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To make sense of the world around us, our brain must remember the
overlapping features of millions of objects. Crucially, it must also rep-
resent each object’s unique feature-convergence. Some theories
propose that an integration area (or “convergence zone”) binds to-
gether separate features. We report an investigation of our knowl-
edge of objects’ features and identity, and the link between them.
We used functional magnetic resonance imaging to record neural
activity, as humans attempted to detect a cued fruit or vegetable in
visual noise. Crucially, we analyzed brain activity before a fruit or
vegetable was present, allowing us to interrogate top-down activity.
We found that pattern-classification algorithms could be used to
decode the detection target’s identity in the left anterior temporal
lobe (ATL), its shape in lateral occipital cortex, and its color in right
V4. A novel decoding-dependency analysis revealed that identity
information in left ATL was specifically predicted by the temporal
convergence of shape and color codes in early visual regions. People
with stronger feature-and-identity dependencies had more similar
top-down and bottom-up activity patterns. These results fulfill three
key requirements for a neural convergence zone: a convergence
result (object identity), ingredients (color and shape), and the link
between them.
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Introduction

We encounter millions of objects during our lifetime that we
recognize effortlessly. We know that a lime is green, round,
and tart, whereas a carrot is orange, elongated, and sweet,
helping us to never confuse the wedge on our margarita glass
with our rabbit’s favorite treat. One property (feature) alone is
typically insufficient: Celery can also be green; tangerines are
orange. Instead, we use the unique convergence of features
that defines an object. How does our brain bind these sensori-
motor features to form a unique memory representation?

One set of theories proposes that knowledge of objects
resides in the very sensorimotor cortices that process their fea-
tures during perception or use (Martin 2007; Kiefer and Pulver-
müller 2012). Under this framework, our knowledge of a
concept arises from direct connections between sensorimotor
regions. Another set of theories suggest that objects become
represented in one or more integration areas (Simmons and
Barsalou 2003; Patterson et al. 2007). These “integration” the-
ories differ in their details. An early proposal suggested that
various convergence zones hold binding codes that link dis-
tinct “feature fragments” in sensory cortex (Damasio 1989;
Simmons and Barsalou 2003; Meyer and Damasio 2009). More
recent integration proposals suggest that a single “hub” brings
together known sensory information into a representation of a
concept (Lambon Ralph 2014). Specifically, the “hub-and-spoke”

model proposes that while sensory and verbal information is
processed in modality-specific regions, a hub, based in the
anterior temporal lobe (ATL), contains a high-dimensional
modality-independent semantic space that allows compu-
tations to be based on semantic information rather than purely
sensory similarities (Lambon Ralph 2014). This is analogous to
a “hidden layer” in neural network models, which enables
computation of nonlinear relationships between the infor-
mation coded in sensory layers (Rogers et al. 2004; Lambon
Ralph et al. 2010).

A broad range of methods point to the ATL as a possible
location for a hub. Semantic dementia patients with ATL atrophy
demonstrate conceptual impairments (Hodges et al. 1992;
Rogers et al. 2007). These deficits cross modalities (Bozeat
et al. 2000; Luzzi et al. 2007), reflecting the proposed transmo-
dal nature of ATL representations (Patterson et al. 2007;
Lambon Ralph et al. 2010). In further support, temporarily in-
terfering with ATL activity in healthy participants using tran-
scranial magnetic stimulation (TMS) produces semantic
impairments across a range of tasks with words and pictures
(Pobric et al. 2007, 2010a, 2010b; Ishibashi et al. 2011). It has
recently been suggested that information becomes increasingly
higher order and transmodal in more rostral ATL areas (Binney
et al. 2012). Neuroimaging investigations have differed in
whether significant ATL activation is detected during semantic
processing, in large-part due to signal loss in this region
(Visser, Jefferies et al. 2010). The region is more likely to be
identified after correcting for signal distortions (Visser, Emble-
ton et al. 2010; Visser and Lambon Ralph 2011; Visser, Jefferies
et al. 2012). Peelen and Caramazza (2012) recently reported
that the ATL encodes two conceptual dimensions of viewed
objects: how an object is used, and where it is typically kept
(kitchen or garage). In contrast, the similarity of activity pat-
terns in posterior occipitotemporal cortex was more closely
related to perceptual similarity (although this was also likely
influenced by the concurrent visual presentation of objects).

While distinct integration theories differ in their details, they
share the hypothesis that featural information is integrated in
at least one cortical location (which, following Damasio’s ter-
minology, we refer to as a convergence zone for the remainder
of the manuscript). A putative convergence zone should show
certain characteristics that are testable using novel fMRI analy-
sis techniques. Specifically, the convergence account leads to
three key predictions: 1) Thinking about an object should
evoke brain activity representing its specific identity in a
purported convergence zone (the result of convergence). 2)
Retrieving an object from memory should be accompanied by
neural information about its characteristic features within
specialized regions (the substrates for convergence). The
specificity of these feature fragments could range from general
shape processing to specifying a sphere rather than a cube (the
strictest form of feature fragment). 3) Convergence success
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should be linked to the simultaneous presence of convergence
substrates: specifically, activation of “convergence zones
would produce synchronous activity in separate cortical sites
presumed to contain feature fragments related to the conver-
gence zone” (Damasio 1989, p. 56). We developed a novel
analysis to test relationships between different types of pattern
information, allowing us to detect a relationship between
feature fragments and their convergence into identity in the
human brain.

In the present study, we employ a task that engages top-
down influences without visual information on-screen, allow-
ing us to investigate retrieved object knowledge. We examine
memory-driven activity patterns for fruits and vegetables that
vary orthogonally by color, shape, and identity. Our data
support the three predictions of a convergence zone, including
a link between specific features in visual cortex and object
identity in the left ATL.

Materials and Methods

Subjects
Data from 11 participants (3 females, 18–35 years old) are analyzed (a
12th participant’s fMRI data were not analyzed due to abnormal behav-
ioral responses during the task). All participants were right-handed
with normal or corrected-to-normal vision and reported no history
of neurological problems. Participants provided written informed
consent and received monetary compensation for their participation.
The human subjects review board at the University of Pennsylvania
approved all experimental procedures.

Magnetic Resonance Imaging Acquisition
Subjects were scanned with a 3-T Siemens Trio system equipped with
an eight-channel head coil and foam padding for stabilizing the head.
T1-weighted anatomical images were acquired at the beginning of each
session (repetition time [TR] = 1620 ms, TE = 3 ms, TI = 950 ms, voxel
size = 0.977 × 0.977 × 1.000 mm). T2*-weighted scans recorded blood
oxygenation level–dependent (BOLD) response using interleaved
gradient-echo EPI (TR = 3000 ms, TE = 30 ms, field of view = 19.2 ×
19.2 cm, voxel size = 3.0 × 3.0 × 3.0 mm, 42 slices).

Experimental Procedure
Prior to fMRI scanning, participants completed a behavioral staircasing
procedure to determine the level of visual noise that was later applied
to images presented during the fMRI scan. This ensured that the
in-scan detection task would be challenging enough to engage each
subject. On each trial of this staircasing behavioral task, a MATLAB
script presented subjects with an image of a fruit (bananas and toma-
toes, 2 fruits not used for the primary task) with an overlaid field of
Gaussian visual noise. Subjects indicated with a button-press if they
could identify the fruit. After each behavioral response, the script in-
creased or decreased the variance of the noise that was added to the
next image, to bring the subject’s final detection level to 75% by the
end of the procedure. The variance giving this detection level was then
applied in the same way to the images used in each participant’s scan.
The participants’ in-scan detection accuracies were very close to this
level, suggesting the staircasing was successful (M hit rate = 74%, SD =
14%; M false alarm rate (FAR) to pure noise = 7%; FAR to foils-in-noise
= 35%).

At the beginning of the scanning session, participants passively
viewed images of exemplars of the 4 types of fruit and vegetables
(carrots, celery, limes, and tangerines) that would later act as targets,
centrally placed on a white background. During this run, blocks of 6
images of each type of fruit and vegetable were presented in a random
order, with each image shown for 3 s. Blocks were separated by 12 s of
fixation. In total, 12 exemplars of each type of fruit and vegetable (later
hidden in the detection task) were presented, split across 2 blocks.

During the next 4 scanning runs, participants were instructed to
respond with a button-press when they detected a cued fruit or veg-
etable within visual noise. Word cues were presented to indicate a type
of fruit or vegetable that should be detected (e.g., “carrot”). A variable
number of images then followed, each displaying Gaussian noise
applied to a homogenous white background, generated through
MATLAB with the variance-level determined by the subject’s prior
staircasing (see Fig. 1). In every run, each of the 4 fruit and vegetable
cues was cumulatively followed by the same total amount of Gaussian
noise. Within the blocks, the pure-noise images were each shown for
3 s. Following a variable length of time (between 12 and 24 s after the
initial cue), a fruit or vegetable was presented, hidden within Gaussian
noise using the parameters determined from the participant’s staircas-
ing. The block automatically ended after this image. This design af-
forded us the high signal sensitivity found with block designs,
combined with unpredictability to keep participants cognitively
engaged. Each fruit and vegetable cue (e.g., “carrot”) occurred 3 times
in a run (giving 12 blocks for each fruit and vegetable across the exper-
iment). Blocks were presented in a pseudo-randomized order so the
same cue did not immediately repeat. Two of the fruit-in-noise images
ending the noise blocks contained a fruit or vegetable that did not
match the preceding cue (i.e., 2 of 12 were foils) to focus participants
on detecting the specific target. The 2 foils for each kind of cue were
other fruits/vegetables with the same color but different shape, or
same shape but different color (e.g., for carrot: tangerine and celery),
ensuring that the 4 objects acted as foils with the same frequency. To
encourage participants to search for the cued target from the very start
of every block, the beginning of each run (during the 4 beginning time-
points routinely removed in preprocessing) included a short block in
which a cued fruit or vegetable appeared after only 3 or 6 s, followed
by 12 s of fixation. The short blocks’ hidden fruits and vegetables were
not repeated in the main blocks and the short blocks’ BOLD signal did
not contribute to any analyses.

The 12 images of each type of fruit/vegetable (10 cued, 2 foils) that
ended the blocks (within noise) were photographic examples in
various orientations on a white background. The objects were all

Figure 1. Experimental design. Participants were presented with cues of items to
detect, followed by blocks of visual noise. Each block ended with an actual image
embedded in noise, at a threshold that was determined for each participant before
their scan (shown here at a low threshold for visualization purposes). Blocks contained
an unpredictable amount of pure noise and occasionally ended with an incorrect
(noncued) fruit or vegetable to keep participants on task. The objects in the final trial
are displayed here in each corner although they could appear in any corner in the actual
experiment. Every block ended with a unique instance of that kind of fruit or vegetable
(e.g., no particular tangerine appeared more than once). Data associated with the
last noise time-point (after accounting for the hemodynamic lag) were discarded to
ensure that the signal-ascent from viewing the image-in-noise did not influence the
analyzed data.
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adjusted to have the same height. The hidden items appeared in 4
possible locations: top-left, top-right, bottom-left, and bottom-right
(see Fig. 1 for an example). The objects appeared in each location 3
times across the experiment, in a randomized order. The objects
appearing in each location were preceded by the same cumulative
amount of Gaussian noise across the experiment (i.e., there was no
contingency between the amount of noise and final stimulus location).

Magnetic Resonance Imaging Preprocessing
Imaging data were preprocessed using the Analysis of Functional Neu-
roImages (AFNI) software package (Cox 1996). The first 4 volumes of
each functional run were removed to allow the signal to reach
steady-state magnetization. All functional images were slice-time cor-
rected and a motion correction algorithm registered all volumes to a
mean functional volume. Low-frequency trends were removed from all
runs using a high-pass filter threshold of 0.01 Hz. Voxel activation was
scaled to have a mean of 100, with a maximum limit of 200. The data
were not smoothed.

Decoding Analyses
Pattern decoding was conducted within the MATLAB environment.
The functional data were first z-scored within each run. The TRs con-
taining neural activity in response to the pure-noise trials (i.e., before
the participant encountered a concealed fruit or vegetable) were ident-
ified and then block-averaged in the following way. First, a binarized
label of the search target was assigned to each TR. This time series of
labels was then convolved with a time-shifted model of the hemody-
namic response and thresholded at 0.8 (where the hemodynamic
response falls between 0 and 1.0), giving a vector of activity values
for each pure-noise TR. These vectors were then averaged by block.
To ensure that each block’s average was not influenced by the
signal-ascent of the block’s final trial (in which a fruit or vegetable was
actually present), we also removed the last pure-noise TR of each block
before averaging.

We conducted an information brain mapping “roaming searchlight”
analysis in each participant by centering a sphere (3-voxel radius) on
each voxel in turn (Kriegeskorte et al. 2006). MVPA was conducted
with the voxels in each searchlight volume (123 when not restricted by
the brain’s boundary) and classifier performance was allocated to the
central voxel. For each searchlight, 4-fold cross-validation was con-
ducted (training on 3 runs; testing on the fourth) with a Gaussian
Naïve Bayes (GNB) classifier (implemented through the MATLAB Stat-
istics toolbox) to classify the activity to noise trials according to the par-
ticipant’s search target (carrot, celery, lime, or tangerine). The
classifier was trained and tested on vectors of BOLD activity values that
were identified in the manner described above. GNB classifiers have
been shown to have particular success for datasets with small numbers
of training samples (Ng and Jordan 2002; Mitchell et al. 2004; Singh
et al. 2007), such as here, where each block contributes one data point.
It is also fast for searchlight analyses (Pereira et al. 2009).

Each participant’s map of searchlight accuracies was brought to
standardized space (with the same resolution as the functional data)
and spatially smoothed with a 6-mm FWHM kernel. The 11 searchlight
maps were submitted to a group analysis to test whether the accuracy
at each voxel was >0.25 (chance), with family-wise error correction for
multiple comparisons (corrected to P < 0.05, with a 26-voxel cluster
threshold estimated with AlphaSim; Cox 1996).

The next analysis tested whether a model trained on the cued visual
noise would generalize to activity patterns (also block averages) re-
corded during the separate passive-viewing run. A classifier was
trained on all pure-noise trials labeled by cue, and tested on the
passive-viewing run of on-screen fruits and vegetables (after equalizing
each pattern’s mean through subtraction). This 4-way classification
was performed with the voxels of each searchlight that had been ident-
ified in the prior analysis (transformed back into each participant’s
original space), with the searchlights’ performance then averaged. We
could not train on the passive-viewing data due to an insufficient
amount of training data. To assess statistical significance, we con-
ducted permutation testing. First, each participant’s classifier testing
labels were scrambled 1000 times, and the classification was repeated

for each new set of labels. This produced 1000 permutation-generated
classification accuracies for each participant. To obtain a group
P-value, a null distribution was created by randomly sampling a classi-
fication accuracy value from every subject’s 1001 classification scores
(1000 permutations + 1 real order) and calculating the group mean.
This was performed 10 000 times, giving 10 000 permuted group
means. The real group mean was compared with this null distribution
to identify the P-value.

To conduct color and shape generalization tests, we trained classi-
fiers to distinguish 2 items differing in one dimension (e.g., carrot vs.
celery for color) and tested the model on the unused items that varied
in the same way (e.g., tangerine vs. lime). This was performed on data
from lateral occipital cortex, V4-region, and the left ATL region ident-
ified from the searchlight analysis. A 4-fold leave-one-run-out cross-
validation procedure was conducted twice: Alternating which items
were used for training. Each pair of scores was averaged. To assess stat-
istical significance, we conducted the permutation testing procedure
described above, with each set of randomized labels held constant for
both combinations of training and testing. The null distribution was
generated by sampling 1000 group means by randomly selecting from
each participant’s 100 permutations of classification scores. The
P-value was then calculated from this distribution.

We conducted a novel decoding-dependency analysis (to investigate
feature-to-identity convergence) by extracting classification accuracy
vectors (i.e., 1 vs. 0 for each block) for color classification in the color
region, shape classification in the shape region, and identity classifi-
cation in the ATL searchlights. A logistic model (with quadratic penalty
determined by marginal likelihood maximization for convergence
[Zhao and Lyengar 2010] and coefficient stability) predicted object-
identity decoding success (48 values; 1 for each block) for each of the
identified ATL searchlights, with predicting variables for: block-by-
block success for color decoding, block-by-block success for shape
decoding and block-by-block color-shape conjunction (color decoding
× shape decoding). Odds ratios were calculated from the models’ coef-
ficients (eb) and averaged across the identified searchlights for each
subject.

Regions of Interest
The color and shape across-item generalization tests were conducted
using voxels in regions involved in shape and color processing. The
shape-relevant region was based in lateral occipital cortex, an area
with location-tolerant shape information (Eger et al. 2008; Carlson
et al. 2011). Previous research has shown that this region is modulated
by top-down processing (Stokes et al. 2009; Reddy et al. 2010). We
extracted standard space coordinates from a highly cited study of
shape processing (Grill-Spector et al. 1999). The lateral occipital shape
region can be characterized by 3 vertices (dorsal, posterior, and
anterior), so we placed 3 spheres (6 mm radius, the approximate stan-
dard deviation of activation reported) against the vertex coordinates
from the object > texture contrast, in both hemispheres (coordinates in
Table 1; Supplementary Fig. 1). This successfully encompassed lateral
and ventral regions of the lateral occipital complex.

The color-processing region was based on a seminal color-
processing study (McKeefry and Zeki 1997). The coordinates for
maximum activation in a chromatic versus achromatic contrast were

Table 1
Coordinates for feature ROIs

Feature Coordinates

Shape −41, −77, 3 −36, −71, −13 −38, −50, −17
40, −72, 2 37, −69, −10 33, −47, −14

Color 30, −78, −18
−26, −80, −14

Notes: Talairach coordinates for shape (extracted from Grill-Spector et al. 1999) and color
(extracted from McKeefry and Zeki 1997) regions. The shape coordinates refer to the 3 vertices in
each hemisphere that characterize the lateral occipital shape region. Spheres (6 mm radius) were
positioned to border each vertex. The color coordinates reflect the center of right and left placed
spheres (6 mm radius).
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extracted from this study and a sphere (radius 6 mm, the approximate
extent of activation reported) was placed at the right hemisphere coor-
dinates. Investigations have suggested that right V4 is particularly
modulated by top-down control of color processing (Kosslyn et al.
2000; Morita et al. 2004; Bramão et al. 2010), and achromatopsia is dif-
ferentially associated with right V4 damage (Bouvier and Engel 2006),
so we focused on the right region (coordinates in Table 1; Supplemen-
tary Fig. 1), although also examined left V4 from the same study.

Results

We presented participants with images of colored random
noise and directed subjects to detect one of 4 types of fruits
and vegetables—carrot, celery, lime, and tangerine—that vary
systematically by shape and color (Fig. 1). These blocks of
pure noise ended after an unpredicable amount of time with
the cued fruit or vegetable, or a foil, hidden within noise. We
analyzed the BOLD data associated with time-points before
any fruit or vegetable was revealed, in order to examine
top-down-driven activity. Prior to the main task, participants
passively viewed exemplars of the 4 types of fruit and veg-
etable, giving us visually generated activity patterns for these
items.

Decoding Object Identity from Anticipatory Visual
Activity
To test the first requirement of a convergence zone—that a
brain region contains a memory-evoked code for object iden-
tity—we asked if the identity (carrot, celery, lime, or tangerine)
of a searched-for object could be decoded as participants
viewed visual noise. The location (or even existence) of a con-
vergence zone has not been established, so we used a whole-
brain searchlight analysis to analyze sequential clusters of
voxels. The functional data associated with the pure-noise
time-points were labeled by the participant’s current detection-
target and submitted to a 4-way machine learning classifier.
The classifier was able to decode (at P < 0.05 corrected) the
identity of the anticipated-but-unseen targets in a cluster of 64
searchlights in the left ATL. The volume of the identified
searchlights included the left fusiform gyrus, interior temporal,
middle temporal, and superior temporal cortex (verified by
cortical segmentation and automated labeling through Free-
Surfer; Fischl et al. 2002). The region was centered at −41x,
−8y, 17z and is shown in Figure 2. This was the only significant
searchlight cluster (M accuracy = 0.29, SD = 0.02; confusion
matrix available in Supplementary Fig. 2).

We verified that this significant decoding was not based
purely on a subcategorical distinction between “fruits” and
“vegetables” by successfully classifying items that do not cross
this fruit/vegetable boundary (i.e., carrot vs. celery and lime
vs. tangerine) at a level significantly above chance (permu-
tation testing: P = 0.025). The “fruit versus vegetable” contrast
itself was not classifiable in this region (M accuracy = 0.52; P =
0.24). We also confirmed that time-points from each of the 4
fruits and vegetables had above-chance accuracies (P < 0.05).
Although unlikely that motor responses could account for tem-
poral lobe performance, we confirmed that the numbers of
motor responses did not differ significantly between targets
(F3,30 = 1.50, P = 0.24).

We tested the specificity of the ATL’s left lateralization by
analyzing an ROI in the right hemisphere at the same y and z
coordinates as the left region. Successful decoding was specific
to the left ATL: the right ATL’s performance was not significant
(M accuracy = 0.26 where chance = 0.25; P = 0.30), with greater
performance in the left ATL (paired t-test: t(10) = 3.64, P =
0.005). Because of the known signal issues in the ATL, we
measured the temporal signal-to-noise ratio (tSNR; calculated
by dividing each voxel’s mean signal with its standard devi-
ation over the time-course of each run) of the left and right ATL
regions, to assess signal-quality, and to ask if tSNR differences
account for the lateralization. The tSNR values of the search-
light centers were high for both ATL regions (mean left = 77.4;
mean right = 77.5) and well above levels that are considered
suitable for signal detection (e.g., 20 in Binder et al. 2011).
This indicated that the signal was strong in both regions,
which additionally did not differ (t(10) = 0.01, P = 0.99). Sup-
plementary Figure 3 shows a map of ATL tSNR in this study.

Are multivoxel patterns necesssary for distinguishing object
identity? We would expect so, given the role of multivoxel pat-
terns in successfully decoding object-information that cannot
be detected with univariate analyses (Haxby et al. 2001; Eger
et al. 2008). A direct and comparable approach to testing this is
to re-run the classification, but replacing the multivoxel pat-
terns with the univariate mean of each block (Coutanche
2013). Mean activation of the left ATL could not separate the
conditions (M accuracy = 0.24; chance = 0.25; P = 0.70).

We examined the nature of the top-down-generated ATL
identity code by asking whether it generalizes to activity
recorded while subjects viewed images of the fruits and veg-
etables. We trained a classifier on the noise-only trials in the
searchlights identified above (transformed back to each partici-
pant’s original space), with each trial labeled by search target.

Figure 2. Location of searchlights with above-chance decoding of object identity while participants viewed visual noise and attempted to detect one of 4 kinds of fruit and
vegetables. Left: A 4-way searchlight analysis revealed a region within the left ATL capable of decoding the target. Searchlight centers are shown in red. Right: The searchlights’
volume displayed in one participant’s original space, shown on their T1 anatomical image after automated cortical reconstruction and volumetric segmentation using the FreeSurfer
image analysis package (Fischl et al. 2002).
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We tested the trained models on data from a separate run in
which participants viewed blocked images of each kind of fruit
or vegetable. The models trained on preparatory activity in the
ATL could successfully classify the type of fruits and vegetable
viewed in the seperate passive-viewing run (M = 0.30, SD =
0.08; chance = 0.25; P = 0.037), revealing that the memory-
generated and visually generated patterns were similarly struc-
tured (Fig. 3).

Decoding Object Features
The 4 targets in this study differed orthogonally by shape (2
elongated, 2 spherical) and color (2 orange, 2 green), allowing
us to decode each feature independently, and test the second

prediction of the convergence zone theory: that specific
feature knowledge fragments become active in sensory
regions. We examined this by asking whether a model trained
to distinguish different shapes or colors could generalize to
another pair of objects that shares one dimension distinction,
but differs in the other (Fig. 4). We investigated shape and
color generalization in 1) a bilateral region of lateral occipital
cortex that is associated with shape processing and 2) an occi-
pital area (right V4) associated with color processing (see
Materials and Methods for full details).

A classifier model trained on data collected as participants
were searching for fruits and vegetables that differed by shape
(e.g., lime vs. celery) could decode the remaining fruits and
vegetables with a similar shape distinction (tangerine vs.

Figure 4. Feature-based generalization. Classifiers were trained to distinguish noise trials in which participants were searching for fruits and vegetables differing by shape or color.
The classifiers were then tested on noise trials with the other pair of targets that differed in the same way. In the first example (left), classifiers are trained and tested based on
shape (trained on lime vs. celery, tested on tangerine vs. carrot). In the second example (right), classifiers are trained and tested based on color (trained on lime vs. tangerine,
tested on celery vs. carrot). The items took turns to act as the training data and the results of both comparisons were then averaged.

Figure 3. Generalizing from top-down activity to visual perception. Left: A classifier was trained on activity patterns recorded as participants viewed visual noise and sought to
detect a cued fruit or vegetable. The classifier model was then tested on activity recorded as participants viewed real images of category examples in a separate run. Center:
Activity patterns in this analysis were extracted from the left temporal lobe searchlights identified in the prior analysis of noise trials alone. Right: Classification accuracy significantly
exceeded chance-performance, reflecting successful generalization from anticipatory activity to visual perception. The dashed line reflects the level of chance and the error bar
shows the standard error of the mean. The asterisk signifies above-chance classification performance (P< 0.05).
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carrot), using activity from the bilateral lateral occipital cortex
(M = 0.55, SD = 0.06; P = 0.01; confusion matrix available in
Supplementary Fig. 2). This ability to decode specific shapes
across different colors (training on green, testing on orange)
provides strong evidence that the specific features of each
target were represented in the region’s activity. The same
region could not decode the color of the targets (M = 0.51, SD
= 0.07; P = 0.43), with higher performance for shape than for
color (P = 0.05). A right V4 region, in contrast, contained
activity patterns that (using the same approach as above) could
be used to decode color (M = 0.56, SD = 0.08; P = 0.01; con-
fusion matrix available in Supplementary Fig. 2), and shape at
a trend level (M = 0.54, SD = 0.09; P = 0.09; no significant differ-
ence between shape and color: P = 0.17). This was specific to
the right region: Left V4 could decode neither feature (P > 0.4;
lower color accuracies than the right: P = 0.04, although no
difference for shape: P = 0.15). There was a significant inter-
action for greater shape decoding in lateral occipital cortex and
greater color decoding in right V4; P = 0.03; Fig. 5).

Unlike these features, identity decoding was unsuccessful in
both regions (P > 0.46). We also tested the identified ATL
region for feature decoding. Consistent with this region con-
taining identity information that is transformed away from fea-
tures, neither shape (M = 0.49, SD = 0.04; P = 0.61) nor color

(M = 0.50, SD = 0.05; P = 0.46) could be decoded (significantly
lower color-decoding than right V4: P = 0.01; lower shape-
decoding than lateral occipital cortex: P = 0.01; from permu-
tation testing).

Shape and Color Conjunction Predicts the Left ATL’s
Identity Code
The third and final convergence zone prediction was that the
convergence result (identity) would occur with converging
activation of the specific shape and color feature fragments for
that object. We employed a novel decoding-dependency analy-
sis to examine this. We first coded each block of every partici-
pant for whether its neural activity contained decodable object
identity in the ATL, color in right V4 and shape in lateral occipi-
tal cortex. We created a logistic regression model (full details
in Materials and Methods) of identity-decoding success in the
ATL (1 vs. 0) in each block, with predictors for the blocks’ 1)
color decoding success in right V4, 2) shape decoding success
in lateral occipital cortex, and 3) simultaneous color-and-shape
decoding (i.e., 1 × 2). The odds ratios from this model reflect
dependencies between feature fragments and converged-upon
identity.

The conjunction (i.e., convergence) of both V4 color decod-
ing and lateral occipital shape decoding was specifically

Figure 5. Classification results from the shape- and color-decoding analyses. Results are displayed from training a classifier on data from noise trials when participants were
attempting to detect targets that differed by shape or color, and tested on data with other targets that varied in the same way. The shape results (e.g., training: lime vs. celery,
testing: tangerine vs. carrot) are shown in red. The color results (e.g., training: tangerine vs. lime, testing: carrot vs. celery) are shown in blue. The dashed lines reflect the level
of chance and the error bars show standard error of the mean. Asterisks signify above-chance classification performance (P< 0.05). The cross signifies trend-level
performance (P< 0.1). The green region displayed in the cross section is in lateral occipital cortex. The red region is based on a color-responsive area, right V4 (Materials and
Methods).
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predictive of successful ATL identity decoding (M odds ratio =
2.64; odds ratio >1: t10 = 4.08, P = 0.002), unlike the successful
decoding of just one feature (M odds ratio for color: 0.76; M
odds ratio for shape: 0.66). This relationship is also apparent
from examining the amount of conjunctive color-
and-shape decoding in ATL identity-decoded, and nonde-
coded, blocks. Randomly shuffling the color decoding and
shape decoding results (10 000 times) provides a way to
compare the observed degree of feature conjunction with a
null distribution that controls for baseline rates of color and
shape decoding success (as baseline rates remain the same in
each permutation). Comparing the results to this null distri-
bution showed that feature conjunction was more likely in the
ATL identity-decoded blocks than expected under a null
hypothesis of their independence (P = 0.03), but was not more
likely in identity-misclassified blocks (P = 0.38; interaction: P =
0.07). This shows that concurrent color-and-shape decoding
(in feature regions) co-occurs with successful object-identity
decoding (in the ATL) to a greater degree than expected from
baseline occurrences. The overall probability of simultaneous
color-and-shape decoding was not significantly greater than
expected from independence (t =−1.28, P = 0.23), further em-
phasizing the relevance of successful ATL decoding.

The above dependency relationship was not driven by
accuracy or reaction times during the task: Blocks with, and
without, synchrony between color, shape, and identity decod-
ing did not significantly differ in behavioral accuracy
(t(10) = 0.57, P = 0.58) or (correct) response times (t(10) = 0.76,
P = 0.46). To examine if convergence requires feature infor-
mation coming from independent regions, or if distinct fea-
tures can also be extracted from one region, we also ran a
model with shape decoding from V4 rather than lateral occipi-
tal cortex. In this model, shape-color conjunction was also the
only factor receiving an odds ratio that was greater than one
(t(10) = 2.58, P = 0.03).

Finally, if the relationship between color-shape conjunction
and ATL identity decoding plays an active role in the activation
of a concept, we might expect subjects with stronger dependen-
cies to have ATL codes that more closely match visually gener-
ated codes. Consistent with this, subjects with stronger links
between feature fragments and identity (indicated by higher
odds ratios for shape-and-color convergence predicting ATL
identity in the previous logistic regression) had top-down iden-
tity codes that more closely resembled visually driven patterns
in the ATL (r = 0.67, P = 0.02; Fig. 6). This was not simply due
to individual differences in the robustness of top-down-driven
activity: the strength of the feature-identity dependency was
not related to decoding success of a classifier trained and tested
on noise only (P = 0.72), suggesting that the relationship was
specific to similarity between memory-generated and visually
generated codes.

Discussion

The results described here provide evidence for theories that
posit a region of integration (Damasio 1989; Simmons and Bar-
salou 2003; Patterson et al. 2007; Meyer and Damasio 2009).
As participants viewed visual noise and attempted to detect a
specific fruit or vegetable, activity patterns of the left ATL
coded the retrieved object’s identity. These top-down patterns
generalized to activity produced during passive viewing. Pos-
terior featural regions encoded the anticipated objects’ specific

shape and color. Importantly, these levels of representation
were closely linked: ATL decoding of object identity was pre-
dicted by the presence of both color and shape codes (but
neither one alone) in featural regions. Further, a stronger
feature-to-identity link predicted a greater match between
top-down and visually generated patterns in the ATL.

A recent MVPA study reported that the ATL contains infor-
mation relating to conceptual dimensions (object location and
action) of visually presented objects, while occipitotemporal
cortex does not (Peelen and Caramazza 2012). Here, we found
that the ATL’s code for an object’s identity is linked to occipito-
temporal codes for the object’s distinct visual properties.
Additionally, by examining activity during a top-down task
(rather than during visual presentations), we found that
these distinct, but connected, codes do not require visual
stimulation.

The particular ATL site we identified directly overlaps with
reported peaks of the semantic network (Vandenberghe et al.
1996), and has been associated with semantic behavioral dis-
ruptions when targeted with TMS (e.g., Pobric et al. 2010a,
2010b; Ishibashi et al. 2011). Interestingly, this region was also
recently identified in a study of conceptual combination
(Baron and Osherson 2011). Here, the authors found that mul-
tivoxel patterns in this cortical location encode the semantic
relationship between word combinations (such as “man” and
“child”) and related concepts (boy).

The results of our study are consistent with a variety of
patient work pointing to the ATL’s role in conceptual knowledge
(Patterson et al. 2007; Rogers et al. 2007). More specifically, the
reported translation from featural information within visual
cortex to identity information in the ATL is consistent with the
temporal lobes containing a continuous transition to higher
order representations (Binney et al. 2012). It should be noted
that information may still be present within additional regions of
the ATL. The ventral ATL is particularly vulnerable to signal
dropout and distortion, potentially obscuring an informative

Figure 6. Individual differences in noise-to-visual generalization against the strength of
the relationship between featural- and object-identity decoding. The y-axis represents
each subject’s classification performance from training on cued noise and testing on
visual presentations of each fruit and vegetable in the ATL. The x-axis reflects each
participant’s odds ratio for the conjunction of color and shape decoding (in relevant
feature regions) predicting cued-noise identity classifications in the ATL. A logistic
regression model generated the odd ratios (details in Materials and Methods).
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signal in this area (although recent distortion-correcting pro-
cedures have identified this region as active during semantic
tasks: Visser, Embleton et al. 2010; Visser and Lambon Ralph
2011; Visser, Jefferies et al. 2012). As such, information may also
lie in neighboring ATL regions that did not have a robust signal.

The information-dependency we report between ATL and
visual cortex identifies a top-down-generated relationship
between these areas, where visual regions evoke specific
feature activity patterns that are functionally related to ATL pat-
terns. As shape and color processing are known to be neurally
dissociable (e.g., agnosia patients can show impairments in one
but not the other: Cavina-Pratesi et al. 2010), this suggests that
distinct systems are sharing information with the ATL and contri-
buting different types of conceptual information (Lambon
Ralph et al. 2010). The hub-and-spoke model proposes that
modality-specialized regions (V4 and lateral occipital cortex in
this study) provide sensory and motor substrates that are com-
bined into an independent high-dimensional representational
space in a central hub (Lambon Ralph et al. 2010; Pobric et al.
2010a). Our finding of a predictive link between feature and
identity coding regions gives weight to sensory regions playing
a significant role in object knowledge. The distinct roles of the
ATL and sensory regions are consistent with reports that ATL
atrophy can increase reliance on superficial similarities (coded
in sensory regions) rather than semantic similarities (coded in
the ATL; Lambon Ralph et al. 2010). An account with multiple
convergence zones (Damasio 1989) also incorporates distinct
roles for integration and sensorimotor regions. Further investi-
gations are needed to distinguish between these theories.

The findings of this study may be helpful in interpreting
some recent semantic dementia patient findings. A recent
study of semantic dementia reported that processing items rich
in visual color and form was disproportionately impaired in
patients with severe dementia, unlike items with other features
such as sound/motion and tactile/action (Hoffman et al. 2012).
The authors speculated that temporal lobe atrophy may have
spread more posteriorly to affect basic featural regions in these
severe cases. Our results suggest a new possibility: the patients
may have experienced disruption to a key shape and color con-
vergence zone. One arising question for the hub-and-spoke
model (which includes a transmodal hub) is why visual prop-
erties would be affected, while other sensory inputs are not.
One possibility is that parts of the hub’s neural network that
are closer to posterior occipitotemporal cortex are particularly
important for concepts with a strong dependency on these
visual features. Probabilistic tractography recently revealed
connection heterogeneity across the ATL (Binney et al. 2012).
Distinctions may also be present for concepts that particularly
depend on one modality more than others.

Our between-subject analyses showed that participants dif-
fered in the correspondence between top-down and visually
generated ATL patterns, which was predicted by the strength of
their ATL’s dependence on joint color-and-shape decoding.
One of several explanations could underlie this result. One
possibility is that top-down generated patterns only take on
perceptually driven characteristics when all relevant early
visual regions generate robust and specific features, which in
turn varies across blocks and participants. Alternatively, indi-
vidual differences in whether a person’s top-down patterns rely
on sensory features (or more abstract properties; cf. Hsu et al.
2011) could determine whether top-down processes activate all
relevant sensory information. Our individual difference result

raises several fascinating questions for future research: Do
differences in the link between object identity and feature syn-
chrony produce differences in people’s phenomenological
experiences during processes involving retrieval, such as
imagery? Are time-points with synchronous color-and-shape
decoding accompanied by particularly vivid imagery?

There are a number of reasons to be confident that the
object-identity decoding reported here reflects visual processes,
rather than others, such as verbal rehearsal. The link between
object-identity and shape-and-color decoding argues strongly
for a perceptual basis for the identity decoding, rather than
other semantic features such as taste. Further, the ability to gen-
eralize decoding from top-down to visually presented objects
(where no task was required) supports a visual account.

In our featural analyses, we found shape, but not color,
information in the shape region. In contrast, the color region
had decodable color information along with shape information
at a trend level. Interestingly, this asymmetry was also reported
in a recent meta-analysis of modality-specific imagery, where
shape-related activity overlapped with color regions, but not
vice versa (McNorgan 2012). Prior work has also suggested
that “V4 neurons are at least as selective for shape as they are
for color” (Roe et al. 2012, p. 17). Shape curvature is particu-
larly represented in V4 (Roe et al. 2012), which would account
for V4 decoding spherical versus elongated shapes at a trend
here. We note that our interpretation of the convergence
pattern does not require that the two regions are uniquely se-
lective to color or shape; only that they contain different (i.e.,
nonredundant) patterns of information.

Several neural and cognitive states might underlie the suc-
cessful decoding of just one of the two features during a block.
On the one hand, fluctuations in a specific feature might reflect
block-by-block changes in participants’ cognitive strategies,
such as greater attention directed to one feature. On the other
hand, fluctuations in neural activity might reflect ongoing com-
petition between the features for limited attentional resources.
When the attentional system becomes taxed, dynamic compe-
tition between features may lead to only one becoming fully ac-
tivated and having discriminable activity patterns.

We employed a novel decoding-dependency analysis in this
work, enabling us to identify a link between ATL’s object-
identity code and a conjunction of visual feature decoding in
occipital regions. This type of analysis has great potential for
future investigations of other configural stimuli, such as in mul-
tisensory interplay (Driver and Noesselt 2008), to test whether
the synchronous emergence of composing features co-occurs
with the generation of a higher level code. Relating this
measure to between-subject differences, as we have done here,
can help elucidate the behavioral and neural consequences of
such links. Employing four fruits and vegetables here in a
2-by-2 design allowed us to independently evaluate shape,
color and identity in a systematic manner, but we acknowledge
that the actual semantic space for known objects is vast. Future
studies may wish to further explore the semantic relations
between large numbers of items.

In summary, this study has found that the top-down retrieval
of object knowledge leads to activation of shape-specific and
color-specific codes in relevant specialized visual areas, as well
as an object-identity code within left ATL. Moreover, the pres-
ence of identity information in left ATL was more likely when
both shape and color information was simultaneously present
in respective feature regions. The strength of this dependency
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predicted the correspondence between top-down and bottom-
up activity patterns in the ATL. These findings support propo-
sals that the ATL integrates featural information into a less
feature-dependent representation of identity.

Supplementary Material
Supplementary can be found at: http://www.cercor.oxfordjournals.org/.

Funding

This work was funded by National Institutes of Health grants
R01MH070850 and R01EY021717 (to S.L.T.-S.). M.N.C. was
funded by a fellowship from the Howard Hughes Medical
Institute.

Notes
We thank C.A. Gianessi and P. van den Berg for assistance with stimu-
lus development, and R.A. Epstein, J.W. Kable, L.S. Hallion, M.A.
Lambon Ralph, T.T. Rogers, and an anonymous reviewer for their
insightful comments. Conflict of Interest: None declared.

References
Baron SG, Osherson D. 2011. Evidence for conceptual combination in

the left anterior temporal lobe. Neuroimage. 55:1847–1852.
Binder JR, Gross WL, Allendorfer JB, Bonilha L, Chapin J, Edwards JC,

Weaver KE. 2011. Mapping anterior temporal lobe language areas
with fMRI: A multicenter normative study. Neuroimage. 54(2):
1465–1475.

Binney RJ, Parker GJM, Lambon Ralph MA. 2012. Convergent connec-
tivity and graded specialization in the rostral human temporal lobe
as revealed by diffusion-weighted imaging probabilistic tractogra-
phy. J Cogn Neurosci. 24(10):1998–2014.

Bouvier SE, Engel SA. 2006. Behavioral deficits and cortical damage
loci in cerebral achromatopsia. Cereb Cortex. 16(2):183–191.

Bozeat S, Lambon Ralph MA, Patterson K, Garrard P, Hodges JR. 2000.
Non-verbal semantic impairment in semantic dementia. Neuropsy-
chologia. 38(9):1207–1215.

Bramão I, Faísca L, Forkstam C, Reis A, Petersson KM. 2010. Cortical
brain regions associated with color processing: an fMRI study.
Open Neuroimaging J. 4:164–173.

Carlson T, Hogendoorn H, Fonteijn H, Verstraten FAJ. 2011. Spatial
coding and invariance in object-selective cortex. Cortex. 47(1):14–22.

Cavina-Pratesi C, Kentridge RW, Heywood CA, Milner AD. 2010. Separ-
ate processing of texture and form in the ventral stream: evidence
from FMRI and visual agnosia. Cereb Cortex. 20(2):433–446.

Coutanche MN. 2013. Distinguishing multi-voxel patterns and mean
activation: why, how, and what does it tell us? Cogn Affect Behav
Neurosci. 13(3):667–673.

Cox RW. 1996. AFNI: software for analysis and visualization of func-
tional magnetic resonance neuroimages. Comput Biomed Res. 29
(3):162–173.

Damasio AR. 1989. Time-locked multiregional retroactivation: a
systems-level proposal for the neural substrates of recall and recog-
nition. Cognition. 33(1–2):25–62.

Driver J, Noesselt T. 2008. Multisensory interplay reveals crossmodal
influences on “sensory-specific” brain regions, neural responses,
and judgments. Neuron. 57(1):11–23.

Eger E, Ashburner J, Haynes J-D, Dolan RJ, Rees G. 2008. fMRI activity
patterns in human LOC carry information about object exemplars
within category. J Cogn Neurosci. 20(2):356–370.

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van
der Kouwe A, Killiany R, Kennedy D, Klaveness S et al. 2002.
Whole brain segmentation: automated labeling of neuroanatomical
structures in the human brain. Neuron. 33(3):341–355.

Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R.
1999. Differential processing of objects under various viewing
conditions in the human lateral occipital complex. Neuron. 24
(1):187–203.

Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. 2001.
Distributed and overlapping representations of faces and objects in
ventral temporal cortex. Science. 293(5539):2425–2430.

Hodges JR, Patterson K, Oxbury S, Funnell E. 1992. Semantic dementia
progressive fluent aphasia with temporal lobe atrophy. Brain. 115
(6):1783–1806.

Hoffman P, Jones RW, Lambon Ralph MA. 2012. The degraded concept
representation system in semantic dementia: damage to pan-modal
hub, then visual spoke. Brain. 135(12):3770–3780.

Hsu NS, Kraemer DJM, Oliver RT, Schlichting ML, Thompson-Schill SL.
2011. Color, context, and cognitive style: variations in color knowl-
edge retrieval as a function of task and subject variables. J Cogn
Neurosci. 23(9):2544–2557.

Ishibashi R, Lambon Ralph MA, Saito S, Pobric G. 2011. Different roles
of lateral anterior temporal lobe and inferior parietal lobule in
coding function and manipulation tool knowledge: evidence from
an rTMS study. Neuropsychologia. 49(5):1128–1135.

Kiefer M, Pulvermüller F. 2012. Conceptual representations in mind
and brain: theoretical developments, current evidence and future
directions. Cortex. 48(7):805–825.

Kosslyn SM, Thompson WL, Costantini-Ferrando MF, Alpert NM,
Spiegel D. 2000. Hypnotic visual illusion alters color processing in
the brain. Am J Psychiatry. 157(8):1279–1284.

Kriegeskorte N, Goebel R, Bandettini P. 2006. Information-based func-
tional brain mapping. Proc Natl Acad Sci USA. 103(10):3863–3868.

Lambon Ralph MA. 2014. Neurocognitive insights on conceptual
knowledge and its breakdown. Philos Trans R Soc B Biol Sci. 369
(1634):20120392.

Lambon Ralph MA, Sage K, Jones RW, Mayberry EJ. 2010. Coherent
concepts are computed in the anterior temporal lobes. Proc Natl
Acad Sci USA. 107(6):2717–2722.

Luzzi S, Snowden JS, Neary D, Coccia M, Provinciali L, Lambon Ralph
MA. 2007. Distinct patterns of olfactory impairment in Alzheimer’s
disease, semantic dementia, frontotemporal dementia, and cortico-
basal degeneration. Neuropsychologia. 45(8):1823–1831.

Martin A. 2007. The representation of object concepts in the brain.
Annu Rev Psychol. 58:25–45.

McKeefry DJ, Zeki S. 1997. The position and topography of the human
colour centre as revealed by functional magnetic resonance
imaging. Brain. 120(12):2229–2242.

McNorgan C. 2012. A meta-analytic review of multisensory imagery
identifies the neural correlates of modality-specific and modality-
general imagery. Front Hum Neurosci. 6:285.

Meyer K, Damasio A. 2009. Convergence and divergence in a neural ar-
chitecture for recognition and memory. Trends Neurosci. 32
(7):376–382.

Mitchell T, Hutchinson R, Niculescu R, Pereira F, Wang X, Just M,
Newman S. 2004. Learning to decode cognitive states from brain
images. Machine Learn. 57(1):145–175.

Morita T, Kochiyama T, Okada T, Yonekura Y, Matsumura M, Sadato N.
2004. The neural substrates of conscious color perception demon-
strated using fMRI. Neuroimage. 21(4):1665–1673.

Ng AY, Jordan MI. 2002. On discriminative vs. generative classifiers: a
comparison of logistic regression and naive bayes. Adv Neural Inf
Process Syst. 2(14):841–848.

Patterson K, Nestor PJ, Rogers TT. 2007. Where do you know what you
know? The representation of semantic knowledge in the human
brain. Nat Rev Neurosci. 8(12):976–987.

Peelen MV, Caramazza A. 2012. Conceptual object representations in
human anterior temporal cortex. J Neurosci. 32(45):15728–15736.

Pereira F, Mitchell T, Botvinick M. 2009. Machine learning classi-
fiers and fMRI: a tutorial overview. Neuroimage. 45(1 Suppl):
S199–S209.

Pobric G, Jefferies E, Lambon Ralph MA. 2010b. Amodal semantic rep-
resentations depend on both anterior temporal lobes: evidence
from repetitive transcranial magnetic stimulation. Neuropsycholo-
gia. 48(5):1336–1342.

2592 Convergence of Features to Identity • Coutanche and Thompson-Schill

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu057/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu057/-/DC1


Pobric G, Jefferies E, Lambon Ralph MA. 2007. Anterior temporal lobes
mediate semantic representation: mimicking semantic dementia by
using rTMS in normal participants. Proc Natl Acad Sci USA. 104
(50):20137–20141.

Pobric G, Jefferies E, Lambon Ralph MA. 2010a. Category-specific
versus category-general semantic impairment induced by transcra-
nial magnetic stimulation. Curr Biol. 20(10):964–968.

Reddy L, Tsuchiya N, Serre T. 2010. Reading the mind’s eye: decoding
category information during mental imagery. Neuroimage. 50
(2):818–825.

Roe AW, Chelazzi L, Connor CE, Conway BR, Fujita I, Gallant JL, Lu H,
Vanduffel W. 2012. Toward a unified theory of visual area V4.
Neuron. 74(1):12–29.

Rogers TT, Lambon Ralph MA, Garrard P, Bozeat S, McClelland JL,
Hodges JR, Patterson K. 2004. Structure and deterioration of se-
mantic memory: a neuropsychological and computational investi-
gation. Psychol Rev. 111(1):205–235.

Rogers TT, Patterson K, Graham K. 2007. Colour knowledge in seman-
tic dementia: it is not all black and white. Neuropsychologia. 45
(14):3285–3298.

Simmons WK, Barsalou LW. 2003. The similarity-in-topography prin-
ciple: reconciling theories of conceptual deficits. Cogn Neuropsy-
chol. 20(3):451–486.

Singh V, Miyapuram KP, Bapi RS. 2007. Detection of cognitive states
from fMRI data using machine learning techniques. Proceedings of

Twentieth International Conference on Artificial Intelligence. San
Francisco, CA: Morgan Kaufmann Publishers Inc. p. 587–592.

Stokes M, Thompson R, Nobre AC, Duncan J. 2009. Shape-specific pre-
paratory activity mediates attention to targets in human visual
cortex. Proc Natl Acad Sci USA. 106(46):19569–19574.

Vandenberghe R, Price C, Wise R, Josephs O,, Frackowiak RSJ. 1996.
Functional anatomy of a common semantic system for words and
pictures. Nature. 383:254–256.

Visser M, Embleton KV, Jefferies E, Parker GJ, Lambon Ralph MA.
2010. The inferior, anterior temporal lobes and semantic memory
clarified: novel evidence from distortion-corrected fMRI. Neuropsy-
chologia. 48(6):1689–1696.

Visser M, Jefferies E, Lambon Ralph MA. 2010. Semantic processing in
the anterior temporal lobes: a meta-analysis of the functional neu-
roimaging literature. J Cogn Neurosci. 22(6):1083–1094.

Visser M, Jefferies E, Embleton KV, Lambon Ralph MA. 2012. Both the
middle temporal gyrus and the ventral anterior temporal area are
crucial for multimodal semantic processing: distortion-corrected
fMRI evidence for a double gradient of information convergence in
the temporal lobes. J Cogn Neurosci. 24(8):1766–1778.

Visser M, Lambon Ralph MA. 2011. Differential contributions of bilateral
ventral anterior temporal lobe and left anterior superior temporal
gyrus to semantic processes. J Cogn Neurosci. 23(10):3121–3131.

Zhao M, Lyengar S. 2010. Nonconvergence in logistic and poisson
models for neural spiking. Neural Comput. 22(5):1231–1244.

Cerebral Cortex September 2015, V 25 N 9 2593



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


