alternative, we propose to 

apply parallel coordinates (PC), a powerful nD parameters visualization and data analysis 

tool.

Parallel coordinates based transfer function design

Parallel coordinates, first presented by Inselberg et al. [ID90], is a helpful nD visualization 

tool. For high dimensional data visualization and visual clustering, Lum et al. [LSM06] have 

used local textures, scale-based filtering, and parallel coordinates to better classify volume 

data interactively. The effectiveness of this approach is limited by how to sort the PC to 

identify the different materials. Fua et al. [FWR99] have programmed a useful software 

XmdvTool, which provides a multi-resolution view of the data via hierarchical clustering, 

and uses a variation on PC to convey the aggregation information for clusters. Zhou et al. 

[ZYQ*08] have proposed an optimization scheme designed to minimize the curvature of the 

Zhao and Kaufman Page 2

Vol Graph. Author manuscript; available in PMC 2015 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



polyline edges and maximize the parallelism of adjacent edges through an energy function. 

Tory et al. [TPM05] have presented a user interface, based on PC, to facilitate the 

exploration of volume data. By explicitly representing the visualization parameter space, the 

interface offers an overview of rendering options and enables the user to easily explore 

different parameters.

Combining the above two ideas, Pradhan et al. [PBM05] have proposed a novel approach 

that allows the user to analyze signatures/parameters of data volumes using PC. Parallel 

coordinates provides an interactive interface for the structure and feature visualization, nD 

TF design and segmentation. In contrast, we add several new techniques: (1) The spatial 

information is added as new parameters, which can maximally embed the prior-knowledge, 

especially for medical datasets; (2) We can analyze polyline structural patterns in the PC to 

manually remove the correlated parameters as direct dimension reduction (subsection 3.2.1) 

or automatically apply dimension reduction using LLE; (3) For the TF design, instead of 

using only one signature/parameter to analysis the volumetric dataset, we design a real high 

dimensional TF (subsection 3.2.2), considering nD parameters together. Our method is able 

to produce better classification and visualization results for some difficult tasks.

Dimension reduction based transfer function design

Dimension reduction is an alternative solution for the high dimensional TF design. 

Takanashi et al. [TLM02] have used independent component analysis (ICA) for nD 

parameter reduction. Rezk-Salama et al. [RSKK06] have created models from several 

training datasets by principle component analysis (PCA) to reveal the desired structures. 

Pinto and Freitas [dMPF07] have applied self-organizing maps (SOMs) and radial basis 

functions (RBFs) to simplify the design of nD TF to achieve the accurate classification. For 

the dimension reduction, in this paper, we introduce LLE, a good nonlinear high dimension 

reduction method, which could effectively simplify the complex polyline analysis.

3. Design of Multi-dimensional Transfer Functions using Parallel 

Coordinate

In this section, we describe the following procedure to directly design PCbTF. After the data 

preparation and parameter extraction, we apply a simulated annealing (SA) method 

[KGV83] to find the best sorting order of all the parameters in the PC with respect to energy 

minimization. Then, the correlated parameters are removed according to mathematically 

defined patterns of polylines. Next, several novel widgets are proposed to help the user to 

design PCbTF. On the other hand, LLE, a good dimension reduction technique, is 

represented as an automatical method for the design of nD TF.

3.1. Data Preparation

For most volumetric datasets, two major problems, background and image noise, will 

significantly affect the visualization and computational speed of polylines. Simply removing 

the background voxels does not influence the information of the feature of interest, but will 

significantly decrease the computational time and operation complexity. Therefore, we 

implement the region growing method with several selected seeds to remove the air voxels 
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around the objects, such as in the CT or MRI dataset. After the background elimination, 

sixteen statistical attributes (angular second moment, contrast, correlation, variance, inverse 

difference moment, individual entropy, sum average, sum variance, sum entropy, skewness, 

kurtosis, correlation information measurements, intensity, gradient and second order 

derivative) are extracted and drawn as coordinates in the PC (following the feature equations 

defined in [CR08] and [HSD73]). We apply the concept of an outlier [NH06] to remove 

noise. Randomly distributed noises are simply removed by erasing the outlier polylines.

3.2. Transfer Function Design in PC

In this part, we focus on parameter sorting, selection and TF widget design using PC.

3.2.1. Visualization of Parameter Sorting and Selection—For the visual clustering 

in the PC, various methods have been published such as blending [JLJC05] and scatter plot 

matrix [GTD01]. We mainly implement the brush function to select, highlight and erase the 

polylines using the Xmdv-Tool library [xmd]. One of the most important motivations of PC 

is to best reveal the relationship/correlation of neighboring coordinates. However, the PC 

sorting problem, as NP-complete problem, has no efficient algorithm (with running time 

O(n!)). Peng et al. [PWR04] have provided random swapping, nearest neighbor and greedy 

methods to solve this problem. However, random swapping suffers from serious repetition 

problem, while nearest neighbor and greedy algorithms are easily stuck at the local 

optimization. Thus, we modified SA to find a fast optimization solution (with running time 

O(np2n)). First, new equations are defined as the clutter measurement to describe the internal 

energy f(h) between the neighboring coordinates: , where N = N1 * N2, 

N1 and N2 are the pre-defined bin number of adjacent coordinates; pi is the 2D joint 

histogram distribution probability, , while li is the total polyline number in the ith 

bin.

This formula describes the basic idea: the more polyline aggregation in a single bin, the less 

internal energy. Algorithm 1 lists the details and conditions during the implementation. This 

method can quickly reach the global optimal solution using appropriate parameters, as 

shown in Figure 2. The best sorting order makes it easy to select important parameters: 

various correlated patterns (shown in Figure 3) can be identified and removed according to 

precise definitions by Inselberg [Ins09].

3.2.2. Widgets Design of PCbTF—Parallel coordinates preserves properties of a 

hypersurface by polyline patterns, which makes the TF design easy. Figure 4 shows the 

corresponding patterns between traditional orthogonal space (2D, 3D and nD) and PC. In 

addition to these basic patterns, we design various primitives as TF. Figures 5a–f show the 

design ideas in PC and the corresponding modifications in the 2D or 3D space. In order to 

adjust the opacity smoothly, we design two basic filter widgets (Gaussian and Laplacian) as 

shown in Figures 5g and h. All the designed patterns or primitives can be easily extended to 

nD by setting constraints between the neighboring coordinates: x2 = f1(x1),x3 = f2(x2),…,xn = 

fn–1(xn–1), where the functions are pre-defined by the user. Therefore, the adjustment of x1 

will automatically control the selection of other parameters. Through using the widgets, the 

Zhao and Kaufman Page 4

Vol Graph. Author manuscript; available in PMC 2015 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



complicated design of high dimensional TF, which is impossible to be drawn on the screen 

by traditional methods, is easily implemented in the PC.

3.3. Dimension Reduction

Although the PC can directly assist the design of high dimensional TF, the major limitations 

are the facts that large datasets or parameter axes cause difficulty in the interpretation for the 

accurate classification, and relationships are only preserved between adjacent coordinates. 

Resorting the coordinates is an extremely time-consuming task especially for very high 

dimensions. Therefore, dimension reduction is motivated for the design of nD TF. We apply 

local linear embedding method (LLE) [RS00], an unsupervised learning algorithm that 

computes the low-dimensional, neighborhood-preserving embedding of high-dimensional 

inputs. LLE has several predominances: (1) It eliminates the need to estimate pairwise 

distances between the widely separated data points; (2) It maintains the global nonlinear 

structure from locally linear fits. By comparison with PCA [Jol89] and metric MDS [CC94], 

LLE is especially good at identifying the underlying complicated manifold structure. In this 

paper, we first implement LLE as a dimension reduction based TF design method. The 

algorithm is briefly described as follows: Suppose the data consists of N real-valued vectors 

, the LLE algorithm, is based on simple geometric intuitions with two cost functions:

(1)

and

(2)

First, we compute the neighbor of each data point, . Then we compute the weights Wi j 

from the neighbor points of  by minimizing the cost in Eq.1. Last, we compute the best 

reconstruction by weights Wi j, through minimizing Eq.2 using its lowest nonzero 

eigenvectors.

The user can control two parameters of LLE, the number of neighbors and the dimension of 

the embedding space (default is 2D). After applying LLE, the embedded space tends to be 

very abstract and its meaning unclear. Fortunately, the high dimensional relationships 

among voxels can be perfectly preserved and can be easily classified by k-mean algorithm in 

2D space, as shown in Figure 6a. Thus, the user just needs to assign color and opacity for 

each class to obtain the final rendering result, as shown in Figure 6b. Due to the loss and 

distortion of information usually caused by dimension reduction, LLE cannot provide 

quantitative information as accurate as PCbTF does. However, this approach is well suitable 

for revealing qualitative aspects such as shape of structures and clear dissimilarity between 

regions.
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4. Implementation

We have implemented the parameter extraction and dimension reduction as off-line 

processes, but to maximize system interactivity, we accelerate our volume rendering and TF 

specification using graphics hardware. Given a parameter representation of each voxel, the 

task of designing PCbTF becomes specifying a mapping from the nD vector to a color and 

opacity value. The classification of each voxel forms a 3D texture stored in the frame buffer. 

New texture will be recomputed and redrawn on the screen by the GPU whenever TF 

changes. We calculate another 3D RGB texture to store colors and opacities picked by the 

user. The interface used to display polylines and design TFs is implemented using OpenGL 

and FLTK libraries. Rendering uses Cg on a desktop: Intel Xeon CPU 3.60GHz, 3GB 

memory and Nvidia GeForce GTX 285 graphic card. This approach is fast enough for our 

purposes of real time interaction to modify the design of TF and update the volume 

rendering results.

5. Results and Discussion

In order to demonstrate the ability of our framework to deal with challenging tasks, we have 

tested our PCbTF on CT and MRI datasets.

5.1. Application of PCbTF Design

Standard volumetric datasets—Figure 7 shows the rendering result of the CT carp 

dataset generated by our technique. Through the interface, the user can design a PCbTF as 

shown in Figure 7c to highlight the internal region of interest. Figure 7b shows the 

obviously visual enhancement of the swimming bladder by comparison with the result 

generated by 2D TF (shown in Figure 7a).

Medical volumetric datasets—Figure 8 shows our PCbTF results by comparison with 

other TFs for the CT bladder dataset. Figures 8a and b show that the 1D/2D TF will fail to 

distinguish accurate features from bladder and other tissues. We first apply the nD TF 

without any spatial information and receive a clear segment of bone structure, as shown in 

Figure 8c. However, for the bladder, as shown in Figure 8d, many “noise” points surround 

the bladder because these voxels are close to the class of bladder in the parameter space but 

far away in the spatial space, as shown in Figures 8e and f. We further refine the 

classification using the prior position information. Figure 8g shows the final rendering result 

using PCbTF designed as depicted in Figure 8h. The bladder is clearly separated from the 

surrounding tissues.

Another case study is the classification of MRI prostate dataset, an extremely challenging 

task for the common TF, as shown in Figure 9b. From the image, a 1D TF cannot truly 

separate the prostate out from its surrounding tissues due to the very similar parameter 

characteristics. Luckily, the medical information of the prostate such as location, size and 

shape can be easily found. We use the anatomical and spatial information to improve the 

result. First, we detect the colon, an organ with obvious features (large dark region as shown 

in Figure 9a). According to the anatomical knowledge, the colon is the nearest organ to the 

prostate along the posterior end, and thus we can estimate the possible position of prostate. 
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The position information becomes an important parameter combined with the other selected 

parameters (shown in Figure 9d) for the design of PCbTF to identify the prostate. Figure 9c 

shows the final result, with high opacity for the prostate and zero opacity for the surrounding 

tissues and organs. The above cases support the ability of PCbTF to clearly and accurately 

distinguish objects from surrounding tissues especially for the challenging datasets that 

tractional TFs fail.

Meanwhile, using the novel filter widgets (details in Section 3.2.2) of the PCbTF design, we 

build a method to organize opacity and color settings for a simultaneous view of multiple 

objects or substructures in the PC. The widgets can be used for bladder cancer detection. 

Figure 10a highlights the cancer area located at the bottom of bladder. We apply similar 

widgets in the T2 weighted MRI prostate dataset to display different zones of prostate. 

Figure 10b shows the final result.

5.2. Application of TF Design by LLE

For some datasets, more parameters are picked as independent parameters. For example, the 

CT Engine dataset has five parameters: intensity, gradient, entropy, correlation information 

and sum average, while the CT bonsai tree dataset contains six parameters: intensity, 

gradient, difference moment, skewness, variance and sum entropy. In order to simplify the 

design process, we project these parameters to the embedded 2D space by LLE, then 

implement k-mean classification and design a 2D TF. Although there is information loss 

during the dimension reduction, Figures 11a and b still show good classification results: the 

user can easily recognize the piston rings and piston rods for the engine dataset, and 

distinguish the soil, trunk and leaves for the bonsai tree dataset by assigning them different 

colors.

5.3. Timing and Performance

The main time-consuming part of our pipeline is the parameter extraction, which is related 

to dataset size, window size and selected parameters. Table 1 shows some statistics for all 

the datasets used in this paper. The table shows that the volume size and window size are 

major timing factors - time increases as the volume size grows while the window size 

decreases. Meanwhile, comparing with PCbTF, the design of LLE basd TF provides an easy 

operation and classification method in the 2D space, although some extra mapping time is 

needed. From the timing point view, the bottleneck is the interactive design of PCbTF. 

Therefore, total design time of LLE basd TF is small, which is a good choice when no 

specified objects are wanted by the user.

6. Conclusion and Future Work

In this paper, we have presented a novel technique to design high dimensional PCbTF and a 

dimension reduction scheme to construct nD TF using LLE. A simple but effective interface 

is provided for the user to interactively design TF to facilitate the discovery of the best 

classification scheme for complex datasets in the PC. Our method effectively allows the user 

to visualize local properties and spatial information together. The multivariate classification 

and its visualization could reduce the complexity of datasets and provide a vital connection 
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between the dataset and the analyst. Thus, it has clear advantages for the visualization of 

organs and even the cancer detection. However, the technique has some limitations. There is 

no easy way to effectively control and organize the opacity settings in the PC, and how to 

properly sort the PC is still a challenge. The dimension reduction method can simplify these 

problems, but it will cause some information loss.

Further work includes the effective scheme of assigning the opacity in nD TFs, the design of 

PCbTF for dynamic volume rendering, and the multi-resolution visualization via 

hierarchical fuzzy clustering. The automatic PCbTF design based on visual clustering 

algorithms [ZCQ*09] [ZYQ*08] [ADoL04] is also a promising direction.
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Figure 1. 
An overview of our pipeline.
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Figure 2. 
Sorting results of the car dataset (7 dimensions, 392 items). (a) Random sorting sequence. 

(b) The same optimal sorting result generated by brutal search (T=20s) and our method 

(T=1.6s) with different computational time.

Zhao and Kaufman Page 11

Vol Graph. Author manuscript; available in PMC 2015 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Typical correlation patterns in the PC. (a) Inverse linear, (b) direct linear, (c) elliptical, (d) 

hyperbolic, (e) quadratic, and (f) parabola correlation.
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Figure 4. 
Matching patterns between PC and orthogonal space. (a) 2D rectangle or square. (b) 3D 

cube, the dashed polyline is corresponding to the corner point of cube, with position (1,0,0). 

(c) 3D plane, the points of intersection of one dashed-line type in the PC is matching with 

the same dashed-line type in the 3D space. (d) 5D manifold, which is impossible to be 

displayed on the screen by the orthogonal coordinates. The dashed polyline is corresponding 

to (1,0,0,0,0).
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Figure 5. 
PCbTF design widgets. The point sizes in the PC are matching with lines or planes of the 

same size/thickness in the 2D or 3D space. For a 2D line: y=a*x+b, (a) the adjustment of 

slope b; (b) the adjustment of rate a. For a 2D plane defined in Figure 4a, (c) 2D rectangle; 

(d) 2D any type polygon designed from the changes of control points. For a 3D plane 

defined in Figure 4c, (e) only change the vertical dashed line (point b as point of 

intersection) in the PC, matching with the adjustment of point B in the 3D space; (f) 

proportionately scale of the 3D plane (scale=0.5). Two 1D Gaussian (g) or Laplacian (h) 

curves are drawn in the neighboring coordinates, which are equivalent to the 2D Gaussian or 

Laplacian filter.
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Figure 6. 
TF design scheme using LLE. (a) The k-mean classes in the embedded 2D space for the CT 

foot dataset with five parameters: intensity, gradient, variance, entropy and angular second 

moment. (b) The rendering result by assigning high opacity to the classes of bone structure 

shown as dark and light blue regions (see (b) in the color section).
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Figure 7. 
Volume rendering results of the CT carp dataset generated by (a) 2D TF and (b) PCbTF. (c) 

The design of PCbTF with four parameters (X1,…,X4): intensity, gradient, sum variance and 

sum average (see also in the color section).
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Figure 8. 
Volume rendering results of the CT bladder dataset generated by (a) 1D TF and (b) 2D TF. 

Volume segment of (c) bone structure and (d) bladder generated by PCbTF in parameter 

space. Two similar parameter values (in boxes) in (e) a CT bladder slice but with different 

spatial values (posx) in the PC (f). (g) the result generated by PCbTF combined with spatial 

information. (h) The design of PCbTF with six parameters (X1,…,X6): position (x,y,z), 

intensity, gradient and entropy (see (a),(b),(g) in the color section).
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Figure 9. 
Volume rendering results of the MRI prostate dataset generated by various TFs. (a) MRI 

axial slice of the prostate. (b) The result generated by 1D TF. (c) The result generated by 

PCbTF combined with anatomical knowledge and spatial information. (d) The design of 

PCbTF with five parameters (X1,…,X5): intensity, second order derivative, kurtosis, 

contrast and variance. Points are the boundary of the TF for each coordinate and small figure 

(right) shows the matching 2D pattern between X1 and X2 (see (b),(c) in the color section).
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Figure 10. 
Widget design in the PC for the visualization of sub-objects of interest. (a) Bladder cancer 

detection. Gaussian function is used on the intensity (X1) and gradient (X2) coordinates. 

Two black curves are designed to highlight features with high intensity and gradient using 

white color. (b) MRI prostate zones detection. Gaussian function is used on the intensity and 

gradient coordinates. The yellow curve enhances the opacity in the high intensity area and 

assigns yellow color while the black curve highlights the high gradient area and assigns 

white color (see also in the color section).
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Figure 11. 
Volume rendering results using LLE as dimension deduction for (a) the CT engine and (b) 

the CT bonsai tree datasets (see also in the color section).
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Table 1

Statistics of various datasets presented in this paper. WS: window size, T.PE (sec): parameter extraction time 

and T.LLE (sec): local linear embedding time.

Model Datasize WS T.PE T.LLE

CT Carp 2562×512 93 43.54 –

CT Bladder 2562×24 72×3 14.37 –

MRI Prostate 1282×16 52×3 8.76 –

CT Foot 2563 73 75.11 60.95

CT Engine 2563 93 22.35 17.30

CT Bonsai 2563 73 76.90 64.72
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Algorithm 1

Simulated Annealing Algorithm

T → T0; X → X0 {Initial temperature, sequence}

Ti → T0; Xi → X0 {Initial the best solution Xi}

while Ti > Tmin do

 i: (w1,…,wk,wk+1,…,wm,wm+1,…) → j: (w1,…,wm,wk+1,…,wk,wm+1,…) {For the random values k and m, setting k < m}

 d f → (f(X j) − f (Xi)) {Calculate energy difference}

 if d f < 0 then

  Xi → Xj

 else if d f > 0 and  then

  Xi → Xj

 end if

 Ti → Ti − Td {Decrease temperature}

end while

Return Xi
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