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Sex differences in human cognition are marked, but little is known
regarding their neural origins. Here, in a sample of 674 human partici-
pants ages 9–22, we demonstrate that sex differences in cognitive
profiles are related to multivariate patterns of resting-state functional
connectivity MRI (rsfc-MRI). Males outperformed females on motor
and spatial cognitive tasks; females were faster in tasks of emotion
identification and nonverbal reasoning. Sex differences were also
prominent in the rsfc-MRI data at multiple scales of analysis, with
males displaying more between-module connectivity, while females
demonstrated more within-module connectivity. Multivariate pattern
analysis using support vector machines classified subject sex on the
basis of their cognitive profile with 63% accuracy (P< 0.001), but
was more accurate using functional connectivity data (71% accu-
racy; P<0.001). Moreover, the degree to which a given participant’s
cognitive profile was “male” or “female” was significantly related to
the masculinity or femininity of their pattern of brain connectivity
(P= 2.3 × 10−7). This relationship was present even when consider-
ing males and female separately. Taken together, these results de-
monstrate for the first time that sex differences in patterns of
cognition are in part represented on a neural level through divergent
patterns of brain connectivity.

Keywords: adolescence, cognition, connectivity, connectome,
development, fMRI, network, resting-state, sex differences

Introduction

Sex differences in human cognition are well documented
(Halpern 2000). By adulthood, males are superior at visuospa-
tial and motor tasks, whereas females are better in other
domains such as social cognition and recognition memory
(Gur et al. 2010b, 2012). Along with other groups (Szeszko
et al. 2003; Schmithorst et al. 2008), we have previously re-
ported substantial sex differences in brain structure, with
females having a higher proportion of gray matter and men
having more white matter (WM; Gur et al. 1999); such sex
differences in brain structure are present even in childhood
(Lenroot et al. 2007). In turn, brain structure has been shown
to relate to cognition (Andreasen et al. 1993; Gur et al. 1999).

However, it is not known whether sex differences in brain
structure translate into sex differences in functional brain net-
works. A powerful tool for the study of functional brain
networks is resting-state functional connectivity MRI (rsfc-MRI;
Biswal et al. 1995; Fox and Raichle 2007) which has been ex-
tensively used to delineate the functional neuroanatomy of the
human brain both in health (Power et al. 2011b; Yeo et al.
2011), development (Fair et al. 2007; Dosenbach et al. 2010),
and neuropsychiatric diseases (Bassett et al. 2008; Lynall et al.

2010). While several prior studies have presented evidence for
sex differences in functional connectivity (Biswal et al. 2010;
Tian et al. 2011; Zuo et al. 2010; Wang et al. 2012; Wu et al.
2013), it is unknown when such differences emerge during
neurodevelopment, as most prior work has considered mainly
adults. Furthermore, recent work from 3 independent samples
has demonstrated that small amounts of in-scanner motion can
have a marked confounding influence on rsfc-MRI (Power
et al. 2012; van Dijk et al. 2011; Satterthwaite et al. 2012),
which may have formed an unaccounted-for bias in prior
studies of sex differences. Most importantly, no prior study has
attempted to understand how sex differences in patterns of
cognition may relate to sex differences in brain connectivity.

Here, in a large sample of children, adolescents, and young
adults studied as part of the Philadelphia Neurodevelopmental
Cohort (Satterthwaite et al. 2014), we investigated how sex
differences in functional connectivity relate to sexually diver-
gent patterns of cognition. Our hypothesis was that the extent
to which a given subject demonstrated a stereotypically “male”
or “female” pattern of brain connectivity would be related to
the masculinity or femininity of their cognitive profile. To do
this, we first establish how brain connectivity in males and
females differs using graphical measures of network topology,
mass-univariate analyses of network connections, and multi-
variate pattern analyses that classified a subject’s sex by consid-
ering the complex, high-dimensional pattern of brain
connectivity. As described below, sex differences in brain con-
nectivity are prominent even during youth. Critically, multi-
variate, sexually divergent patterns of connectivity and
cognition were found to be significantly correlated, suggesting
that sex differences in profiles of human cognition may be
related to fundamental differences in brain connectivity that
are present early in life.

Materials and Methods

Participants
The PNC is a collaboration between the Center for Applied Genomics
at Children’s Hospital of Philadelphia (CHOP) and the Brain Behavior
Laboratory at the University of Pennsylvania (Penn). Study procedures
were approved by the Institutional Review Boards of both Penn and
CHOP. The target population-based sample is of 10 000 youths who
presented to the CHOP network for a pediatric visit and volunteered to
participate in genomic studies of complex pediatric disorders (Gur
et al. 2012). A subsample of 1445 participants, stratified by age and
sex, were randomly selected for neuroimaging (Satterthwaite et al.
2014). Of these, 1275 had resting-state data acquired. Participants were
excluded due to missing cognitive data, poor imaging data quality, or a
history that suggested potential abnormalities of brain development.
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Data regarding medical history was gathered from both self-report at
time of study entry as well as electronic medical records available from
CHOP. Specifically, 234 participants were excluded due to a history of
medical problems that might affect brain function, a history of inpati-
ent psychiatric hospitalization, or current use of psychotropic medi-
cation. Additionally, 323 participants met exclusion criteria due to
poor resting-state image quality (Satterthwaite et al. 2012, 2013a,
2013b), including if scan mean relative displacement exceeded 0.2 mm
(see below), if there were >20 volumes with relative displacement
>0.25 mm, or if gross between-run motion resulted in incomplete brain
coverage. Finally, 58 participants were excluded due to missing cogni-
tive data. These exclusion criteria resulted in a final eligible pool of 722
participants aged 8–22 years (312 males). Many participants were ex-
cluded due to multiple criteria.

In order to ensure that analyses of sex differences were not biased
by developmental differences in connectivity or data quality, male and
female groups were matched on subject age and in-scanner motion
during the resting-state scan. As previously (Satterthwaite et al. 2012,
2013a) in-scanner motion was summarized using the mean relative dis-
placement measure estimated during time series realignment (see
below). Age- and motion-matched samples of males and females were
constructed using a greedy matching algorithm (Carpenter 1977)
written in-house and implemented in MATLAB. This group-matching
algorithm recursively removed the single subject that minimized the
sum of the absolute t-statistics from 2 t tests that separately evaluated
the difference between male and female groups’ age and motion. The
algorithm stopped and samples were considered matched when both
of the P-values of the t-statistic comparing the age and in-scanner
motion of males and females were >0.9. This procedure produced
groups of 312 males and 362 females where age and motion were
tightly matched (see Table 1).

As noted in Table 1, the racial composition of the male and female
samples was somewhat different. As we did not have specific hypoth-
eses regarding race or ethnicity, this was not included in our final
models. However, supplementary analyses indicated that inclusion of
race as a covariate did not impact our results.

Computerized Neurocognitive Battery
As previously described (Gur et al. 2010a, 2012), the 1-h Penn compu-
terized neurocognitive battery (Penn CNB) was administered to all par-
ticipants, and consisted of 14 tests that evaluated a broad range of
cognitive functions (Table 2). Except for the motor tests that only
measured speed, each test provided measures of both accuracy and
speed. For this adolescent sample, instructions and vocabulary for
verbal stimuli were simplified from the adult CNB (Gur et al. 2010a,
2010b). Cognitive assessment was completed during a separate session
from neuroimaging (average 3.4 [SD 5.4] months between sessions).
As detailed in Gur et al. (2012), the assessment session was scheduled
at home (68.8% of participants) or in the laboratory (31.2%), according
to the family and subject preference. During task administration,
potential interference was minimized, standard instructions were read
aloud in addition to appearing on the screen, and a professional
testing environment was maintained. Tests were administered in a
fixed order; breaks were offered approximately every 15 min.

Computerized Neurocognitive Battery: Data Analysis
Raw accuracy and speed scores were normalized by age within the
entire cohort of the PNC study (n = 9138 at time of analysis). Specifi-
cally, accuracy and speed for each test were z-transformed based on
the mean and standard deviation of participants within a 2-year age

bin. As prior (Gur et al. 2012), for ease of presentation, higher z-scores
always reflect better performance; z-scores where higher numbers re-
flected poorer performance (i.e., response time) were multiplied by
−1. The relationship between cognitive performance and subject sex
was analyzed using two-sample t-tests; multiple comparisons were
controlled using the false discovery rate (Q < 0.05).

Image Acquisition
All data were acquired on the same scanner (Siemens Tim Trio 3 Tesla,
Erlangen, Germany; 32-channel head coil) using the same imaging se-
quences. Resting-state blood oxygen level–dependent (BOLD) fMRI
was acquired using a whole-brain, single-shot, multislice, gradient-
echo (GE) echoplanar sequence with the following parameters: 124
volumes, repitition time (TR) 3000 ms, echo time (TE) 32 ms, flip
angle 90°, field of view (FOV) 192 × 192 mm, matrix 64 × 64, slice
thickness/gap 3 mm/0 mm, effective voxel resolution 3.0 × 3.0 × 3.0
mm. Prior to functional time series acquisition, a magnetization-
prepared, rapid acquisition GE T1-weighted image was acquired to aid
spatial normalization to standard atlas space, using the following par-
ameters: TR 1810 ms, TE 3.51 ms, FOV 180 × 240 mm, matrix
256 × 192, 160 slices, inversion time 1100 ms, flip angle 9°, effective
voxel resolution of 0.9 × 0.9 × 1 mm. Additionally, a B0 field map was
acquired for application of distortion correction procedures, using a
double-echo gradient recall echo sequence: TR 1000 ms, TE1 2.69 ms,
TE2 5.27 ms, 44 slices, slice thickness 4 mm, FOV = 240 mm, effective
voxel resolution of 3.8 × 3.8 × 4 mm. Prior to scanning, in order to ac-
climate participants to the MRI environment and to help participants
learn to remain still during the actual scanning session, a mock scan-
ning session was conducted using a decommissioned MRI scanner and
head coil. Mock scanning was accompanied by acoustic recordings of
the noise produced by gradient coils for each scanning pulse sequence.
During the mock scanning session, feedback regarding head move-
ment was provided using the MoTrack motion tracking system (Psy-
chology Software Tools, Inc., Sharpsburg, PA, USA). In order to further
minimize motion, participants’ heads were stabilized in the head coil
using one foam pad over each ear and a third over the top of the head.
During the resting-state scan, a fixation cross was displayed as images
were acquired. Participants were instructed to stay awake, keep their
eyes open, fixate on the displayed crosshair, and remain still.

Network Construction and Visualization
We examined sex differences in functional connectivity within a
system of 264 nodes described by Power et al. (2011). In this network,
nodes are 5-mm radius spheres in MNI space that were drawn from
both meta-analysis of task fMRI studies and resting-state functional
connectivity mapping techniques (Cohen et al. 2008; Nelson et al.
2010). Within this system of 264 nodes, there are 34 716 unique edges.
Furthermore, Power et al. (2011) provides a parcellation scheme for
these nodes that delineates 13 functional modules that correspond to
known large-scale brain networks that are coherent during both task
activity and at rest (Smith et al. 2009; Yeo et al. 2011). We used this
node system due to 3 main advantages. First, Power et al. (2011a,

Table 1
Demographics of age- and motion-matched samples of males and females

Group N Age, years
(SD)

Motion, mm
(SD)

#
Caucasian

Maternal education, years
(SD)

Male 312 15.66 (3.3) 0.068 (0.04) 166 14.45 (2.43)
Females 362 15.67 (3.2) 0.068 (0.04) 157 14.27 (2.55)

Table 2
Penn computerized neurocognitive battery

Test name Psychological domain Abbreviations

Penn Conditional Exclusion Test Abstraction/flexibility ABF
Penn Continuous Performance Test Attention ATT
Letter N-back Working memory WM
Penn Word Memory Verbal memory VME
Penn Face Memory Face memory FME
Visual Object Learning Test Spatial memory SME
Penn Verbal Reasoning Test Language reasoning LAN
Penn Line Orientation Test Spatial ability SPA
Penn Emotion Identification Test Emotion identification EMI
Penn Emotion Differentiation Test Emotion differentiation EMD
Penn Age Differentiation Test Age differentiation AGD
Motor Praxis Sensorimotor speed SM
Finger Tapping Test Motor MOT
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2011b) selected these nodes as being representative of the complete
voxel-wise connectivity of the brain; these nodes therefore provide
good coverage of the entire brain, but still affording a large amount of
dimensionality reduction and resultant computational efficiency.
Second, as the system has already been parsed into functional net-
works (Power et al. 2011a, 2011b), it provides an independent refer-
ence that allows examination of within- versus between-module
connectivity, which is an important feature of neurodevelopment (Fair
et al. 2007, 2008; Supekar et al. 2009; Dosenbach et al. 2010; Anderson
et al. 2011; Satterthwaite et al. 2013b). Third, the relatively high-
dimensional nature of the data (34 716 unique edges) is well suited for
machine-learning approaches such as support vector machines, allow-
ing us to investigate whether complex multivariate patterns of func-
tional connectivity can be used to classify subject sex and examine if
they relate to sex-specific profiles of cognitive performance.

In order to aid visualization of the overall network structure (Fig. 1),
a mean connectivity matrix was created by averaging across all partici-
pants. This average connectivity matrix was displayed in graphical
form using a spring-embedded force-based rendering using Gephi
(Bastian et al. 2009). In this representation, nodes that are tightly con-
nected are brought closer together, whereas nodes that are not con-
nected are pushed farther apart on the graph. As negative connections
cannot be visualized effectively in such a graph, only positive values
are displayed, with graph edges thresholded at r > 0.2.

Image Registration
Subject-level BOLD images were co-registered to the T1 image using
boundary-based registration (Greve and Fischl 2009) with integrated
distortion correction as implemented in FSL 5 (Jenkinson et al. 2012).
Whole-head T1 images were registered to the Montreal Neurologic
Institute 152 1-mm template using the diffeomorphic SyN registration
that is part of ANTS (Avants et al. 2008, 2011; Klein et al. 2009). All
registrations were inspected manually and also evaluated for accuracy
using spatial correlations. Network nodes were registered to subject
space for time series extraction by concatenating the co-registration,
distortion correction, and normalization transformations so that only
one interpolation was performed in the entire process.

Subject-Level Time Series Processing
A voxel-averaged time series was extracted from each of the 264 nodes
in subject-space for every participant. Time series data were processed
using a validated confound regression procedure that has been opti-
mized to reduce the influence of subject motion (Satterthwaite et al.
2013a, 2013b). The first 4 volumes of the functional time series were
removed to allow signal stabilization, leaving 120 volumes for sub-
sequent analysis. Functional time series were band-pass filtered to
retain frequencies between 0.01 and 0.08 Hz. Functional images were
re-aligned using MCFLIRT (Jenkinson et al. 2002). Structural images
were skull-stripped using BET (Smith 2002) and segmented using
FAST (Zhang et al. 2001); mean WM and cerebrospinal fluid (CSF)
signals were extracted from the tissue segments generated for each
subject (Jakobs et al. 2012; Reetz et al. 2012). Improved confound
regression (Satterthwaite et al. 2013a) included 9 standard confound-
ing signals (6 motion parameters + global/WM/CSF) as well as the tem-
poral derivative, quadratic term, and temporal derivative of the
quadratic of each. Prior to confound regression, all motion parameters
and confound time courses were band-pass filtered in an identical
fashion as the time series data itself in order to prevent mismatch in the
frequency domain and allow the confound parameters to best fit the re-
tained signal frequencies (Hallquist et al. 2013). Furthermore, motion-
related spike regressors were included in the model whenever a
volume-to-volume displacement was >0.25 mm; for each such move-
ment, a single regressor was included for each volume bounding the
observed displacement (i.e., TR −1 and TR +1); these spike regressors
effectively censor the influence of these volumes in subsequent analy-
sis of residual time series (Lemieux et al. 2007). As 2 volumes are
lost from analysis for each spike, participants with >20 spikes
were excluded (see “Participants” above), ensuring that each subject
had at least 4 min (80 volumes) of time series data for analysis
(van Dijk et al. 2010).

Graph Construction
Using the time series extracted from each node, a symmetric connec-
tivity matrix (264 × 264) was defined for each subject using pair-wise
Pearson’s correlations. While many graphical analyses of network top-
ology threshold matrix values at an arbitrary level (or range of levels)
to produce a sparse graph, such practices may be problematic when
investigating individual or group differences (Zalesky et al. 2010;
Rubinov and Sporns 2011). Specifically, this step may introduce a con-
found as a fixed threshold is likely to introduce different levels of spar-
sity across participants. Alternately, matching individuals on the level
of sparsity requires use of a unique threshold for each individual,
which may limit interpretability (Zalesky et al. 2010; Rubinov and
Sporns 2011). In order to avoid the use of such arbitrary thresholds, all
analyses were conducted on fully connected graphs including both
positive and negative weights.

Graphical Analyses of Network Topology
Within this fully connected network, we next explored whether there
were systematic differences in network topology based on a subject’s
sex. Specifically, we calculated 2 measures compatible with fully con-
nected networks (Rubinov and Sporns 2011): strength and partici-
pation coefficient. Both measures were calculated on a node-wise basis
and also summarized on a network-wise basis. At a given node, the
strength is simply the total of the positive (or negative) connection
weights for all edges connected to that node (Rubinov and Sporns
2010). Strength can be summarized on a network-wise basis by calcu-
lating a sum of all individual node strengths separately for positive and
negative weights.

The participation coefficient is a summary measure of network top-
ology that quantifies the degree to which a given node is connected
to other nodes within a functional module or between functional
modules (Rubinov and Sporns 2010). Thus, a node with a high partici-
pation coefficient has relatively more connections between defined
network modules, contributing to network integration. In contrast, a
node with a low participation coefficient has relatively more connec-
tions within the functional module to which it is assigned, denoting
network segregation. As noted above, one advantage of the system of
nodes defined by Power et al. (2011) is that nodes in this system were
assigned to a functional network module based on parcellation in an
independent dataset; this community structure was used to calculate
the participation coefficient at each node for every subject. It should be
noted that, in the present work, the participation coefficient reflects a
single subject’s pattern of connectivity relative to the static community
assignments described by Power et al., not a community structure
defined by that individual subject’s connectivity matrix. To aid inter-
pretability of the participation coefficient values compared with the
sample as a whole, as for the cognitive data, all participation coefficient
values were z-normed across the entire sample. In order to provide a
summary measure across all network nodes, the mean positive partici-
pation coefficient was calculated for each subject. Sex differences in
both strength and the positive participation coefficient were examined
using a two-sample t-test at each node. Multiple comparisons were con-
trolled using FDR (Q < 0.05; Genovese et al. 2002). Sex differences in
network-wise total strength and mean positive participation coefficient
were evaluated in an analogous fashion.

Sex Differences in Edgewise Functional Connectivity
While graphical analyses of network topology provide useful summary
measures of network configuration, they do not provide detailed infor-
mation regarding changes at individual network connections. Accord-
ingly, a two-group t-test comparing males and females was run at each
of the 34 716 unique connections in the network. Given the large
number of comparisons present in this high-dimensional network
data, correction for multiple testing is an important consideration. As
above, for each edgewise analysis, the appropriate significance
threshold was determined by the false discovery rate (Q < 0.05). Prior
to performing edgewise statistical tests, all correlation values were
z-transformed using a Fisher’s r to z transformation.

As described in Results section, the graphical analysis of network
topology revealed significant sex differences in the participation
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coefficient. In order to evaluate this observation analogously in the
edgewise data, as in our prior work (Satterthwaite et al. 2013b) on
developmental connectivity, we compared whether the proportion
of connections that were significantly stronger in males than
females were more likely to be within- or between-module using a
χ2 test. For all edgewise analyses, connections that were significantly
different between males and females were visualized in 3D using
custom software written in-house with Mayavi (Ramachandran and
Varoquaux 2011).

Examination of Sex Differences in Community Structure
As described in Results section, we found that males and females dif-
fered in the degree of network segregation across multiple networks
scales. Potentially, such a finding could result from systematic differ-
ences in the community structure between males and females. In order
to evaluate this, we calculated a mean connectivity matrix for both
males and females, and then evaluated the community structure for
each. As in Power et al. (2011), we utilized the InfoMap modularity de-
tection algorithm (Rosvall and Bergstrom 2008). As this algorithm does
not allow for negative weights, the values of such edges were set to
zero. This returned the community structure for males and females,
which was compared using normalized mutual information (NMI; as
previously in Power et al. 2012; Satterthwaite et al. 2013a). We first
examined the stability of male and female community assignments by
running the InfoMap algorithm 1000 times; the same value was re-
turned in 943 of 1000 runs. Next, we evaluated whether the community
structure of these networks was statistically different using permu-
tation testing, where the sex label of each subject was permuted.
Therefore, instead of comparing the community structure resulting
from the mean connectivity matrix of males and females, for each of
1000 permutations, 2 permuted groups (each containing a randomly
determined proportion of males and females) were assembled, the
mean connectivity matrix was calculated, and the resulting community
structure was compared using NMI. This produced a null distribution
of NMI values, allowing the significance of the real NMI value to be
evaluated.

Examination of Sex Differences in Development
The above analyses examined the main effect of sex on both graphical
measures of network topology as well as individual network edges. As
described in Results section, sex differences were prominent at all
network scales examined. However, given that subjects in this study

spanned the critical developmental period of adolescence where we
have previously demonstrated marked changes in functional connec-
tivity (Satterthwaite et al. 2013b), we next examined whether observed
sex differences varied by age (e.g., became more prominent with de-
velopment). To do this, we tested for age by sex interactions on rel-
evant outcome measures, including each CNB cognitive domain, mean
network participation coefficient, participation coefficient at each
node, and connectivity at each unique network edge. Linear age by sex
interactions were first examined using terms including the main effects
of age, sex, as well as an age by sex interaction; motion (summarized
as mean relative displacement) was included as a covariate. As devel-
opmental trajectories are frequently nonlinear, nonlinear age by sex
interactions were additionally examined using polynomial regression
that also included quadratic and cubic terms for both age and age by
sex interactions. As prior, multiple comparisons were controlled using
FDR Q < 0.05.

Multivariate Pattern Analysis
Analyses described thus far examined whether males and females dif-
fered in their cognitive performance on individual tests or in their con-
nectivity at individual graph nodes or edges. In contrast to such
mass-univariate analyses, multivariate analyses have the potential to
describe complex patterns of cognition or connectivity that discrimi-
nate between males and females, and additionally provide a quantitat-
ive summary of how masculine or feminine a given subject’s pattern of
cognition or connectivity is.

Notably, whereas the goal of a traditional mass-univariate analysis is
to describe the relationship of a given set of brain measures to an
outcome measure of interest on a regional basis, the goal of the multi-
variate analysis is to predict the outcome using the information con-
tained in all regions jointly. It should be noted that while such
multivariate models are ideally suited for classification problems (i.e.,
“prediction”), their “descriptive” utility is limited. One can easily ident-
ify which model features contribute are most heavily weighted within
the multivariate model, but it is not possible to directly visualize their
action within the model framework due to the extremely high-
dimensional nature of the parameter space. As such, mass-univariate
(descriptive) and multivariate (predictive) methods are complemen-
tary approaches, which is why they were used together in the current
work.

We used a support vector machine as implemented in LIBSVM
(Chang and Lin 2011) to construct multivariate models that classified

Figure 1. Network definition. Nodes in the network are defined according to the system established by Power et al. (2011a, 2011b), including 264 spheres (5 mm radius)
comprising 13 functional brain modules. Nodes are colored according to module membership as indicated in the figure legend, and displayed using a spring-embedded rendering of
the mean network connectivity matrix across all subjects. Although all analyses are conducted using fully connected networks with both positive and negative weights, for display
graph edges are thresholded at r>0.2. Graph edge thickness is scaled according to connection strength. As in Power et al. (2011a, 2011b), somatomotor, visual, and default mode
modules are tightly integrated, show a predmoniance of intramodular connections, and are segregated from other functional modules. In contrast, the frontoparietal, salience, and
attention (dorsal and ventral) systems are less segregated and show a greater number of intermodular connections.
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participants as male or female. Models were constructed separately
using either the cognitive performance domains or all unique edges in
the functional connectivity matrices as input data. No feature selection
process was used; as the number of connectivity features (>35k) was
far greater than the number of participants in our sample, a linear
kernel was chosen.

Classifications were generated using a 10-fold cross-validation pro-
cedure where the multivariate model was trained on 90% of the data,
and then tested on 10% of the data. Such cross-validation provides an
unbiased estimate of model predictive accuracy and prevents model
overfitting to a specific training dataset. For each model, this procedure
produced 3 important outcomes. First, the support vector machine
(SVM) produced an overall classification accuracy score for classifying
males or females on the basis of their cognitive or connectivity data.
Second, each model yields a dimensional classification score for each
subject that reflects the degree of masculinity or femininity in a given
subject’s pattern of connectivity or cognition. Dimensional classifi-
cation scores from the cognitive and connectivity models were sub-
sequently related to each other as described below. Third and finally,
the SVM yields a vector of feature weights that describes how heavily
weighted an individual cognitive or connectivity feature was within the
multivariate model. However, as noted above, direct visualization of
the action of a feature within the model beyond the feature weight is
not possible given the high-dimensional nature of the parameter
space.

The statistical significance of both the overall model classification
and individual model features was tested with 1000 permutations.
Permutation testing compared the actual classification accuracy and
feature weights to predictive accuracy and weights assigned when
subject sex labels were randomly reassigned on a subject-wise basis.
Lastly, in order to evaluate the sensitivity of classification accuracy to
the size of the training set, we re-calculated classification accuracy
using split-half cross-validation within the SVM. The split between
training/testing sets was chosen randomly; in order to reduce the
impact of this assignment, split-half cross-validation was performed 10
times for each data type (i.e., cognitive scores and edgewise connec-
tivity), and mean classification accuracy is reported.

Relationship Between Sex-Specific Multivariate Patterns
of Cognition and Connectivity
The multivariate pattern analyses described above yielded a single
score per subject describing the dimensional extent to which their
specific pattern of cognition or connectivity was typically male or
female. As a final step, we examined how these patterns related to each
other, providing insight into whether masculine or feminine patterns
of connectivity relate to male or female patterns of cognition. Specifi-
cally, dimensional classification scores from the CNB and connectivity
SVM analyses were related to each other using a Pearson’s correlation.
In order to evaluate whether significant variation in patterns of cogni-
tion and connectivity could be discerned within a given sex, we
repeated this procedure separately for males and females. Finally, we
evaluated whether the masculinity (or femininity) of a given subject’s
connectivity profile related to performance on individual cognitive
tests. To do this, the multivariate connectivity score was related to per-
formance on each cognitive domain using Pearson’s correlations. For
every analysis performed, multiple comparisons were controlled using
FDR (Q < 0.05).

Results

Males and Females Display Sex Differences in Cognition
We have previously established that sex differences in cogni-
tion are prominent in the large PNC sample using the Penn
CNB (Gur et al. 2012). In this subsample of PNC participants
who were imaged, several previously reported sex differences
are confirmed (Fig. 2). Specifically, males were more accurate
on spatial tasks and faster on the motor task. Males in this sub-
sample were also more accurate on language functioning; this

was not found in the larger supraset of subjects but may be
due to the enriched late-adolescent age range of the imaged
sample compared with the overall sample, where males did
perform better (Gur et al. 2012). In contrast, females were
faster on nonverbal reasoning as well as emotion identification.
The mean effect size of significant differences in cognition was
small (d = 0.30).

Males Demonstrate More Between-Module Connectivity
as Measured by the Participation Coefficient
As a first step, we compared the network organization of males
and females using 2 graphical measures of network topology:
strength and participation coefficient. Strength was not signifi-
cantly different between males and females for either positive or
negative connections either at the level of individual nodes or
on a mean network-wise basis. Males had a significantly higher
mean network positive participation coefficient than females
(t(672) = 2.21, P = 0.027). As participation coefficient represents
the balance of within- and between-module connectivity, this
could reflect either greater within-module connectivity in
females, greater between-module connectivity in males, or
some combination thereof. However, the edgewise analysis (see
below) allowed such possibilities to be disentangled. On a node-
wise level, sex differences were found in a small minority of
network nodes (2.3%). Males demonstrated a higher positive
participation coefficient at 5 locations, whereas females had a
higher participation coefficient at one node (Fig. 3). The mean
absolute effect size of these effects was small (d = 0.33). Nodal
sex differences were not concentrated in a single network;
nodes with significant sex differences were located within the
default mode network, ventral attention network, the auditory
network, and the memory retrieval network. These results de-
monstrate that at both a network-wise and nodal level, males
have a greater balance of between-module than within-module
connectivity than females.

Sex Differences in Functional Connectivity Are
Prominent and Vary by Within-Module Versus
Between-Module Status
In order to further understand the differences in network struc-
ture identified by the participation coefficient, we compared
connectivity of males and females at each of the network’s
34 716 unique edges. As displayed in Figure 4, 178 connec-
tions (or 0.51% of total edges) showed a significant difference
in functional connectivity above an FDR-corrected threshold
(Q < 0.05). The mean effect size of these differences was small
(d = 0.32). As suggested by the differences in the participation
coefficient, the proportion of significantly different connec-
tions that were within-module versus between-module varied
systematically by sex: Connections that were stronger in
females were more likely to be within-module, whereas con-
nections that were stronger in males were more likely to be
between-modules (χ2 = 10.16, P = 0.001; Fig. 5). Notably, such
results were unlikely to be driven by gross differences in com-
munity structure between males and females. Although there
was a trend towards a difference in community structures
between males and females, this was not significant (NMI =
0.83; one-tailed permutation-based P = 0.075). Thus, sex differ-
ences in within- versus between-module connectivity are
present across multiple network scales.
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Sex Differences are Present and Stable Across
the Adolescent Period
While the above results identify clear sex differences in cogni-
tion and connectivity between males and females, they do not
describe whether such differences vary by development
during youth. In the supraset of 3500 PNC participants that in-
cluded many participants who did not undergo neuroimaging,
age-by-sex interactions were detectable given the power of the
much larger sample (Gur et al. 2012). However, in the current
smaller imaged subsample, no interaction effects survived mul-
tiple comparison correction, suggesting that diverging trajec-
tories of cognitive performance are more subtle than the main
effects of sex that are present throughout the ages examined.
Similarly, no linear or nonlinear age-by-sex interactions were
found to be significant on any imaging measure examined,
including mean network participation coefficient, nodal par-
ticipation coefficient, or individual graph edges. It should be

noted that this does not mean that developmental effects were
not present; as we and others have reported, developmental
effects in resting-state connectivity are prominent (Fair et al.
2012; Satterthwaite et al. 2013b) and, in general, network
modules become more segregated with age. For example, the
mean participation coefficient in this sample declined signifi-
cantly with age (r =−0.15, P = 9.2 × 10−5). Despite the main
effect of sex on this measure (see Fig. 3), the difference
between males and females was quite stable across the ages
studied, and age-related changes were similar in males and
females (males: r =−0.14; females: r =−0.16).

Multivariate Pattern Analyses Classify Subject Sex Based
on Cognition and Connectivity
While the above analyses are instructive in that they identify
aspects of cognition and network topology that are different
among males and females, they are limited in that they cannot

Figure 2. Sex differences in cognitive performance. In this sample of participants from the PNC who completed neuroimaging, expected sex differences in cognitive performance
were confirmed using the Penn CNB. Males (black) were more accurate (FDR Q< 0.05) on spatial tests, as well as faster on the motor test. In contrast, females (gray) were faster
on non-verbal reasoning as well as emotion identification. In this sample males were also more accurate on the verbal reasoning test.

Figure 3. Males have a greater balance of between- versus within-module connectivity as summarized by the participation coefficient. (A) Network-wise summary. Males have a
higher positive mean network participation coefficient than females, indicating that they have a greater balance toward between-module rather than within-module connectivity. (B)
Node-wise analysis. At the level of a single network node, males had a greater positive participation coefficient than females at 5 nodes. In contrast, there was only one node where
the participation coefficient was higher in females. All significant results corrected for multiple comparisons using the false discovery rate (Q<0.05).
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assess complex patterns of difference using the complete
multivariate structure of the data. In order to determine if such
complex multivariate patterns of cognition or connectivity
differ by sex, we used support vector machines to classify
males versus females subjects using the cognitive and connec-
tivity data in turn. Classification using the cognitive data was
significantly better than chance (permutation-based P < 0.001),
with an overall accuracy of 63% (Fig. 6A). Significantly
weighted features in this multivariate model identified by per-
mutation testing included cognitive domains that were stronger
in females (e.g., verbal memory accuracy, emotion identifi-
cation speed) as well as those where males performed better
(e.g., spatial accuracy and speed, motor speed; see Fig. 6B).
Classification using connectivity data was more accurate (71%),
and also highly significant (P < 0.001; Fig. 6A). Significantly
weighted model features that discriminated males from
females included a mix of within- and between-module con-
nections (Fig. 6C). When split-half cross-validation was used,

classification using connectivity remained more accurate than
classification using cognitive scores, although the overall accu-
racy using split-half cross-validation was somewhat lower than
the accuracy using 10-fold cross-validation (i.e., 68% for con-
nectivity, 61% for cognition).

Sex Differences in Multivariate Patterns of Cognition
and Connectivity Are Related
Multivariate pattern analysis using SVM established that both
complex patterns of cognition and connectivity could discrimi-
nate males and females. Of course, the ground truth of an indi-
vidual’s sex is easily ascertained, so such classification is of
relatively limited interest in and of itself. However, the SVM
also provides a more interesting dimensional measure of the
degree to which a given subject’s pattern of cognition or brain
connectivity is “male” or “female.” Critically, the degree of
masculinity or femininity in participants’ cognitive profile was

Figure 4. Sex differences in individual network connections are prominent. Connectivity at each of the network’s 34 716 unique edges was compared between males and females.
Significantly different levels of connectivity were seen in 179 individual edges (FDR Q< 0.05). Edges where connectivity was stronger in males are displayed in blue; edges where
connectivity was stronger in females are displayed in red.

Figure 5. Connections that are stronger in females are more likely to be within-module, whereas connections that are stronger in males are more likely to be between-module (A;
χ2 = 10.16, P= 0.001). Significantly different edges (from Fig. 4) are here displayed separately for each sex; within-module connections are displayed in green, between-module
connections are in yellow. Males have a greater predominance of between-module connections (B), whereas the proportion of within-module connections is relatively higher in
females (C). As prior, all connections reported as significant are above an FDR-corrected threshold (Q<0.05).
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significantly related to the masculinization (or feminization) of
their brain connectivity (Fig. 7A; r = 0.20, P = 1.2 × 10−7). When
males and females were examined separately, this relationship
remained significant (males: r = 0.10, P = 0.046; females: r =
0.14, P = 4.6 × 10−3). Furthermore, participants with more
“male” patterns of connectivity did significantly better on tests
within cognitive domains that demonstrated a male perform-
ance advantage (Fig. 7B), including spatial accuracy, and
motor speed, as well as language accuracy where this sample
of males outperformed the females. Participants with a more
“female” pattern of connectivity performed better on domains
including nonverbal reasoning speed, although only at an
uncorrected level of significance.

Discussion

While sex differences in cognitive ability are well established,
prior accounts have not described how differences in brain
organization allow such divergent cognitive styles to occur.
Our results demonstrate that sex differences in patterns of

brain connectivity are present at an early age, with males
having greater between-module connectivity and females
having more within-module connectivity. Moreover, our
results show that sex differences in patterns of brain connec-
tivity are related to sex-specific profiles of cognitive perform-
ance, for the first time establishing a link between sex
differences in cognition and the organization of the brain’s
functional connectome.

Convergent Sex Differences in Functional Connectivity
Are Observed at Multiple Network Scales
There is a growing consensus within the neuroscience field
that sex differences are underappreciated and merit further
study (Gong et al. 2011; Giedd et al. 2012; Sacher et al. 2013).
Indeed, sex differences in brain structure, brain metabolism,
and cerebral blood flow have been reported. For example,
females have a higher percent of intracranial volume consisting
of gray matter while males have more WM (Gur et al. 1999;
Lenroot et al. 2007). Females also have higher rates of cerebral
blood flow (Gur et al. 1982), and higher metabolic rates in

Figure 6. Classification of subject sex using Penn CNB and functional connectivity. (A) Classification accuracy of subject sex is higher using functional connectivity data than using
cognitive data. (B) Feature weights of cognitive tests in SVM classification of subject sex. Domains that were significantly weighted in the model (calculated using permutation
testing) are starred. (C) Significantly weighted features in the SVM classification of sex using functional connectivity. As in Figure 5, significantly weighted within-module
connections are displayed in green, whereas between-module connections are displayed in yellow.
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cortex as measured by fluorodeoxyglucose positron emission
tomography (Baxter et al. 1987). However, despite nearly 30
years of evidence regarding sex differences in brain structure
and perfusion, sex differences in brain connectivity have only
recently been studied.

Our results demonstrate that sex differences in brain
connectivity are present at an early age. Specifically, females
have more within-module connectivity and males have more
between-module connectivity. Importantly, this effect is
present across a range of network scales, including the entire
network, individual network nodes, and unique network con-
nections. This convergent evidence emphasizes the degree to
which sex differences are a feature of brain organization that is
not dependent on the specific methodological approach.

While prior studies have reported sex differences in connec-
tivity within certain networks (Biswal et al. 2010), or relating
to hemispheric lateralization (Tian et al. 2011; Zuo et al. 2010),
systematic differences in the balance of within-versus between-
module connectivity have not previously been reported. We
have previously demonstrated that this constitutes a valuable
brain phenotype in the context of neurodevelopment, where
within-module connectivity increases and between-module
connectivity diminishes (Satterthwaite et al. 2013b). Such find-
ings are consistent with prior accounts of functional segre-
gation in network organization (Fair et al. 2007, 2008, 2009;
Supekar et al. 2009; Dosenbach et al. 2010; Power et al. 2010;
Anderson et al. 2011).

The present results suggest that female brains may be more
functionally segregated than male brains, and that this differ-
ence is stable across late childhood, adolescence, and early
adulthood. While one prior study of 51 subjects did report (un-
corrected) age-by-sex interactions (Wu et al. 2013), we did not
find any evidence of an age-by-sex interaction in connectivity

at any scale of analysis, despite this being the largest sample to
date examining subjects in this age range. This suggests that
patterns of male and female connectivity have already diverged
prior to adolescence, perhaps as a result of androgen-
dependent in-utero programing or early environmental influ-
ences (MacLusky and Naftolin 1981; Berenbaum and Beltz
2011; McCarthy et al. 2012). As discussed below, our results
additionally suggest that such stable differences in network
segregation may relate to sex differences in cognition that are
also already apparent during youth.

Additionally, it should be noted that no prior report con-
trolled for the pernicious confounding influence of motion ar-
tifact on functional connectivity, which we and others have
recently described (Power et al. 2012; van Dijk et al. 2011; Sat-
terthwaite et al. 2012). In the present study, we used tight
quality-control standards, controlled for motion artifact on the
subject level using a validated confound regression procedure
(Satterthwaite et al. 2013a; see also Yan et al. 2013), and also
matched males and females on motion very closely. Overall,
such procedures bolster confidence in our findings.

Sex Differences in Patterns of Functional Connectivity
and Cognition Are Related
In addition to traditional mass-univariate statistics that allow
localization of sex differences to a specific cognitive domain or
network connection, we utilized multivariate pattern classifiers
(support vector machines) to discover complex patterns of cog-
nition or connectivity that discriminate between males and
females. We found that while both data types classified sub-
jects as males or females more accurately than chance alone,
classification using connectivity data was more accurate than
classification using the cognitive data. The fact that

Figure 7. Sex differences in multivariate patterns of cognition and functional connectivity are related. (A) Plot displaying the significant (P=1.2× 10−7) relationship between how
“male” or “female” a given subject’s connectivity pattern is and how “male” or “female” their cognitive profile is. This relationship remains significant when males and females are
examined separately. Black data points indicate males, open circular data points indicate females. (B) Sex differences in pattern of functional connectivity relate to performance on
specific cognitive domains. Individuals with more male patterns of connectivity are better at cognitive domains where males demonstrate superiority, including spatial accuracy and
motor speed as well as language accuracy (FDR Q< 0.05). Subjects with more female patterns of connectivity are faster at non-verbal reasoning at an uncorrected level of significance.
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multivariate patterns provided moderate discriminative ability
is particularly notable as mass-univariate differences were rela-
tively sparse (i.e., 0.51% of edges showed a significant sex
difference), and of a relatively small effect size (i.e., d = 0.32).

While classification of subject sex is of some interest, a sub-
ject’s sex is a known ground truth that can be more simply
ascertained without the use of functional MRI. However, multi-
variate pattern classification also provides a concise summary
of a subject’s masculine or feminine pattern of cognition or con-
nectivity. We found that a given subject’s pattern of cognition is
significantly related to their pattern of connectivity: subjects
who have a more “male” pattern of cognition also demonstrated
a more “male” profile of connectivity. Notably, this relationship
remained significant when males and females were examined
separately, suggesting that, even within a single sex, there is
meaningful variability in the masculinity or femininity of brain
and cognitive patterns. Furthermore, the degree to which a
given individual had a typically male or female pattern of con-
nectivity related to their performance on specific cognitive
domains. Though speculative, this suggests a link between sex
differences in patterns of connectivity and cognitive style: The
increased network segregation of female brains may allow
better performance in domains (such as social cognition)
where females often demonstrate superiority. Taken together,
these data provide novel evidence that the divergent patterns of
cognition seen in males and females are reflected on a neural
level in differential patterns of brain connectivity.

Limitations, Future Directions, and Conclusions
Although this study capitalizes upon a large sample, uses ad-
vanced analytic techniques, and carefully controls for impor-
tant confounds, certain limitations should be acknowledged.
Most importantly, while the statistical relationship between
patterns of cognition and connectivity suggests a biological
relationship, such observed correlation is not a demonstration
of causality. In future, systematic manipulation of masculiniza-
tion or feminization in animal models (Sisk and Foster 2004),
while measuring network organization and available
cognition-related phenotypes could provide direct validation
of the results presented here. Furthermore, future research
using multimodal imaging is necessary to understand how ob-
served differences in functional connectivity relate to known
sex differences in brain structure (Lenroot et al. 2007), CBF
(Gur et al. 1982), and brain metabolism (Baxter et al. 1987).
Finally, it should be emphasized that the size of the effects de-
tected was relatively small, and present at only small percen-
tage of network nodes and edges. Thus, while sex differences
in connectivity exist, on the whole connectivity patterns of
male and female brains are more alike than different.

In conclusion, the present results provide novel data demon-
strating that sex differences in patterns of brain connectivity
relate to divergent profiles of cognitive performance in youth.
As psychiatric disorders including depression, anxiety dis-
orders, and schizophrenia often have strong gender disparities
and often begin in adolescence (Goldstein 1988; Nolen-
Hoeksema and Girgus 1994; Aleman et al. 2003; Slewa-Younan
et al. 2004), description of sex differences in brain patterns is
necessary to allow understanding of how such relative vulner-
abilities arise. We have previously found evidence for sex
differences in structural abnormalities associated with schizo-
phrenia (Cowell et al. 1996; Gur et al. 2004). Moving forward,

we will investigate whether sex differences in the patterns of
brain connectivity described here bias risk for development of
psychosis and mood disorders.
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