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Abstract

Many drug candidates fail in clinical trials due to a lack of efficacy from limited target 

engagement or an insufficient therapeutic index. Minimizing off-target effects while retaining the 

desired pharmacodynamic (PD) response can be achieved by reduced exposure for drugs that 

display kinetic selectivity in which the drug:target complex has a longer half-life than off-

target:drug complexes. However, while slow-binding inhibition kinetics are a key feature of many 

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to P.J.T. (peter.tonge@stonybrook.edu) or S.L.F. 
(stewfisher@SLFisherConsulting.com).
*These authors contributed equally to this work.
These authors contributed equally to this work: Zhiping You, Philip L. Ross, Eleanor K. H. Allen

Infection Innovative Medicines Unit, AstraZeneca Research & Development, Waltham, Massachusetts, USA.
Grant K. Walkup, Zhiping You, Philip L. Ross, Michael R. Hale, John O’Donnell, David E. Ehmann, Virna J. A. Schuck, Ed T. 
Buurman, Allison L. Choy, Laurel Hajec, Kerry Murphy-Benenato, Valerie Marone, Sara A. Patey, Lena A. Grosser, Michele 
Johnstone, and Stewart L. Fisher
Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York, 
USA.
Eleanor K. H. Allen, Fereidoon Daryaee & Peter J. Tonge
Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York, USA.
Stephen G. Walker

Author Contributions
E.K.H.A. designed experiments and performed post-antibiotic effect (PAE) experiments. P.L.R. measured compound residence time 
and inhibition onset. Z.Y, S.L.F., V.J.A.S., & G.K.W. derived the integrated pharmacodynamic model. V.M, A.L.C, and K.M.-B. 
designed and synthesized compounds. S.A.P., E.T.B, L.H., & M.J. collected PAE data, determined resistance frequencies, or MICs. 
L.H., prepared lpxC overexpression strains. J.O’D., and L.A.G. designed and performed animal experiments. Z.Y. and D.E.E. 
performed data analysis of integrated equation models. S.G.W. oversaw PAE experiments. F.D. performed data analysis of differential 
equation models. M.J.H., G.K.W., Z.Y., P.L.R., E.K.H.A, M.R.H., J.O’D., D.E.E. P.J.T., & S.L.F. analyzed PAE and animal efficacy 
data and designed experiments. G.K.W., P.J.T, and S.L.F. wrote the manuscript.

Competing financial interests
All authors except E.K.H.A, F.D., S.G.W., and P.J.T. were employees of AstraZeneca during the conduct of this research.

HHS Public Access
Author manuscript
Nat Chem Biol. Author manuscript; available in PMC 2015 December 01.

Published in final edited form as:
Nat Chem Biol. 2015 June ; 11(6): 416–423. doi:10.1038/nchembio.1796.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



marketed drugs1,2, prospective tools that integrate drug-target residence time into predictions of 

drug efficacy are lacking, hindering the integration of drug-target kinetics into the drug discovery 

cascade. Here we describe a mechanistic PD model that includes drug-target kinetic parameters 

including the on- and off-rates for the formation and breakdown of the drug-target complex. We 

demonstrate the utility of this model by using it to predict dose response curves for inhibitors of 

the LpxC enzyme from Pseudomonas aeruginosa in an animal model of infection.

Introduction

The majority of drug candidates fail in human clinical trials due to lack of efficacy or 

insufficient therapeutic index, often as a result of limited target engagement or concomitant 

drug binding to off-target receptors3,4. Currently, these critical drug parameters are not 

routinely fully evaluated until late stages of drug discovery. Developing a fundamental 

understanding of the pharmacokinetic (PK) and pharmacodynamic (PD) principles that 

govern drug action throughout the drug discovery process has been proposed as a 

mechanism for improving the success rate of new drug approvals4,5. Recently, approaches 

that utilize prolonged occupancy of the drug on the designated target, while minimizing 

binding to off-target proteins (kinetic selectivity), have been identified as particularly 

promising strategies for improving a drug candidate therapeutic index. Indeed, many 

marketed drugs dissociate slowly from their targets, emphasizing the potential importance of 

drug-target complex life-time (residence time, tR) for in vivo drug activity1,2,6–8. The 

therapeutic index will be maximized in these circumstances if the long on-target residence 

time leads to kinetic selectivity, with the drug having a short lifetime on off-target proteins 

(and no or minimal on-target toxicity). As a result, there is a growing interest in assessing 

kinetic selectivity and developing structure-kinetic relationships to drive compound 

optimization.

While compelling arguments can be made for the tuning of drug-target kinetics in a drug 

discovery campaign, major barriers still exist for the implementation of this approach 

including the lack of prospective tools that integrate drug-target residence time parameters 

with PK models to yield predictions of drug efficacy. Current PD models typically assume 

“rapid equilibrium” between the bacterial target and the fraction of drug in human plasma 

that is not protein bound (serum free fraction)9,10. Moreover, during drug discovery and 

optimization, it is common to characterize compound activity with steady-state in vitro 

measurements that disregard effects that may be time-dependent, such as IC50 values for 

inhibition of a purified target or the minimum inhibitory concentration (MIC) required to 

prevent cell growth. Although this “thermodynamic approach” is fully appropriate for 

predictions of efficacy when drug concentrations at the target site change slowly relative to 

target engagement, there are many examples of drugs that dissociate slowly from their 

targets on the time scale of in vivo PK1. In such situations free drug and drug-engaged target 

will not be in rapid equilibrium and hence predictions of drug efficacy cannot be accounted 

for accurately based exclusively on thermodynamic measurements. Early insight into such 

an outcome could be highly valuable, particularly for agents which require high exposures 

for efficacy leading to narrow therapeutic margins11.
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To address this, we have developed a PK/PD model that incorporates drug-target kinetic 

parameters including the on- and off-rates for the formation and breakdown of the drug-

target complex. We demonstrate the utility of this model by using it to predict dose response 

curves for inhibitors of the LpxC enzyme from Pseudomonas aeruginosa (paLpxC) in an 

animal model of infection. The enzyme LpxC, UDP-3-O-acyl-N-acetylglucosamine 

deacetylase (EC 3.5.1.108), is a zinc metalloenzyme involved in the biosynthesis of cell wall 

lipopolysaccharide (Supplementary Results, Supplementary Fig. 1) and is a promising target 

for the development of antibacterial agents against problematic Gram-negative pathogens12. 

We first demonstrated that the model could predict time dependent antibacterial activity at 

the whole cell level by measuring the postantibiotic effect (PAE)13 for the compound series. 

We found that the PAE correlated with the off-rate for dissociation of inhibitors from 

paLpxC but, importantly, not with the thermodynamic affinity of the compounds for the 

target. We then extended the model to include time-dependent antibacterial activity in a 

mouse thigh model of Pseudomonas infection and were able to accurately predict efficacy at 

three drug doses. Given the strong predictive power of pre-clinical infection models to 

clinical outcomes, and the fact that doses of novel antibiotics tend to be high resulting in 

narrow therapeutic margins, the argument for including drug-target kinetics in the discovery 

of new antibiotics is compelling. Further, the approach used to develop this model is 

generally applicable across all therapeutic areas where drug-target binding kinetics impact 

drug activity. The generation of time-dependent PD models, tailored to the specific drug 

physiological effects, can be used to improve both drug candidate selection and 

development.

Results

Profiling Slow-binding of LpxC Inhibitors

Compounds 1–6 used in this study (Fig. 1) represent a series of chemical tools for 

interrogating the relationship between in vitro parameters, such as equilibrium binding and 

residence time profiles, and cellular and in vivo pharmacological effects. These closely 

related structural analogs are competitive inhibitors of LpxC and contain a hydroxamic acid 

group that binds the catalytic zinc ion in the active site, as well as a lipophilic group that 

binds within an occluded hydrophobic passage that is normally occupied by the hydroxyl-

alkyl substituent of the native substrate14,15. The well-known LpxC inhibitor CHIR-09012 

(Fig. 1), inhibits LpxC through a 2-step binding mechanism (Supplementary Note)16, in 

which formation of an initial EI encounter complex, defined by Ki, is followed by a slow 

step (conformational change) resulting in a more stable non-covalent complex (EI*, defined 

by Ki*). Compounds 1–6 exhibit a similar mechanism of inhibition as exemplified by 

Compound 2 in which forward progress curves in the presence of inhibitor values are 

indicative of time-dependent slow-onset inhibition (Supplementary Fig. 2)16. A global 

analysis approach was used to interpret these data17, and a good fit was obtained for the 

two-step inhibition model for competitive inhibition. This yielded a value for Ki* of 11 ± 4 

pM, which compares favorably to the same constant determined from extended 

preincubation time IC50 measurements (Ki* = 10 ± 7 pM). Good fits were also obtained for 

a one-step kinetic binding mechanism; however, this mechanism was discounted due to the 
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fact that the encounter complex (Ki) is substantially larger than the highest compound 

concentration tested and the precedent of a two-step binding mechanism with CHIR-090.

The dissociation rates of respective inhibitors bound to LpxC were determined using a rapid 

dilution assay at 37 °C (Fig. 2) and 23°C (Supplementary Fig. 3)18, in which LpxC was 

incubated with a stoichiometric equivalent of inhibitor at concentrations above Ki* for 3 

hours to allow formation of EI*, followed by rapid 1000-fold dilution into buffer containing 

excess LpxC substrate (present at 5x Km), to minimize the effects of rebinding on the off-

rate determinations19. Accumulation of the deacylated LpxC reaction product yielded the 

recovery rate constant, kobs, which was used to estimate the target:inhibitor residence time 

(tR, Table 1) and assumed to be the off-rate constant k6. Note that the values of k6 are lower 

limit approximations since the kinetics of initial binding are assumed to be in rapid 

equilibrium. However these processes may contribute to the slow-binding kinetic profile and 

therefore require inclusion of the rate constants for these steps in the overall dissociation rate 

equation20. At 37°C, full activity was restored under the experimental assay timeframe (<3 

h, Fig. 2) except for Compound 4, which has the lowest Ki* in the series, suggesting that 

rebinding effects were contributing to prolonged enzyme inhibition19. In this case, the 

dissociation rate was obtained by fitting the data to the expected fractional final velocity 

calculated from the amount of free enzyme expected under the final experimental 

conditions21.

Values for Ki and Ki* were obtained at 37°C. For Ki* determinations, compound was 

preincubated with enzyme overnight (16–18 hours) prior to reaction initiation with substrate. 

Alternately, Ki determinations avoided preincubation, and reaction time was minimized (2.5 

min). Despite the high sensitivity of the LS/MS/MS detection system, assay conditions for 

Compounds 4–6 were within the range of tight-binding behavior (5 pM LpxC), and thus 

estimates of Ki* values were determined using the Morrison equation22,23 followed by 

application of the Cheng-Prusoff correction24 for substrate-competitive inhibitors 

(Supplementary Table 1).

In sum, the kinetic profiling confirmed that all of the compounds studied exhibit slow-

binding kinetics similar to CHIR-090. Additionally, whereas small variations were observed 

among the Ki values, a correlation was observed between Ki* and the measured residence 

times, indicating that the slow off-rates are governed by ground-state stabilization of EI*8,25. 

This range of kinetic and thermodynamic properties across the compound set provided an 

excellent foundation for evaluating the physiological effects of both residence time and 

rebinding on cellular activity and regrowth.

Microbiological Activity and Post-Antibiotic Effects

Antimicrobial activities were determined as minimum inhibitory concentrations (MICs) 

against a reference P.aeruginosa strain, PAO1, and an isogenic derivative lacking the major 

efflux-pumps MexABCDXY, N15026. MIC values against P. aeruginosa PAO1 ranged 

from 0.2 to 12.5 μg/mL (Table 1) whereas those against the efflux-deficient strain were 1–2 

orders of magnitude lower, suggesting that in wild-type P. aeruginosa the intracellular 

compound concentrations are significantly lowered due to bacterial efflux pump action. A 

clear correlation was noted between the MIC values for both strains and the Ki values 
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determined for each compound (Supplementary Fig. 4), which strongly suggests that the 

cellular mode of action of these compounds is driven through the inhibition of LpxC. This 

correlation is not maintained with Ki* values (Supplementary Fig. 4) suggesting that 

formation of the initial LpxC:inhibitor encounter complex (described by Ki) is sufficient for 

inhibition of bacterial growth as reported by the endpoint MIC determinations, and that the 

formation of a time-dependent complex of enhanced potency, driven by Ki*, does not 

influence the MIC determination. Finally, all of the compounds exhibited rapid bactericidal 

activity, with ≥3 log10 decrease in CFU/mL within 3 hours and maximal killing rates >1.8 

log CFU/hr (Table 1, Supplementary Fig. 5). Although there was some variation of 

maximum kill rate within this compound set (Table 1), these differences were considered 

minor as this range of variation has been observed in other antibiotic compound sets27.

Target overexpression studies were conducted to further demonstrate that these compounds 

maintained a mechanism of action consistent with LpxC inhibition over the concentrations 

required to complete kinetic evaluations on cellular activity. In all cases, elevated MIC 

values were observed with lpxC overexpression28 and the fold shifts were similar across the 

compound set (Supplementary Table 2). These results indicate that the effects on growth are 

driven by LpxC inhibition, even at elevated compound concentrations.

The determination of the PAEs for LpxC inhibitors in the wild-type PAO1 strain followed a 

dilution-based protocol13,29. Cells were first incubated for one hour with varied 

concentrations of inhibitor normalized to the MIC followed by a 1000-fold dilution. 

Subsequently, the PAE value was calculated as the time required for compound-treated cells 

to successfully grow ten-fold (1 log10CFU) compared to untreated cells13. All of the 

calculated PAEs demonstrated a concentration-dependent growth delay (Fig. 3, 

Supplementary Fig. 6), that varied across the compound set from ~1 to ~4 h (Table 1). A 

statistical analysis was performed to better understand the linkage of the measured 

biochemical and microbiological data with the observed PAEs at 4× and 16×MIC (Table 1), 

and the strongest correlations were observed between tR, Ki* and the maximum killing rate 

for both PAE datasets, with the relative strengths of the correlations for these parameters 

being concentration-dependent. A clear dependence of PAE on residence time was observed 

(Fig. 3). The effect of Ki* and residence time on PAE results from sustained target 

engagement following compound washout. In contrast, linkage of maximum killing rate to 

PAE reflects the sensitivity of the PAE experiment to scalar effects on growth inhibition. In 

other words, high kill rates increase the dynamic range of effect and therefore enable clearly 

observable effects (the PAE) after compound washout.

Developing a Mechanistic Time-dependent PD Model

To further study the correlations observed between the biochemical parameters and 

pharmacological outcomes such as the PAE, a mechanistic PD model was derived. As 

shown in Figure 4, general PD models typically invoke a concentration-dependent bacterial 

“enhancement of kill” function, Ek(C), implementing the Hill equation logistic30,31 which 

assumes a rapid equilibrium mass-action binding manifold. In order to incorporate the 

impacts of time-dependent inhibitor:target binding, it was assumed that the bacterial growth 

was dependent on the metabolic flux of substrate through the target enzyme, and that 
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depletion of the enzyme:substrate species through the distribution to target:inhibitor 

complexes results in growth inhibition. This assertion is supported by the observation that 

growth inhibition (MIC) is most closely correlated with Ki and not Ki* (Supplementary Fig. 

4). Applying this reasoning, the replacement of the Hill equation logistic with the 

mathematical solution representing the collection of inactive enzyme species led to a fully 

integrated, closed solution model that links the effects of target inhibition and bacterial cell 

count (Supplementary Note). The resulting equation includes a total of six mathematically-

independent parameters (k5, k6, Ki, Km/[S], kgrowth and kkill), four of which (k5, k6, Ki, Km/

[S]) describe the typical two-step binding and kinetic profile of competitive slow-binding 

enzyme inhibitors. Inspection of the model indicates that the encounter complex dissociation 

constant (Ki) and the free, intracellular inhibitor concentration ([I]) are always present in the 

model as a ratio and therefore these variables are treated as a single composite parameter in 

all modeling exercises. The parameter term M, which is equivalent to Km/[S], accounts for 

the impact of enzyme substrate concentration changes on competitive inhibitor binding 

efficiency. This mechanistic model was derived assuming competitive inhibition, but recent 

assessments of time dependent behavior for non-competitive inhibitors in cellular systems 

suggest that these effects may not be sensitive to specific inhibition modalities25.

Validation of the PD Model with in vitro PAE data

With this model in hand, simulation and fitting tools were developed to enable the analysis 

of complex datasets with dynamic concentration functions that include both step-function 

changes as seen in PAE studies and as well as different in vivo dosing administration options 

(IV and PO). Specifically, a data-fitting tool was developed that utilizes non-linear 

regressions to perform global fits to the physiological response data. The first application 

was to test the performance of this tool and the mechanistic PD model to the set of 

concentration response data collected for each compound in the PAE studies. To initiate the 

fitting process, the experimentally determined values for Ki, k6, k5, and kkill_max were used 

as seed values for the model parameters (Table 1), and estimates of kgrowth were obtained 

from control cultures grown without LpxC inhibitors. Since the LpxC substrate 

concentration has not been determined, parameter M was seeded as 0.15 based on the ranges 

of this parameter reported for metabolic enzymes in cellular systems32. This parameter was 

allowed to vary by 3-fold, but was assumed to be time-invariant, since it was assumed that 

substrate accumulation would not occur in this case due to the high maximum killing rates 

observed for the LpxC inhibitors. The [I]/Ki term presented the greatest challenge for initial 

seed value estimation. Since the model was derived in terms of drug concentration at the 

target site and LpxC is a cytoplasmic target, estimates of the intracellular concentration were 

needed for simulations and data analysis. Obtaining accurate measurements of intracellular 

drug concentrations are challenging, particularly for Gram-negative bacteria, due to 

complications attributed in part to non-specific binding to the outer and inner membrane 

fractions33. As a result, an empirical approach was taken to estimate the intracellular 

concentration using a correction factor based on the bulk media concentration. It was 

assumed that the cellular penetration mechanism of these inhibitors is similar to the majority 

of antibacterial agents and governed by mass action, rather than through an active transport 

and subsequent accumulation against a concentration gradient34. Further, based on the 

observation that isogenic efflux-deficient strains exhibit significant improvements in MIC 
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potency relative to wild-type cells, it was therefore reasoned that the upper limit for 

intracellular concentration could be estimated from the ratios of the MIC values for the 

efflux-deficient and wild-type strains (pm) and the bulk media concentration. The pm factor 

was used during the fitting process to scale the [I]/Ki parameter in all cases. With these seed 

input values in hand, data fitting was performed using non-linear regressions where the 

parameters were allowed to float within pre-defined constraints to identify an optimal global 

fit solution for the full concentration range of PAE data for each compound. Narrow 

constraint windows were employed for the cellular parameters of kgrowth and kkill_max (4-

fold), due to the high confidence that these parameters reflected the cellular growth 

conditions. In contrast, the biochemical parameters (Ki, k5, k6) were effectively free-floating 

since large windows were employed for these variables (100-fold deviation tolerated).

The model produced good fits to the PAE data for each compound using these conditions. In 

all cases, high correlation coefficients were observed (R2 > 0.98) and the performance was 

high across the full spectrum of cellular response, including for datasets where the 

experimental CFU counts were near or below the limit of quantitation for early post-dilution 

time points (Fig. 3, Supplementary Fig. 6). As a further assessment of the model 

performance, the deviations of the final output parameters from the initial seed values were 

analyzed (Supplementary Tables 3–8). For each dataset the model fits converged with 

parameters that were very close to the initial seed values. In particular, there was very little 

deviation for the microbiological parameters kgrowth and kkill_max. Similarly, a trend was 

observed between the level of convergence on the seed values for k6 and increasing 

residence time, and the most variation in this parameter was observed for compounds with 

shorter residence time values and small PAEs (Compounds 1, 3). These results are 

consistent with the empirical correlation observed between residence time and PAEs, and 

indicates that the predictive power of the biochemically measured k6 on PAE effects is 

proportional to the residence time value. More variation was observed for k5, which may be 

rationalized by the fact that this biochemical parameter is computed as a function of Ki, Ki* 

and k6. The composite parameter of pm/Ki exhibited large variance for both Compounds 1 
and 6 relative to the other compounds. The reason for this variance is unclear, but may 

reflect different levels of bacterial permeation across the series. Lastly, the set of parameter 

values for the substrate metabolic flux (M parameter) from the fitting process across all of 

the datasets was tightly clustered around a mean value of 0.19 ± 0.05. While the 

concentration of LpxC substrate has not been determined in P. aeruginosa, this value is in 

good agreement with the majority of metabolic enzymes using global metabolomic methods 

in E. coli under logarithmic growth condition32.

To further investigate the impact of the parameter M, for which we had the least 

corroborating data, we performed a second fitting analysis. As exemplified for compounds 

with short, medium, and long residence times, compounds 1, 4, and 6 were fit initializing 

parameter M reflective of a greater competition against substrate (M=0.0015) and allowing 

that value to change at most 10-fold. Good fits were again obtained, with R2 > 0.97 

(Supplementary Fig. 7 and Supplementary Table 9). Importantly, the output M values in this 

case rose to the upper constraint for two compounds (Compounds 1, 6). In all three cases, 

output values for k6 were very close to those obtained previously, demonstrating the 
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importance of this critical factor within the fit. The values returned for the kgrowth and 

kkill_max parameters, as in the prior analysis for these compounds, changed at most 20% 

from the seed values and showed an average of 1.6-fold shift. The value of k5, exhibited 

even more dramatic deviations (as great as 88-fold for compound 1) from the seed values in 

this latter analysis; this outcome is expected for a system requiring more efficient formation 

of the EI* enzyme form during the compound incubation phase due to the greater 

competition against substrate encoded in the low M value.

To further confirm the integrated mechanistic model fitting, simulations of the Compound 6 
PAE were performed using numerical integration over a system of differential equations for 

the two-step slow-binding enzyme inhibition mechanism and the general PD model 

(Supplementary Note). As with the integrated mechanistic model, the experimentally 

derived values were used as seed values for parameters in these simulations. Minimal 

perturbation of these input parameters was required to produce simulations that 

demonstrated excellent agreement with the experimental data (Supplementary Fig. 8, 

Supplementary Table 10), with the exception of the permeability factor, pm. In these 

simulations, the pm value was significantly lower than that predicted by the integrated 

mechanistic model (50–100-fold lower). This difference can be attributed to the fundamental 

assumptions regarding the formation of the inhibitor:LpxC encounter complex and substrate 

binding between the two modeling approaches. Unlike the integrated mechanistic model, 

which assumed a rapid equilibrium between the free enzyme, substrate and inhibitor, the 

differential equations embody a steady-state formalism, where the rates of enzyme:substrate 

complex and enzyme:inhibitor complex are explicitly defined. It was noted that the optimal 

differential equation-based simulations also required significantly larger rate constants for 

EI complex formation relative to substrate binding to the free enzyme form (100-fold faster). 

Taken together, the differential equation model predicts that the initial encounter inhibitor 

complex formation is significantly more kinetically efficient than substrate binding, and 

therefore lower intracellular drug concentrations are required to demonstrate a physiological 

effect. As noted above, experimental measurements of intracellular drug concentrations in 

Gram-negative bacteria are technically demanding, and therefore comparison of the 

differential output from the differential equations and integrated mechanistic model provides 

a bounded range of estimates for inhibitor permeability and, by extension, the intracellular 

concentration governing physiological response for extremely potent inhibitors such as 

Compound 6.

PD Model Simulations of in vivo Pharmacodynamic Responses

Having established the ability of our model to provide realistic fits that link PAE data to 

separately determined inhibitor-target potency measures and kinetic factors, we sought to 

predict bacterial growth under conditions of continuously changing inhibitor concentrations, 

such as encountered in in vivo efficacy testing. There are several factors that were 

considered in the transition from cellular studies to the in vivo environment. First, unlike the 

cellular PAE experiment which utilizes a step function concentration profile, the PK profiles 

in advanced PD models feature varying concentration profiles due to distribution and 

clearance mechanisms. To maintain the linkage between the PD response and continuously 

changing compound concentrations, it was necessary to perform successive stepwise 
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calculations in small iterative steps to satisfy the assumption that compound concentrations 

do not significantly change over an evaluation interval of the enzyme:inhibitor states 

(Supplementary Note). This approach is particularly important in cases where the 

concentration profile results in a change from net formation or loss of the slow-dissociating 

species, since a mathematical boundary condition exists between these states.

Compound 6 was selected for in vivo efficacy studies based on the reported high serum 

protein binding free fraction and overall PK profile of this compound35, coupled with the 

fact that acute tolerability issues were observed in the series represented by compounds 1–5 
that restricted further in vivo work. Since the free serum fraction is assumed to drive in vivo 

efficacy, the high free fraction (fu) was confirmed for Compound 6 in mouse and human 

plasma (mouse fu = 0.41, human fu = 0.28). These data were used to define the PK profiles 

for simulating the PD response with the mechanistic model. Of the six parameters invoked 

in the model, the growth and maximal killing rates were anticipated to exhibit the largest 

change upon translation to the in vivo conditions. From previous experience with the mouse 

thigh infection model, the organism growth rate can be ~3-fold lower than that seen under in 

vitro conditions, which likely reflects nutrient limitation in vivo36. Using this observation as 

an anchor, the compound-induced maximal killing rates were expected to be attenuated, but 

the relative ratio of killing rate to growth rates was assumed to remain constant. Based on 

this logic, the growth rate was estimated as ~0.4 log CFU/hr and the maximum killing rate 

~1.3 log CFU/hr. The output values from the PAE modelling were used for the remaining 

parameters, with the exception of pm which was arbritrarily set to unity, since it is not 

possible to quantitatively assess the overlapping factors such as the potential for drug 

accumlation at the site of infection, and altered permeation potentials or changes in Ki under 

in vivo growth conditions. Simulations with this parameter set identified three doses that 

were expected to span the dynamic range of the in vivo model upon single dose 

administration (10, 50, 250 mg/kg, Supplementary Fig. 9).

PD model Validation with in vivo efficacy data

A three-dose efficacy study was performed using the doses predicted from our simulations 

in a neutropenic mouse thigh infection model (P. aeruginosa strain PAO1). Single dose PK 

studies in a satellite group of infected animals revealed a rapid clearance profile with a non-

linear dose:exposure relationship (Supplementary Fig. 10). Also, we measured the in vivo 

growth and maximal killing rates in a second experiment using both control (vehicle) and a 

high dose (250 mg/kg) regimen incorporating an early data sampling protocol to directly 

inform our predictive model.(Supplementary Fig. 11). Importantly, the PD effects closely 

matched the simulated profiles (Fig. 5). Moreover, recovered colonies were found to be 

completely susceptible, as no CFU were obtained by plating samples from 24 h timepoints 

on selective media (4× MIC). The most dramatic effects were observed at the top dose, 

where the level of bacterial burden was below the limit of detection (LOD > 3 log10CFU/g 

thigh tissue) for the majority of the experimental timeframe (2–12 h). With the improved 

knowledge of maximal in vivo growth and kill rates, the simulations were repeated using the 

experimentally derived PK exposures at each dose and good agreement between the PD 

simulations and the experimental results was obtained (Fig. 5). Importantly, the model 

demonstrated robust performance across the doses and highlighted that the small variance in 
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observed growth rate (kgrowth = 0.45–0.60 log10CFU/h) accounted for the model deviation 

from the in vivo experimental response (Supplementary Fig. 11). A further feature of this 

model is that the ramifications of slow-binding can be directly shown. Simulations where 

the thermodynamic potency was retained, but the slow-binding step was minimized were 

performed by increasing the values of k5 and k6 by 2000-fold (thereby allowing EI and EI* 

equilibration within seconds, Fig. 6, dashed lines). The impact of these changes is most 

evident in the compromised predictions of the top doses, wherein the greatest partitioning of 

target to the EI* form is expected. This result, combined with the fact that the value of k6 

was one of the best described parameters in fitting PAE data suggests the importance of 

incorporating slow-binding inhibition in the model. In order to provide additional support 

for these observations, simulations using numerical integration over a system of differential 

equations were performed using the parameters from the integrated mechanistic model. 

These simulations were in excellent agreement with the in vivo experimental data 

(Supplementary Fig. 8, Supplementary Table 12), with the caveat that a much lower 

permeability factor was required for this approach, as was observed in the in vitro PAE 

simulations. Thus, these results provide an independent confirmation of the integrated 

mechanistic PD model approach for predicting the effects of time-dependent inhibitors on in 

vivo physiological response.

Discussion

Long residence time drugs often exhibit pharmacological effects that are prolonged beyond 

that predicted by rapid equilibrium models of systemic exposure6. While numerous 

marketed drugs have this property1,8, prospective translation of slow-binding kinetics into 

desired PD remains a major challenge in the drug discovery process. This shortcoming is 

particularly acute for the discovery of novel antibacterial agents which often require high 

and sustained target engagement levels to ensure effective therapy and to avoid resistant 

subpopulation emergence. As a consequence, predicted efficacious exposures for 

antibacterial candidate drugs are among the highest of any therapeutic area11, leading to 

high attrition rates in early development due to inadequate safety margins37. Where 

extended drug-target residence times are observed, consideration of kinetic selectivity has 

the potential to reveal and explain lower dosing requirements than would otherwise be 

predicted, thus leading to improved safety while maintaining the desired PD2.

In this report we have characterized a series of slow-binding inhibitors of paLpxC that 

demonstrate extended cellular and in vivo physiological responses and have developed a 

mechanistic PD model that links the key parameters of slow-binding inhibition to cellular 

and in vivo bacterial growth dynamics. Unlike PD models that incorporate target:binding 

kinetics using a single-step kinetic mechanism38, our model provides a comprehensive 

framework for target:inhibitor binding kinetics and is based on the two-step, induced fit 

kinetic mechanism which has been most commonly observed for slow-binding 

inhibitors7,22. As a result, it is possible to differentiate the effects of rapid equilibrium 

encounter complex formation from the slower, time-dependent formation of the more potent 

target:inhibitor complex. Currently, differentiating these effects requires a selection process 

between independent PD models for each of these cases39. In practice, transitions between 

these target:inhibitor states will be both time- and dose-dependent and therefore, the PD 
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model developed here provides a more general solution. Further, our PD model includes 

terms for physiological changes to substrate upon target inhibition. For metabolic pathway 

targets, elevation of substrate concentration would be expected following target inhibition, 

which can reduce the physiological effect of competitive inhibitors. Surprisingly, these 

effects were not influential in the analyses of paLpxC inhibitor cellular and in vivo effects, 

since excellent concordance with the model was observed when this term was modeled as 

being time-invariant. Additionally, our modeling of PAE studies with low Km/[S] ratios 

further suggest that LpxC is a vulnerable target in that the downstream physiological 

impacts following inhibition are rapid and not readily reversed. However, we note that the 

fully parameterized PD model requires detailed knowledge of the target:inhibitor binding 

kinetics, which may appear to be a major barrier to implementation of our approach. 

Importantly, these challenges were considered when collecting data for the paLpxC 

inhibitors. For example, estimates of the equilibrium constants were obtained from standard 

dose-response, high-throughput IC50 measurements and residence time values were obtained 

using a medium throughput jump-dilution assay format. As a result, the overall data 

collection burden for this project was not significantly higher than other drug discovery 

programs in the portfolio and represented a typical workstream for generating 

structure:kinetic relationships.

Emergence of resistant or antibiotic-tolerant populations can also affect PD modeling, 

particularly when extended periods of delayed re-growth is observed. The analysis of the 

PAE experiments assumed that intrinsic resistance rates were very low and that regrowth 

was dominated by inhibitor-susceptible organisms. This assumption was based on the fact 

that the frequency of spontaneous resistance emergence for LpxC inhibitors in P. aeruginosa 

is low (< 10−7)40. Further, cultures sampled during the outgrowth phase of the PAE 

experiments were found to be fully susceptible, as were organisms harvested from 24 h 

timepoints in animal efficacy experiments, when tested on drug containing media. These 

results indicate that PD effects are not dominated by resistance emergence in this case. 

However, in cases where the selection of resistance is likely to be encountered, there are a 

number of methods that incorporate resistant sub-population compartments that could be 

amended to the mechanistic time-dependent PD model31,41.

The successful prediction of in vivo response described by our PD model represents a major 

step towards the prospective modeling of dosing requirements for compounds with residence 

time effects. This advancement required the integration of two interrelated factors that are 

each time-dependent: changing concentrations of drug and the binding kinetics of the 

inhibitor with paLpxC. The single dose efficacy experiments in Figure 6 are standard 

components of drug discovery programs and are used to ensure that analogs being optimized 

exhibit an acceptable efficacy profile. Clinical dose predictions require a deeper 

understanding of the dose requirements and utilize multiple dosing algorithms. In this work, 

however, we have focused on developing an analytical solution for a PD model 

incorporating residence time effects as a first step towards this goal, with an emphasis on 

demonstrating its utility with experimentally-accessable parameters. This advance has 

applications to the drug discovery efforts across the therapeutic spectrum. For example, 

potent, slow-dissociating inhibitors of P38 kinase were recently reported as potential 
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therapies for chronic obstructive pulmonary disease42. Due to the range of target-mediated 

side effects of systemic P38 inhibition43, selecting a drug candidate with optimal target:drug 

kinetic properties and low systemic exposure will be critical for therapeutic success. In 

oncology, the dual EGFR/HER2 inhibitor Lapatinib, approved for the treatment of breast 

cancer, demonstrated superior activity to reversible inihibitors44 due to extended residence 

times for both targets and recently, the slow-dissociating histone methyl transferase DOT1L 

inhibitor EPZ-5676, demonstrated potent activity in a mouse xenograph model despite low 

systemic exposure45. Finally, covalent inhibition mechanisms can be considered as an 

extreme sub-case of the residence time model, and there is growing interest in pursuing 

irreversible inhibitors in the field of oncology46, as exemplified by the recent approval of the 

covalent Bruton’s tyrosine kinase inhibitor Ibrutinib47 for the treatment of chronic 

lymphocytic leukemia and mantle cell lymphoma. In these cases, the physiological effects 

are driven by the onset of inhibition and our PD model could be adapted to simulate the 

effects of compounds with very low off-rates.

It is anticipated that the tools we have described will aid in the understanding and selection 

of compounds during preclinical stages of drug discovery to balance the complex ensemble 

of PK, target binding kinetic profiles and physiological dynamics desired in advance of 

costly clinical development campaigns. Ultimately this, or specialized models tailored to 

reflect more complex phyisology, may have utility in predicting the most effective dose 

regimen that maintains efficacy through extended target engagement and maximizes the 

therapeutic window by avoiding exposure-related, off-target side effects.

Online Methods

Chemistry

Compounds 1–3 were prepared as described in the Supplementary Note. Compound 448 and 

Compound 5 (example 3749) were prepared as described previously and Compound 6 
(PF-5081090) was acquired from Sigma-Aldrich (Cat. number PZ0194).

Biochemistry

Materials—HPLC grade water, HPLC acetonitrile, ammonium acetate, sucrose, NaH2PO4, 

anhydrous DMSO were of reagent grade quality or higher.

Ki, Ki* determinations—P. aeruginosa LpxC (paLpxC) enzyme was prepared and the 

protocol for measuring inhibition of activity was followed as described previously50. 

Linearity of mass spectral response was confirmed on each occasion, with correlation 

coefficients (R2) of > 0.99 up to an instrument response of 60–100k (minimally 1 μM 

product). For representative traces see Supplementary Fig. 11. Data fitting was performed 

with GraFit 5.0.13 (Erithracus Software, Ltd, Surrey, UK) or XLfit (ID Business Solutions, 

Ltd). To estimate dissociation binding constants Ki and Ki*, serial dilutions of compound (2-

fold dilutions) were prepared. For Ki measurements (no enzyme:inhibitor preincubation), 15 

μL of assay buffer containing 10 μM substrate was added to compound dilutions, mixed, and 

allowed to stand 30 min, then reactions were initiated by addition of 15 μL assay buffer 

containing 0.2 nM paLpxC was added, mixed, and allowed to react for 2.5 min before 
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quenching. For Ki* measurements, 15 μL assay buffer containing enzyme (23 °C, [LpxC] = 

30 pM, 37 °C, [LpxC] = 10 pM) was added to compound dilutions, shaken, and allowed to 

stand covered overnight (16 hours) at the desired temperature. Reactions were then initiated 

by addition of 15 μL of 10 μM substrate buffer and allowed to proceed for 60 min. Both 

IC50 assay formats were performed in triplicate from separate dilutions and dispenses of 

compounds and reagents. Data from experiments without preincubation were fitted using 

standard 4-parameter logistic models to determine IC50s, and the extended preincubation 

experimental datasets were fit using the Morrison equation22. Dissociation constants were 

computed from the IC50 values using the Cheng-Prusoff equation24 with the following 

parameters: [S], Km = 5 μM.

Jump dilution recovery assay—Enzyme was incubated with inhibitor for 16 hours at 

room (23°C) or physiological (37 °C) temperature in the absence of substrate. The mixture 

was then diluted 1000-fold, in order to establish the final inhibitor concentration well below 

the Ki*, into an assay mixture containing 25 μM substrate (5-fold the Km) and product 

formation was monitored for ~180 min by LC/MS/MS as described 50. Data was fit to 

Equation (1) using the uninhibited enzyme velocity as vs, and incorporating the term C to 

account for a weak background signal detected in the MS spectra. Since no additional 

background product accumulation occurs in the absence of enzyme, v0 was set to zero. Data 

were acquired in triplicate from separate experiments. The residence time was calculated as 

the reciprocal of the observed activity recovery rate constant, kobs, as described in Equation 

(2).

(1)

(2)

In cases where the progress curve final velocity (vs) did not approach the DMSO control 

(e.g. tight-binding inhibitors) over the reaction timeframe, the data were fit using the 

calculated fractional final velocity back-calculated from the Ki* value and the Morrison 

equation. It was noted that under these conditions, the observed slow dissociation rates are 

likely influenced by many factors including target rebinding and slow binding kinetics for 

the initial encounter complex. As a result, k6 ≥ kobs and these measurements therefore 

provide a lower limit estimate of k6.

Onset of inhibition studies—Solutions containing 30 μM substrate with varying 

concentrations of Compound 2 (0 – 14 nM) were combined with an equal volume of 

reaction mixture containing 0.1 nM LpxC. After mixing, reactions were allowed to progress 

and aliquots were collected and quenched to measure product accumulation by LC/MS/MS. 

Progress curve data were analyzed using a global fitting approach and a system of equations 

(equations 3–6)17 using Prism 6.0 (GraphPad Software, Inc.), where v0 is the uninhibited 

(control) reaction velocity, vi is the initial reaction velocity, vs is the final velocity and kobs is 

the rate constant describing the onset of inhibition at each inhibitor concentration. These 
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analyses were performed using values of 5 μM and 3.5 nM/min for Km and Vmax for LpxC 

under the assay conditions used here. The formation of the inhibitor encounter complex was 

assumed to be governed by rapid equilibrium kinetics and the apparent binding constant was 

fixed to the estimated value from IC50 measurements (Table 1, Ki = 6.4 nM).

(3)

(4)

(5)

(6)

Microbiology

Microrganisms—P.aeruginosa strain PAO1 and an efflux-pump deficient P.aeruginosa 

strain (ΔMexABCDXY), N150, derived from PAO126.

Culture medium—P. aeruginosa was cultured in Mueller Hinton II broth, (Difco no. 

275730), cation adjusted to final 20–25 mg/L of calcium and 10–12.5 mg/L of magnesium 

(CAMHII). Inoculants were incubated at 35°C on Mueller Hinton II agar plates (Becton 

Dickinson BBL no. 211438) for PAE & killing kinetics measurements.

MIC determinations—Minimum inhibitory concentrations were determined in duplicate 

by broth microdilution according to the Clinical and Laboratory Standards Institute 

guidelines51. Compounds were dissolved in DMSO and diluted in culture medium to 

prepare 11 doubling dilutions at 2% final DMSO (v/v) covering 64 to 0.06 μg/mL 

compound. Bacteria in the logarithmic phase of growth were diluted to approximately 5×105 

CFU/mL and incubated at 37 °C. Visible growth was recorded after 24 h.

Mode of Action Studies—Mode of action via LpxC was confirmed by an increase in 

MIC upon over-expression of P. aeruginosa LpxC. To that end, derivatives of P.aeruginosa 

PAO1 and its efflux mutant were created that either contained an LpxC expression plasmid, 

pLH1783 or an empty control plasmid pUCP1852,53. Plasmid pLH1783 was constructed by 

amplification of lpxC from P. aeruginosa PAO1 genomic DNA using oligonucleotides 

ACGTGAATTCATGATCAAACAACGCACCTTG and 

ACGTAAGCTTCTACACTGCCGCCGCCGGGCGC. The PCR product was purified and 

digested with EcoRI and HindIII, ligated into similarly digested pUCP1852, and transformed 

into E. coli DH5α-T1R chemically competent cells (Life Technologies). Transformants were 
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selected on LB agar plates with 25 μg/mL ampicillin, and the plasmid was verified by 

sequencing. Plasmids were transformed into P. aeruginosa strains53 and selected on LB agar 

plates containing 250 μg/ml carbenicillin. Strains were pregrown on MHBII agar plates 

containing 250 μg/mL carbenicillin to ensure the presence of the plasmids; when 

determining MIC values, however, carbenicillin was absent from the medium.

Killing kinetics—P. aeruginosa cells (106 CFU/mL) in logarithmic phase of growth were 

exposed to drug at 37°C in a shaking incubator. The inoculum was confirmed at time 0; 

subsequent viable counts were determined at 0.5, 1, 1.5, 1, 2, 3, 4, 5 and 6 h. Sampling for 

colony counts was done by removing 0.1 mL samples of broth at the specified times. Each 

sample was serially diluted 10-fold with broth. The antibiotic carryover was minimized by 

dilution in CAMHII + 5 mM bovine serum albumin. Colonies were counted after incubation 

at 35°C for 24 h. The rate and extent of killing were determined by plotting log10 viable 

counts (CFU/mL) against time. The maximal killing rate was determined from the linear 

regressions on the data following the observed lag taken as 1 hr.

In vitro PAE—P. aeruginosa cells (106 CFU/mL) in logarithmic phase of growth were 

exposed to varying compound concentrations at 37°C in a shaking incubator for 1 h. A tube 

containing no antimicrobial agent was included as a growth control. Drug removal was 

effectively accomplished by 1:1000 dilution into fresh, pre-warmed CAMHII media. 

Bacterial regrowth at 37 °C was determined by removal of aliquots immediately after 

dilution and every hour for 8 h and assayed by viable counting. The lower limit of detection 

was 1 log10 CFU/mL. The combined effect of the dilution step and the rapid bactericidal 

nature of the LpxC inhibitors resulted in several cases where the number of viable bacteria 

to fall below the limit of detection (LOD) post-dilution. This was especially true for 

compounds with >20 min residence times (2, 3, 5 and 6). Although other methods of drug 

removal - such as repeated washing with fresh media - were attempted to improve the LOD, 

but pelleting the bacteria was found to cause an increase in non-specific cell killing, possibly 

due to the fragility of the cell wall upon LpxC inhibition54,55 The PAE was calculated by the 

formula13 PAE = T – C where T is the time for the drug exposed culture to increase 1 log10 

following drug removal and C is the corresponding time for the nonexposed control to 

increase 1 log10CFU following drug removal. Pearson correlation coefficients between PAE 

values and the biological parameters were computed in MATLab using the CORECOEF 

function.

Mechanistic Pharmacodynamic Modeling

Details on the mechanistic model derivation are provided in the Supplementary Note. A set 

of tools were developed in MATLab 7.5 (MathWorks, Natick MA) for simulations and data 

fitting as follows (Matlab program files outlined below are included in Supplementary Data 

Sets 1–3):

IncubFit.txt—Fits “incubation data” for in vitro PAE studies. Data is input with cell count 

in log10 CFU/mL units, time-spaced (hours) with the same interval for three replicates, and 

with initial estimates of the parameters Ki, Ki*, k5, k6, M, pm kgrowth and kkill_max. The 

program retruns fitted values for the above listed parameters, as well as an r2 value. The 
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program additionally takes as input compound concentration, which is assumed to remain 

constant until the dilution step of the PAE study.

PAEFit.txt—Fits pharmacokinetic dose response data, such as is generated from animal 

model data, to incorporate the parameters corresponding to residence time effects. Note that 

this program handles more complicated compound PK profiles than for IncubFit. 

Requirements for input parameters and output data are the same as for IncubFit. Program 

internal functions enable compound concentration profiles to be specified to match known 

PK.

EITool.txt—This program generates an interactive graphical interface to simulate and 

visualize the impact on cell growth by compounds using a variety of PK profiles. It also 

enables output of the simulations containing both parameter values and also simulated data 

curves for replotting.

Modeling using differential equations

The effect of Compound 6 on bacterial growth in culture (in vitro) and in the mouse thigh 

efficacy model (in vivo) was simulated in Mathematica (Wolfram, Champaign, Il) using a 

series of differential equations to calculate the concentration of each enzyme species (E, ES, 

EI and EI*) in (i) the drug exposure phase and (ii) in the post-antibiotic (PAE) phase 

following compound washout. Details on the system of system of equations used can be 

found in the Supplementary Note. Experimental values were used for input values for the 

parameters k5, k6, Ki, Km, kcat, ρm, kgrowth and kkill (Table 1). The values for these 

parameters were not altered in the simulation apart from the value for ρm which had to be 

changed to get a satisfactory fit to the data (see below). The rate constant parameters k1, k2, 

k3 and k4 were defined based on the following relationships: k2 = Km × k1−kcat, where 

experimental values of Km and kcat were obtained from the biochemical measurements (see 

Onset of inhibition methods) and assuming Km/[S] = 0.15 (M-value obtained from analytical 

model fitting). Further, k4 = Ki × k3.

Initial estimates for the parameters k1 and k3 were set within the range of typical second-

order association rate constants (105–108 μM−1.min−1). The parameters k3, k1, and ρm were 

then manually adjusted to obtain the best simulation of the full set of experimental data for 

Compound 6 (Supplementary Fig. 13). Supplementary Tables 11 and 12 contain the input 

and output values resulting from these simulations. In addition, these simulations identified 

the minimum and maximum achieved target-occupancy are 0.42 and 0.7 respectively, 

resulting in a slope-factor equal to: .

Pharmacokinetics and Pharmacology

All animal studies were approved by the Institutional Animal Care and Use Committee of 

AstraZeneca and were conducted in accordance with the guidelines of the American 

Association for Accreditation of Laboratory Animal Care.

in vitro—Physical properties including mouse and human plasma protein binding, logD, 

and aqueous solubility were determined as described previously56,57.
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In vivo time course studies—CD-1 mice (Charles River Wilmington US) were 

rendered neutropenic with two intraperitoneal doses of cyclophosphamide (150 mg/kg −4 

days and 100 mg/kg −1 day prior to infection58. Animals were infected via an intramuscular 

challenge of ~1 × 106 CFU administered within 70 μL of 0.9% saline to each thigh. The 

inoculum was prepared from agar plate scrapings of P. aeruginosa PAO1 cultured overnight 

in tryptic soy broth media (~25mL). Following an OD600 determination, the inoculum was 

diluted in 0.9% saline to a concentration of ~1.5 × 107 CFU/mL prior to inoculation. 

Therapy with Compound 6 was initiated 2 hours post-bacterial challenge at 10, 50 and 250 

mg/kg. Doses were solubilized in 40% Captisol and administered subcutaneously at a dose 

volume of 10 mL/kg. For determination of pharmacokinetics, blood samples were obtained 

from n=3 animals/timepoint/dose group via submandibular (~20 μL) and cardiac puncture 

(for terminal samples) following anesthesia with 5% isoflurane at 0.5, 1, 2, 4, 6, 8, 12, and 

24 h post initiation of therapy. Blood samples were collected in EDTA microfuge tubes 

(Beckton Dickenson) and processed for plasma (centrifuge @ 13,200 rpm for 5 minutes). 

Plasma samples were stored at −20 °C prior to bioanalysis. For terminal endpoints at 1, 2, 4, 

6, 8, 12 and 24 hr, thighs were asceptically removed, weighed and homogenized in 1 mL of 

saline. Bacterial burden enumeration of tissue homogenate was performed by serial dilution 

on TSA plates which were incubated overnight at 37 °C prior to colony (CFU) counting. 

When testing for resistance emergence, a similar protocol was followed, substituting TSA 

plates supplemented with compound at 4× MIC.

Drug concentration in plasma was quantified by LC/MS/MS. Plasma samples and fortified 

plasma standards (25 μL) were precipitated with 200 μL of mobile phase B (acetonitrile/

0.1% formic acid) containing 250 ng/mL of carbutamide as an internal standard. The 

samples were vortexed and centrifuged at 4000 rpm for 15 min. The supernatant (120 μL) 

was combined with 120 μL of mobile phase A (water containing 0.1% formic acid) prior to 

injection (5 μL) on the LC/MS/MS system. Separation was achieved with a Varian Polaris 3 

C18 30×3 mm column using a flow rate of 0.8 mL/min and a ballistic gradient with the 

following schedule: 0–0.3 min, 5% mobile phase B; 0.30–1.20 min, 5–95% mobile phase B; 

1.20–1.70 min, 95% mobile phase B; 1.70–1.71 min, 95–5% mobile phase B; 1.71–2.0 min, 

5% mobile phase B.

Compound 6 and the internal standard were detected from the HPLC effluent using a Sciex 

API 4000 triple quadropole mass spectrometer utilizing electrospray ionization operated in 

the positive ion mode. Ion spray voltage was set at 4500V and the collision energy (25 eV) 

was optimized for multiple reaction monitoring (MRM) transitions of 413.2 to 380.0 and 

272.4 to 156.0 for Compound 6 and carbutamide, respectively. Linear regression of the peak 

area ratio of Compound 6/carbutamide associated with fortified standards was used to 

quantify Compound 6 concentrations in plasma samples. The assay had a dynamic range of 

1 – 10,000 ng/mL. Plasma protein binding was determined at a concentration of 50 μM and 

completed using 96-well format equilibrium dialysis57.

Pharmacokinetic parameters summarized in Supplementary Table 9 were estimated by 

fitting time vs. concentration data for each dose level to a one-compartment model with 

first-order input and elimination (Phoenix for WinNonlin 6.2, Certara, St. Louis MO). Since 

it is assumed that only free drug concentrations can drive pharmacological effect, PK input 
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into the model was adjusted by the unbound fraction determined from plasma protein 

binding experiments. Time course of bacterial burden (log10 CFU/g of tissue) were plotted 

as the difference in colony counts vs. the initial burden determined at initiation of therapy. 

The lower limit of detection was 3 log10 CFU/g of tissue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of P. aeruginosa LpxC Inhibitors (CHIR-090, compounds 1–6)
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Figure 2. Rapid-dilution progress curves for P. aeruginosa LpxC inhibitors establish residence 
time
Progress curve data for P. aeruginosa LpxC inhibitors at 37 °C. Legend indicates compound 

1–6. Reactions were conducted under conditions where compound rebinding after 

disassociation is minimized and the observed time constant for reactivation is indicative of 

the residence time.
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Figure 3. P. aeruginosa PAO1 post antibiotic effect data for representative LpxC inhibitors
Legends on plots indicate the fold-excess of compound above MIC for the first hour of 

incubation. Post antibiotic effect data and mechanistic pharmacodynamic model fit for a, 
Compound 1, b, Compound 4 and c, Compound 6. Data points (symbols) represent mean 

values from triplicate, independent test occasions. Error bars represent 1 standard deviation 

of the log10CFU mean. Lines represent model fits to the data using parameters as described 

in Supplemental Tables 3, 6 and 8. Red asterisks indicate data that were below the limit of 

detection and omitted from fits (2 and 3 hours 8× MIC panel b and 1–3 hours 16× MIC 

panel c). d, Correlation of calculated PAE determined at 4×MIC with measured residence 

time (Table 1). Fitting these data to a linear regression model resulted in a correlation 

coefficient of 0.87; Compound 4 was excluded from this analysis since the residence time 

measurements may have been confounded by target rebinding and/or additional slow-

binding kinetic effects for this analog (Table 1).
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Figure 4. Derivation of a pharmacodynamic model incorporating time-dependent target 
inhibition parameters
A two-step, competitive binding kinetic mechanism was used to describe the time-dependent 

inhibition parameters, where the enzyme states E, ES and EI are in rapid equilibrium 

governed by the catalytic and dissociation constants Km and Ki with substrate (S) and free 

inhibitor (I) respectively. The time-dependent conversion of EI to EI* is described by the 

(on) rate constant k5, and the slower (off)-rate constant, k6. The general antibacterial PD 

model for drug effects on logarithmically growing cells (N), is a mass balance relationship 

of the intrinsic growth rate, kgrowth, and intrinsic maximal drug-induced kill rate (kkill_max) 

as function of the drug concentration (C) governed by the Hill equation logistic. To link 

these two models, growth was modeled as being dependent on the amount of ES, and that all 

other enzyme species contribute to cellular growth inhibition. Solving for the mathematical 

relationship corresponding to all enzyme states except ES, substitution of this manifold for 

the Hill logistic, and integration led to a closed, analytical solution. For this new PD model, 

definitions of the terms M and β are also shown. We added an additional parameter, pm, to 

all instances of the ratio [I]/Ki to account for permeation effects that reduce the level of free 

I at the target site from that in bulk media.
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Figure 5. In vivo efficacy curves for Compound 6 with mechanistic pharmacodynamic model fit
In vivo single dose bacterial P. aeruginosa PAO1 CFU thigh tissue burden after 

administration of Compound 6 at 10 mg/kg (blue square), 50 mg/kg (red square) and 250 

mg/kg (black square). Error bars represent the S.E.M. (n=6 mice/timepoint). Open circles 

represent the vehicle, untreated control group. Lines represent mechanistic PD model 

simulations. Solid lines utilized PK parameters from Supplementary Table 11 and 

biochemical parameters from Supplementary Table 8, but with kgrowth = 0.45 (10 mg/kg 

dose) or 0.60 (50 and 250mg/kg doses) log10CFU/h and kkill_max = 1.9 log10CFU/h. Dashed 

lines represent the identical simulation but with k5 and k6 each increased 2000-fold to 120 

and 40 min−1 respectively to simulate fast reversible target binding behavior while 

maintaining the full potency ascribed to the Ki* state.
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