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Abstract

For the first time new treatments in melanoma have produced significant responses in advanced 

diseases, but 30–90% of melanoma patients do not respond or eventually relapse after the initial 

response to the current treatments. The resistance of these melanomas is likely due to tumor 

heterogeneity, which may be explained by models such as the stochastic, hierarchical, and 

phenotype-switching models. This review will discuss the recent advancements in targeting 

BCL-2 family members for cancer treatments, and how this approach can be applied as an 

alternative option to combat melanoma, and overcome melanoma relapse or resistance in current 

treatment regimens.

The need for developing alternative melanoma treatment options

Malignant melanoma is a devastating disease with historically poor prognosis. For the first 

time, several drugs provide a significant improvement in overall survival of these patients 

(Finn et al., 2012; Lo and Fisher, 2014; Menaa, 2013; Tronnier and Mitteldorf, 2014). These 

drugs fall into two categories: they either block the MAPK signaling pathway in 

BRAFV600E mutated melanoma, or they alter the patient’s own immune system to attack 

melanoma. Pathway-targeting drugs include BRAF inhibitors that specifically target the 

BRAFV600E mutation (vemurafenib and dabrafenib), or MEK inhibitors (trametinib and 

cobimetinib), either alone or in combination (Flaherty et al., 2012). Recent clinical trials 

with the combinations of both BRAF and MEK inhibitors showed improvements in 

progression-free survival compared to a single inhibitor in BRAFV600E melanoma patients, 

but also with increased side effects in some cases (Larkin et al., 2014; Long et al., 2014a; 

Long et al., 2014b). Although these treatments lead to a quick initial response, for instance ~ 

50% of patients respond to vemurafenib, responses are not durable (Chapman et al., 2011). 

Most patients eventually relapse, and the intrinsic or acquired resistance mechanisms 
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include reactivation of MAPK signaling through alternative pathways, or activation of other 

oncogenic pathways such as PI3K/AKT (Chapman, 2013; Fedorenko et al., 2011). In 

addition, patients without the BRAFV600E mutation do not benefit from these treatments.

For immunotherapy, the humanized monoclonal antibodies ipilimumab and pembrolizumab 

block the negative regulators of immune responses, thereby stimulating T-cell response 

against melanoma (Drake et al., 2014; Gyorki et al., 2013). Ipilimumab targets CTLA-4 

(Hodi et al., 2010) and pembrolizumab targets PD-1 (Robert et al., 2014). Efficacy with 

ipilimumab is longer than with BRAF/MEK inhibitors, but response rate is poor at only 10–

15% (Hodi et al., 2010). A distinct genetic landscape of neoantigens is reported to be 

present in melanomas with a strong response to ipilimumab (Snyder et al., 2014). Moreover, 

both antibodies lead to significant immune-mediated side effects (Finn et al., 2012), and 

relapse rate is not yet known for pembrolizumab. Therefore, many patients do not respond to 

current therapies, and there is still a pressing need to develop alternative treatment options 

for metastatic melanoma, especially for those with wild-type BRAF.

Human tumors are composed of heterogeneous cell populations. Tumor heterogeneity is 

implicated in tumor cells’ resistance to treatment, and may be explained by several models. 

The stochastic (clonal evolution) model states that every cell within a tumor has similar 

tumorigenic and self-renewing potential. These cells evolve and lead to heterogeneity, 

through clonal expansion with acquired genetic and epigenetic changes over time (Greaves 

and Maley, 2012; Nowell, 1976; Shackleton et al., 2009). This process is influenced by 

extrinsic factors including therapies. In contrast, the hierarchical model states that only a 

subpopulation of tumor cells, cancer stem cells (CSCs), possess self-renewal capacity and 

contribute to intra-tumoral heterogeneity by giving rise to non-CSCs within the same tumor 

(Clarke et al., 2006; Frank et al., 2010; Nguyen et al., 2012; Reya et al., 2001). This model 

suggests eliminating CSCs will help eradicating tumors. Cancer cell plasticity also 

contributes to tumor heterogeneity by mechanisms such as phenotype-switching. Cells may 

switch among proliferative, invasive and stem cell-like states in response to 

microenvironments (Cheli et al., 2011; Cheli et al., 2012; Hoek et al., 2008; Hoek and 

Goding, 2010). Moreover, a dynamic process mediated by a temporarily distinct 

subpopulation may also contribute to melanoma heterogeneity (Roesch et al., 2010). These 

models/mechanisms are not mutually exclusive. The CSC populations themselves are 

heterogeneous and dynamic, and may evolve through clonal evolution or display phenotype-

switching (Lee et al., 2014; Nguyen et al., 2015). In melanoma, the high mutation load also 

likely contributes to heterogeneity. Interestingly, wild-type BRAF/NRAS melanomas seem 

to have a higher mutation load than mutant BRAF/NRAS tumors (Mar et al., 2013).

To prevent relapse, it is proposed that effective therapy needs to eradicate all subpopulations 

of tumor cells, killing the mass of cancer cells (de-bulking) as well as any resistant 

subpopulations such as CSCs (Han et al., 2013). One known cancer resistance mechanism is 

the dysregulation of BCL-2 family members, and recent studies indicate that this also 

contributes to the survival of CSCs. This review provides an overview of developing new 

melanoma treatments by targeting BCL-2 dysregulation with the purpose of de-bulking 

melanomas and eliminating drug-resistant subpopulations of CSCs in melanoma. We 

include the rationale, methods used, and current promising approaches.
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The regulation of apoptosis by the BCL-2 family

The BCL-2 family of proteins plays a crucial role in regulating intrinsic or mitochondrial 

apoptosis (Czabotar et al., 2014). The members are divided into three groups based on their 

functions and structures: 1) anti-apoptotic proteins (also called inhibitors), which include 

BCL-2, BCL-XL, BCL-W, MCL-1, A1, and BCL-B; 2) multi-BH domain pro-apoptotic 

proteins (also called effectors), which include BAX and BAK; 3) and BH3-only pro-

apoptotic proteins (also called activators or enhancers), which include NOXA, BIM, BID, 

BAD, BMF, BIK and others (Figure 1a). Upon activation, the effectors (BAX/BAK) 

oligomerize, triggering cytochome C release from the mitochondria and apoptosome 

activation, and finally result in caspase-9-dependent apoptosis (Czabotar et al., 2014). Anti-

apoptotic proteins bind to BAX/BAK, preventing their activation. The balance of the 

interactions between different BCL-2 family members determines whether cells will initiate 

apoptosis (Chipuk et al., 2010; Mohana-Kumaran et al., 2014). Some BH3-only members 

only bind to one group of inhibitors, e.g., NOXA only binds to MCL-1/A1. Others can bind 

to multiple inhibitors, such as BIM, PUMA, and tBID.

BAX/BAK oligomerization is necessary for activation of apoptosis, and the activation has 

been proposed to be direct or indirect (Czabotar et al., 2014). In the direct activation model, 

the BH3-only proteins directly bind to effectors (BAX/BAK) leading to activation. In the 

indirect model, binding of BH3-only proteins to the inhibitors releases the effectors BAX/

BAK, allowing for activation. In the indirect model, apoptosis only occurs when all the anti-

apoptotic members are neutralized. These two models are not mutually exclusive; one may 

be more dominant than the other, dependent on the circumstances. Nevertheless, in both 

models, the binding of BH3-only proteins to anti-apoptotic members can activate effectors 

and induce apoptosis (Czabotar et al., 2014). Thus, mimicking the pro-apoptotic BH3-only 

proteins by small molecules is a logical approach to develop cancer drugs (Billard, 2013; 

Mohana-Kumaran et al., 2014; Ni Chonghaile and Letai, 2008).

The rationale to target BCL-2 family members in melanoma

Dysregulation of BCL-2 family proteins occurs frequently, and plays a major role in 

conferring resistance to cell death in many cancers, including melanoma (Norris, 1995; Plati 

et al., 2011). Importantly, many BCL-2 proteins are downstream of the commonly activated 

signaling pathways RAS/BRAF/MAPK and PI3K/AKT (Figure 1a) (Haass and Schumacher, 

2014; Kwong and Davies, 2013). For instance, oncogenic BRAFV600E suppresses apoptosis 

by upregulating anti-apoptotic MCL-1 (Haass and Schumacher, 2014; McKee et al., 2013). 

Also, through phosphorylation, constitutively activated RAS/BRAF/MAPK signals down-

regulate or inactivate pro-apoptotic BAD (Eisenmann et al., 2003) or BIM (Goldstein et al., 

2009). Thirdly, activated PI3K/AKT signals inhibit cell death by inactivating BAD’s ability 

to bind BCL-2 or BCL-XL (Datta et al., 1999; Steelman et al., 2011) or down-regulating 

transcription of pro-apoptotic members BIM and PUMA through sequestering the 

transcription factors FOXOs away from their promoters (Zhang et al., 2011). Activated 

AKT also prevents induction of pro-apoptotic BIM-EL and BMF upon BRAF inhibition, 

contributing to melanoma resistance to BRAF inhibitors (Shao and Aplin, 2010) (Figure 1a). 

Moreover, gene amplification results in up-regulation of anti-apoptotic BCL2A1 in some 
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melanoma (Haq et al., 2013). Furthermore, the melanocyte-specific transcription factor 

(microphthalmia-associated transcription factor, MITF) is amplified in a subset of melanoma 

which can upregulate BCL-2 and contribute to resistance to cell death (Hartman and Czyz, 

2015).

The effects of BRAF inhibitors in melanoma are dependent on the induction of BH3-only 

protein BIM and BMF (Shao and Aplin, 2010); BIM repression by epigenetic chromatin 

remodeling (Shao and Aplin, 2012) contributes to melanoma resistance to BRAF inhibition. 

Considering that some BCL-2 family members are regulated by MAPK or PI3K/AKT 

signaling and that activation of these pathways contributes to relapses from treatment of 

BRAF inhibitor, targeting downstream apoptotic proteins may be alternative options to 

overcome relapse. Indeed, the BAD-mimetic, ABT-737, has been shown to overcome AKT-

mediated resistance to BRAF inhibition (Perna et al., 2015).

Taken together, multiple mechanisms lead to dysregulation of the BCL-2 family, and this 

likely contributes to melanoma development of resistance to current treatments (Figure 1a). 

Thus targeting the BCL-2 family is an alternative way to combat melanoma, independent of 

BRAF mutation status, and overcome melanoma relapse from current treatments.

De-bulking Cancer cells by targeting BCL-2 family members

Single Agents targeting BCL-2 or MCL-1

Early attempts at targeting BCL-2 family members included antisense, single-chain 

antibodies, ribozymes, BH3 peptides and hydrocarbon stapling. However, most failed, 

possibly due to poor delivery systems and the short-term stability of the compounds (see 

review (Thomas et al., 2013). Current more successful approaches focus on stable small 

molecule inhibitors (SMI), called “BH3 mimetics”, which mimic the pro-apoptotic BH3-

only proteins to induce apoptosis in cancer cells (Table 1).

Currently ABT-263 (navitoclax) and ABT-199 are in clinical trials, with encouraging 

preliminary results (Gandhi et al., 2011; Roberts et al., 2012; Wilson et al., 2010). 

ABT-263, an oral version of ABT-737, is a mimetic of BH3-only BAD that inhibits BCL-2, 

BCL-XL and BCL-W, but not MCL-1 (Oltersdorf et al., 2005; Tse et al., 2008; van Delft et 

al., 2006). ABT-199 was modified from ABT-263, with a sub-nano-molar affinity for 

BCL-2 but not BCL-XL (Davids and Letai, 2013). Unfortunately, single agent treatment of 

melanoma with ABT-737/ABT-263 is not effective, with MCL-1 as the main contributor of 

resistance (Chen et al., 2007; Lucas et al., 2012; Miller et al., 2009).

MCL-1 overexpression is linked to the pathogenesis of multiple cancers, including 

melanoma (Boisvert-Adamo et al., 2009; Khodadoust et al., 2009; McKee et al., 2013; 

Thomas et al., 2010). Many groups are developing SMIs that target MCL-1 with the aim of 

overcoming cancer resistance to ABT-737/263. Promising compounds include Maritoclax, 

WP1130, UMI-77, Clitocine and Compound 11, with some efficacy in animal studies 

(Belmar and Fesik, 2014; Quinn et al., 2011; Sun et al., 2014; Wei et al., 2012). However, 

clinical trials are still needed (Table 1).
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Combination Therapy

As mentioned above, targeting a single BCL-2 family member is not sufficient to kill 

melanoma. In addition, therapeutics with single molecular targets often fails due to the 

heterogeneity and dynamic nature of cancer cells. Thus, utilizing combination therapies is an 

emerging strategy to treat cancer. Combination therapy increases the number of cells 

responding to treatment, decreases the possibility of drug resistance, kills heterogeneous 

populations of cells within the tumor, and may also lower side-effects.

Several combination strategies target BCL-2 family members, with promising pre-clinical 

evidence (Table 1). As mentioned earlier, MCL-1 is the main mediator of melanoma 

resistance to BCL-2 inhibitors such as ABT-737, and NOXA is a pro-apoptotic BH3-only 

protein that inhibits MCL-1. Therefore, inhibiting BCL-2, combined with either inhibition of 

MCL-1 or activation of NOXA, is effective at killing melanoma(Lucas et al., 2012; Miller et 

al., 2009; Mukherjee et al., 2015; Reuland et al., 2011; Reuland et al., 2012). Another 

strategy is sensitizing melanoma with BCL-2 SMIs, coupling with molecular-targeted agents 

such as BRAF inhibitors (Wroblewski et al., 2013). The last strategy combines BCL-2 SMIs 

with immune therapies, again using BH3 mimetics such as ABT-737, to sensitize tumor 

cells to immunotherapies (Begley et al., 2009; Karlsson et al., 2013). All these approaches 

provide treatment opportunities that may limit escape mechanisms in different patients and 

enhance the possibilities for personalized cancer medicine approach to treatment. Although 

the above strategies are promising, none explored the effectiveness of specifically 

eradicating resistant subpopulations, which is an important contributor for melanoma 

resistance.

Cancer Stem Cells (CSCs) in melanoma

CSCs are defined as a subpopulation of cancer cells which possess two essential stem-cell 

functions: self-renewal and differentiation (Clarke et al., 2006). CSCs enhance cancer 

initiation, progression, metastasis, and chemo-resistance (Clarke et al., 2006; Nguyen et al., 

2012; Pattabiraman and Weinberg, 2014). CSCs also contribute to intra-tumoral 

heterogeneity, with their ability to give rise to non-CSCs within the same tumor (Frank et 

al., 2010; Pattabiraman and Weinberg, 2014). To prevent relapse, targeting CSCs should be 

an important part of treatment strategies.

The gold standard method to confirm the existence of CSCs is to detect their capacity to 

self-renew and differentiate, using in vivo serial xenotransplantation assays (Clarke et al., 

2006). Recently, several lineage tracing studies with genetically engineered mouse models 

provided further evidence for the existence of CSCs (Pattabiraman and Weinberg, 2014). To 

date, CSCs have been identified in many cancers (Pattabiraman and Weinberg, 2014; 

Tabarestani and Ghafouri-Fard, 2012).

Quintana and colleagues reported a high frequency of tumor-initiating cells (TICs) in human 

melanoma using highly permissive conditions, raising questions on the existence of CSCs in 

human melanoma (Quintana et al., 2008). However, TICs are not the same as CSCs with 

self-renewal and differentiation capacity (Shakhova and Sommer, 2013), and the high 

frequency of TICs does not disprove the presence of CSCs (see reviews (Lang et al., 2013; 
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Lee et al., 2014; Nguyen et al., 2015; Shakhova and Sommer, 2013)). Rather, Quintana’s 

papers simply suggest that TICs are influenced by many experimental factors. Indeed, when 

using the gold standard in vivo assays, numerous groups have detected subpopulations of 

melanoma cells that fulfill the criteria for CSCs (Lang et al., 2013; Lee et al., 2014; Nguyen 

et al., 2015; Shakhova and Sommer, 2013), and these cells are associated with tumor 

progression and chemoresistance.

Several melanoma stem cell (MSC) markers have been suggested in peer-reviewed 

literatures, and these include cell surface markers ABCB5 (Schatton et al., 2008) and 

CD271 (Boiko et al., 2010; Civenni et al., 2011; Redmer et al., 2014), and activity of ALDH 

(a detoxifying enzyme) (Luo et al., 2012). ABCB5 belongs to the ATP-binding cassette 

(ABC) transporter superfamily, implicated in multidrug resistance. CD271 is a nerve growth 

factor receptor, and is also a marker of mesenchymal stem cells (Watson et al., 2013) and 

hypopharyngeal CSCs (Imai et al., 2013). However, recent evidence suggests that not all 

CD271+ cells are the same, and only the slow growing CD271+ population displays a high 

tumorigenic potential and stemness (Cheli et al., 2014). In addition, knockdown of CD271 

alone decreases, but does not prevent, the accumulation of the stress-induced drug resistant 

cell population (Menon et al., 2015). These recent data suggest that CD271 may be an 

imperfect MSC marker.

In sum, subpopulations of melanoma cells possess characteristics of CSCs (tumorigenesis 

with self-renewal and differentiation capacities), with enhanced ability for melanoma 

initiation, maintenance, and resistance to treatments. Although various markers can enrich 

MSCs, the most critical functional trait of these subpopulations is their self-renewal capacity 

for long-term growth of melanoma. Therefore self-renewability of these subpopulations 

should be targeted to prevent relapse after treatment.

Eradicating CSCs by targeting BCL-2 family members

Ideally, cancer treatments should eliminate both non-CSCs (the bulk of the tumors) and 

CSCs (Frank et al., 2010; Rameshwar, 2014). Utilizing combination therapy is likely the 

best strategy for targeting all subpopulations in heterogeneous tumors, and promising new 

drugs should test the efficacy of killing CSCs.

Potential strategies that focus on CSCs include differentiating CSCs into mature cells with 

no self-renewal capacity, eliminating CSCs by targeting essential pathways, or disrupting 

their niche. A successful example of differentiation therapy is the use of all-trans retinoic 

acid on acute promyelocytic leukemia patients to differentiate the cancer cells into mature 

granulocytes (Pattabiraman and Weinberg, 2014). Another approach to kill CSCs is through 

targeting their dependent signaling pathways, such as NOTCH, ABC cassettes, NF-κB, 

TGF-β, WNT, and JAK-STAT (Chen et al., 2013; Pattabiraman and Weinberg, 2014). In 

addition, tumor microenvironment may serve as CSC’s niche and can also be a drug target 

to eliminate CSCs. For example, angiogenesis is crucial in maintaining tumor niches, and 

the melanoma niche encompasses a network consisting of not only endothelial-lined blood 

vessels, but also “vasculogenic mimicry” channels formed by melanoma cells (Lai et al., 

2012). Drugs targeting angiogenesis (such as VEGF inhibitors) can disrupt tumor niche and 
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indirectly eradicate CSCs (Frank et al., 2011; Lee et al., 2014; Pattabiraman and Weinberg, 

2014; Schatton et al., 2008).

Numerous recent studies show that CSCs are especially vulnerable to SMIs targeting the 

BCL-2 family. Lagadinou et al showed BCL-2 was overexpressed in quiescent leukemia 

stem cells (LSCs) with low levels of ROS, and BCL-2 inhibitor ABT-263 selectively 

eradicated the LSCs (Lagadinou et al., 2013). In bone-marrow-resident human LSCs, splice-

isoform switching favored expression of multiple pro-survival BCL-2 members, and a pan-

BCL-2 inhibitor sensitized them to tyrosine kinase inhibitors (Goff et al., 2013). Other 

CSCs, such as breast and colon CSCs, displayed upregulated BCL-2 (Fulda, 2013). BCL-XL 

overexpression contributed to survival of colon CSCs (Colak et al., 2014) and lung CSCs 

(Zeuner et al., 2014). When treated with ABT-737 but not ABT-199, these cells died 

(Zeuner et al., 2014) or were sensitized to chemotherapies (Colak et al., 2014). Furthermore, 

suppressing MCL-1 may overcome the tumor-plasticity-induced drug resistance in multiple 

myeloma cells (Dalva-Aydemir et al., 2014). These findings highlight that inhibition of pro-

survival BCL-2 family proteins is a promising approach to target chemotherapy-resistant 

CSCs and plasticity of tumors.

To our knowledge, few studies explored the BCL-2 family members as targets for 

eradicating heterogeneous melanomas or MSCs. Recently we identified the combination of a 

BCL-2 Inhibitor with the retinoid derivative fenretinide as a promising treatment, for both 

wild-type and mutant BRAF cells, and for non-MSCs and MSCs (Mukherjee et al., 2015) 

(Figure 1b). The combination synergistically inhibited melanoma growth in vitro and in 

vivo, disrupted melanoma spheres, decreased the percentage of ALDHhigh cells and inhibited 

the self-renewal capacity of MSCs. These effects were observed in melanoma cells with 

mutations of either BRAF or NRAS. Interestingly, single drug treatments increased 

characteristics of MSCs for some melanoma samples, and only the combination treatment 

significantly reduced the self-renewal capacity of MSCs in all the samples tested. 

Proliferation stopped post-treatment, with no re-growth of tumor cells. The mechanism of 

action for the combination involves antagonizing multiple anti-apoptotic BCL-2 members at 

once (Mukherjee et al., 2015) (Figure 1b). These results support the idea that combination 

treatments are more potent to eliminate MSCs or other resistant subpopulation and targeting 

multiple pro-survival BCL-2 family members is a promising approach for melanoma (Figure 

1b).

Summary

By killing heterogeneous tumors and eliminating drug-resistant subpopulations, SMIs, 

targeting multiple BCL-2 family members, provide an option for melanoma, especially the 

wild-type BRAF melanomas. This approach thus offers an alternative way to combat 

melanoma and may help achieve longer lasting treatment effects.
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MSC Melanoma Stem Cells

CSC Cancer Stem Cells

BH BCL-2 homolog

MITF Microphthalmia-associated transcription factor

SMI Small Molecule Inhibitors

LSC Leukemia Stem Cells

TIC Tumor Initiating Cells
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Figure 1. Targeting the BCL-2 family as a treatment option for melanoma
(a) A simplified illustration for the rationale to target BCL-2 family members in melanoma. 

Green box represents the pro-apoptotic proteins, and red box represents the anti-apoptotic 

proteins. Multiple BCL-2 proteins are downstream of the RAS/BRAF/MAPK and 

PI3K/AKT signaling pathways, the commonly activated pathways in melanoma. The 

activation of these pathways leads to the dysregulated expression of multiple BCL-2 

proteins, and likely contributes to resistance to cell death in melanoma. For instance, the 

activated RAS/BRAF/MAPK signal upregulates MCL-1 and blocks BIM and BAD (see text 
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for details). Thus, targeting the BCL-2 family may provide an alternative way to combat 

melanoma regardless of its BRAF status, and to overcome melanoma relapse from current 

treatments. (b) Combination therapy debunks and kills the MSCs. The various blue cells 

represent heterogeneous non-MSCs populations, and the yellow cells represent the MSC 

populations. Standard therapy may be successful in debulking melanoma cells initially. 

However, it fails to kill MSCs, resulting in tumor relapse due to the self-renewal capacity of 

MSCs. The combination therapy targeting multiple BCL-2 anti-apoptotic members debulks 

and kills the MSCs, preventing future relapse of melanoma.
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Table 1

Examples of SMIs targeted BCL-2 family members in clinical trials or pre-clinical studies

SMI Target(s)
Clinical Trials or Pre-Clinical studies

Cancer Type Combination Drug Clinical Trials*

Gossypol

BCL-2
BCL-XL
MCL-1
BCL-W
BCL-B

Adrenocortical carcinoma N/A II

Lymphoma Paclitaxel, carboplatin I

Advanced SCLC, solid tumors Cisplatin, etoposide I

Advanced prostate cancer Bicalutamide II

Obatoclax

BCL-2
MCL-1

BCL-XL
BCL-W
BCL-B
BFL-1

Advanced SCLC Carboplatin, etoposide I/II

AML N/A II

CLL N/A I/II

Hodgkins lymphoma N/A II

MCL, Lymphoma Bortezomib I/II

NSCLC Docetaxel I/II

SCLC Topotecan hydrochloride I/II

ABT-263 (ABT-737)
BCL-2

BCL-XL
BCL-W

CLL, SCLC, Leukemia N/A II,I,II

Lymphoma, CLL, solid 
tumors Ketoconaxole I

CLL Fludarabine, Cyclophosphomide, Rituximab I

Solid tumors Doxetaxel, Gemcitabine, Etoposide, Cisplatin, 
Paclitaxel I

Lymphoma; CLL Rifampin I; II

ABT-199 BCL-2
SLL, NHL, CLL, AML N/A I; II

B-cell Lymphoma Rituximab IB

Maritoclax MCL-1
Melanoma Single and with ABT-737; In vitro and In vivo

N/A
AML Single; In vitro

Clitocine MCL hepatocellular carcinoma Single; In vitro and In vivo N/A

UMI-77 MCL Pancreatic cancer Single; In vitro and In vivo N/A

*
The information for clinical trials is adapted from www.clinicaltrials.gov

Abbreviations: AML – acute myeloid leukemia, CLL – chronic lymphocytic leukemia, MCL – mantle cell lymphoma, NSCLC – non-small cell 
lung cancer, NHL – non-Hodgkins lymphoma, SCLC –small cell lung cancer, SLL – small lymphocytic leukemia, N/A–not available

Note: None of the MCL-1 inhibitors listed is in clinical trials yet, thus we provided the information on preclinical studies for these instead. More 
details can be found in reviews (Belmar and Fesik, 2014; Thomas et al., 2013).
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