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Expertise effects for nonface objects in face-selective brain areas
may reflect stable aspects of neuronal selectivity that determine
how observers perceive objects. However, bottom-up (e.g., clutter
from irrelevant objects) and top-down manipulations (e.g., atten-
tional selection) can influence activity, affecting the link between
category selectivity and individual performance. We test the predic-
tion that individual differences expressed as neural expertise effects
for cars in face-selective areas are sufficiently stable to survive
clutter and manipulations of attention. Additionally, behavioral work
and work using event related potentials suggest that expertise
effects may not survive competition; we investigate this using func-
tional magnetic resonance imaging. Subjects varying in expertise
with cars made 1-back decisions about cars, faces, and objects in
displays containing one or 2 objects, with only one category at-
tended. Univariate analyses suggest car expertise effects are robust
to clutter, dampened by reducing attention to cars, but nonetheless
more robust to manipulations of attention than competition. While
univariate expertise effects are severely abolished by competition
between cars and faces, multivariate analyses reveal new infor-
mation related to car expertise. These results demonstrate that
signals in face-selective areas predict expertise effects for nonface
objects in a variety of conditions, although individual differences
may be expressed in different dependent measures depending on
task and instructions.
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Introduction

Our experience with the world changes our brains. In particu-
lar, gaining visual expertise with a category of objects can
change the way we perceive these objects (Diamond and Carey
1986; Bukach et al. 2010) and affect their representations in
visual cortex (Gauthier et al. 1999; Op de Beeck et al. 2006).
Scientists have studied expertise effects for objects in face-
selective regions of the ventral visual pathway to test the
hypothesis that expertise with faces can account for
face-selectivity in these regions. Expertise has been found to
increase activity in face-selective areas for objects in domains
as varied as birds, cars, chess, and radiological images (Gau-
thier et al. 2000; Xu 2005; Harley et al. 2009; Harel et al. 2010;
Bilalic et al. 2011). Using high-resolution imaging and analyses
in individual regions of interest in flattened cortex, some of us
reported that area (FFA) were obtained in a small area centered
on the peak of face selectivity (McGugin, Gatenby, et al. 2012).
But even outside of the debate regarding the origins of face se-
lectivity, expertise effects can help us understand the func-
tional organization of the brain. Here and elsewhere (Gauthier
et al. 1999; 2000; McGugin, Gatenby, et al. 2012), we use the

term “expertise effect” to refer to a correlation between individ-
ual behavioral performance for objects of a given category with
activity in the brain for other objects from this same category,
sometimes in a different task (Gauthier et al. 2005). Such exper-
tise effects provide us with a window into how our experience
with objects shapes category-selectivity in the brain.

While such expertise effects are correlational, they are gen-
erally interpreted as reflecting stable aspects of neuronal selec-
tivity for objects. These stable aspects of selectivity in turn
determine how an observer perceives these objects, thereby ac-
counting for behavioral advantages in expert performance.
This interpretation is supported by converging evidence from
a variety of studies. In one study, the FFA’s response to cars
predicted the behavioral performance with other cars
measured months later (Gauthier et al. 2005) suggesting a
stable skill was measured. In training experiments, the degree
of holistic processing subjects acquired with objects from a
novel category was associated with activity for these objects in
(Gauthier and Tarr 2002) or near (Wong et al. 2009) the FFA.
In addition, lesions in the fusiform gyrus can result in an
inability to acquire expertise normally (Behrmann et al. 2005)
or at least to use the same strategies as controls (Bukach et al.
2012). These studies converge with those reporting expertise
effects in familiar domains to suggest that perceptual expertise
in domains where visually similar objects are individuated
depends on specialization in occipitotemporal cortex, particu-
larly in FFA.

However, an alternative is that expertise effects do not
reveal stable, trait-like aspects of functional specialization that
are only changed by considerable training, but rather reflect
state-like aspects of functional activity associated with how
experts look at objects in their domain of expertise. Indeed,
experts are likely to be more interested in objects in their
domain of expertise and attention can boost signals at virtually
all levels of the visual system (Wojciulik et al. 1998; Murray and
Wojciulik 2004). Thus, Harel et al. (2010) suggested that exper-
tise effects for nonface objects such as cars can be largely ex-
plained by such differences in attention. This is not a new
question. Gauthier et al. (2000) reported that attending to
object identity recruited the FFA more than attention to object
location, but still found an effect of expertise during a location
task. Car expertise effects have been obtained during judg-
ments of identity, location, or during attention to local parts
(Gauthier et al. 2000; 2005). One idea was that these effects
would reflect attentional modulation specific to blocked
designs, but a replication using an event-related paradigm ob-
tained similar expertise effects (Xu 2005). Harel et al. revisited
this question by asking car novices and experts to attend to
either cars or planes in an alternating sequence, and they ob-
served expertise effects only when car experts attended to
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cars. These expertise effects were found in several brain areas,
which was not surprising given that face selectivity is also
found across the brain (e.g., Hoffman and Haxby 2000;
Rossion et al. 2012). However, Harel et al. found effects of ex-
pertise in putative V1 (or early visual cortex, EVC), which they
took as evidence that expertise effects reflect top-down volun-
tary engagement. However, other expertise studies with cars
or birds had not obtained similar expertise effects in EVC (Gau-
thier et al. 2000; McGugin et al. submitted), and in recent work
we argued that the EVC activation observed by Harel et al. was
due to their car images occupying significantly more pixels
than their plane images. When low-level visual properties of
images are controlled, no expertise effects are found in EVC
(McGugin et al. submitted). There is, however, another inter-
esting aspect of Harel et al.’s design that helps motivate the
present work, which is the possibility that competition
between planes and cars limited the expertise effects observed
in that study. At least in some cases, expertise with cars is line-
arly correlated with expertise for planes (McGugin, Gatenby,
et al. 2012; McGugin, Richler, et al. 2012). In a number of para-
digms, showing faces among nonface objects of expertise
reduced behavioral hallmarks of expertise or ERP responses
for faces, whether the 2 categories were shown simultaneously
or sequentially, and regardless of whether objects were
task-relevant or not (Gauthier et al. 2003; Rossion et al. 2004,
2007; Behrmann et al. 2005; McKeeff et al. 2010; McGugin
et al. 2011). The presence of objects from another potential cat-
egory of expertise for car experts may have made it particularly
difficult to measure car expertise effects in these conditions.
This conjecture is supported by the fact that car experts in
Harel et al. were slower than novices, whether they attended or
ignored cars.

Here, we explore the influences of attentional manipulations
and competition on expertise effects in and outside face-
selective areas. In addition to the effects of attention and com-
petition, we wanted to explore the effect of “clutter” (showing
multiple objects at once, Reddy and Kanwisher 2007) on ex-
pertise effects. Prior work found that multivariate patterns of
activity for nonpreferred categories in FFA and the parahippo-
campal place area (PPA) were not stable enough to survive
clutter or reduced attention but, in contrast, the responses for
the preferred category (e.g., faces in FFA) were robust to
clutter and to some extent to a reduction of attention (Reddy
and Kanwisher 2007). Therefore, we measured how behavioral
expertise for cars predicted activity in the brain 1) when cars
were attended and shown in isolation (a replication of prior ex-
pertise studies); 2) when cars were attended but presented in
the context of other objects (to test the effect of clutter); 3)
when cars were to be ignored and presented in the context of
other objects that were attended (to test the effect of attentional
selection, or diverted attention, which we will refer to for short
as attention), and 4) when cars were attended or ignored in
the context of faces, which were also either ignored or at-
tended (to test for the effect of competition). As our main
hypothesis, we propose that if the responses to cars in face-
selective areas are, like responses to faces, a stable reflection of
the visual representation of cars used by car experts, then car
expertise effects may be minimally affected by clutter and rela-
tively robust to reductions of attention, but based on prior
work on competition, they may be most sensitive to concurrent
competition from faces.

Materials and Methods

Subjects
Thirty-three subjects initially took part in the study. Four were ex-
cluded from all analyses due to severe motion artifacts (motion greater
than the voxel size of 3 mm; Formisano et al. 2005). The remaining 29
subjects were healthy right-handed adults (3 females), 26 ± 4.5 years of
age. According to the car expertise index described below, the
3 females were ranked 7th, 8th, and 17th. Informed written consent
was obtained from each subject in accordance with guidelines of the
institutional review board of Vanderbilt University and Vanderbilt Uni-
versity Medical Center. All participated for monetary compensation
and had normal or corrected-to-normal vision.

Behavioral Tests, Stimuli, and Expertise Index
All subjects completed 3 behavioral tasks outside the scanner: a
sequential matching expertise test used to quantify individual skill at
matching cars (Gauthier et al. 2000, 2005; Grill-Spector et al. 2004;
Rossion et al. 2004; Xu 2005; Curby et al. 2009), the Cambridge Face
Memory Test (CFMT; Duchaine and Nakayama 2006), and the Vander-
bilt expertise test (VET; McGugin, Richler, et al. 2012).

The matching test included 12 blocks of 28 sequential matching
trials on cars, planes, and birds (56 images/category). On each
trial, the first stimulus appeared for 1000 ms, followed by a 500-ms
mask. A second stimulus then appeared and remained visible until
subjects made a same or different response, or 5000 ms elapsed.
Subjects determined whether the 2 images showed cars/planes of
the same make and model regardless of year, or birds of the same
species.

In the CFMT, subjects first studied frontal views of 6 target faces for
a total of 20 s, followed by an 18-trial introductory learning phase.
They were then presented with 30 forced-choice test displays each con-
taining one target face and 2 distractor faces. Subjects were instructed
to select the face that matched one of the original 6 target faces. The
matching faces varied from their original presentation by means of
lighting, pose, or both. Next, subjects were again presented with the 6
target faces to study, followed by 24 test displays presented in Gaussian
noise. For a complete description of the CFMT, see Duchaine and Na-
kayama (2006).

The VET, structurally modeled after the CFMT, included 8 object cat-
egories: leaves, owls, butterflies, wading birds, mushrooms, cars,
planes, and motorcycles. For each category, target images consisted of
4 exemplars from 6 unique species/models, and distractor images
showed 48 exemplars from novel species/models. Before a category
block, subjects studied a display with one exemplar from each of 6
species/models. For each test trial, one of the studied exemplars (iden-
tical images for the first 12 trials, or transfer images requiring general-
ization across viewpoint, size, and settings for the subsequent 36 trials)
was presented with 2 distractors from another species/model in a
forced-choice paradigm. The target image could occur in any of the 3
positions, and subjects indicated which image of the triplet was the
studied target. For a complete description of the VET, see McGugin,
Richler et al. (2012).

Magnetic Resonance Imaging (MRI) Acquisition
Scanning was performed using a Philips 3-Tesla Intera Achieva MRI
scanner with an 8-channel head coil located at the Vanderbilt Univer-
sity Institute for Imaging Science. High-resolution (HR) T1-weighted
anatomical volumes were acquired (time repetition [TR], 8.93 ms; time
echo [TE], 4.6 ms; flip angle, 9°; field of view [FOV], 256 × 256; slice
thickness, 1 mm, no gap; in-plane resolution, 1 × 1 mm; 170 slices ac-
quired in the sagittal plane). For all functional scanning (1 face-
localizer scan plus 8 experimental scans) we used standard
gradient-echo echoplanar T2*-weighted imaging to obtain functional
images (TR, 2000 ms; TE, 35 ms; flip angle, 79°; FOV, 192 × 192; slice
thickness, 3 mm, no gap; in-plane resolution, 3 × 3 mm; 34 ascending
interleaved slices acquired axially).
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Functional Magnetic Resonance Imaging (fMRI) Stimuli and
Design
All images were presented with an Apple Macintosh computer running
Matlab (MathWorks, Natick, MA) using the Psychophysics Toolbox ex-
tension (Brainard 1997). Stimuli were displayed on a rear-projection
screen using an Eiki LC-X60 LDP projector with a Navitar zoom lens.

A face-localizer scan used 72 grayscale images (36 faces, 36 objects)
in a 1-back detection task with 18 alternating blocks of faces or objects
(16 images shown for 1 s) with a 2 s fixation at the beginning and end
of each block. Sensitivity did not differ for Face and Object blocks: (hit
rate, false alarm rate) Face (0.92, 0.008), Object (0.93, 0.004).

Following the face-localizer scan, subjects completed 8 runs of the
main experiment. We used a blocked fMRI design with a modified
1-back memory task in which the presence of distractors and
task-relevance of different object categories varied across runs and
blocks. Images from 3 different categories (70 images each of faces,
cars, and butterflies) were used in the main experiment. Butterflies
were selected as a category with which car experts were unlikely to
have considerable expertise (in contrast to planes, which have been
used in the past [Harel et al. 2010] but have also shown a strong corre-
lation with cars [McGugin, Gatenby, et al. 2012]). The correlation
between performance for cars and butterflies in the matching task was
r =−0.17, ns. In addition, special effort was taken to equate stimuli
within and across categories for low-level image properties using the
functions from the Spectrum, Histogram, and Intensity Normalization
and Equalization (SHINE) program (Williams et al. 2009; Willenbockel
et al. 2010), which equates luminance distribution and Fourier ampli-
tude at each spatial frequency.

All images were presented with the inner edge at 3 degrees on
either side of fixation and subtended 6 degrees of visual angle. Images
from a given category alternately appeared on the left and right side of
fixation, and subjects looked for an immediate image repeat (regard-
less of location). Repeats occurred either once or twice per block,
never in the first or last trial of a block. Subjects pressed their right
index or middle finger when they detected a repeat on the left or right
side of the screen, respectively.

Subjects were instructed to maintain central fixation while searching
for an immediate image repeat in either a stream of target images
shown in isolation (“Isolated” runs) or target images shown in the
context of distractor images from a second category that should be
ignored (“Attend/Ignore” runs). At fixation, a letter/number appeared
reminding the subjects of the target category: “F”, “C”, “B” = search for
a face, car, or butterfly repeat, respectively (Fig. 1). All runs contained
18 blocks with 16 trials per block. Each block was 18 s in duration,
containing a 2-s instruction screen (announcing which category to
attend) followed by 16 1-s trials. All runs began with a 2-s fixation, for
a total run duration of 5 min 26 s. Run order and block order was the
same for all subjects.

In the first 2 runs (“Isolated” runs) subjects viewed 6 blocks each of
the 3 stimulus categories, seeing images in isolation. In the next 4 runs
(“Attended/Ignored” runs) subjects still looked for an immediate
image repeat from a single target category, but now a distractor image
from an irrelevant category always appeared along with the target cat-
egory image (Fig. 1). Each run contained 3 blocks of 6 unique con-
ditions. Throughout this paper, attended/ignored block names will be
represented by a full spelling or uppercase letter for the attended cat-
egory and a lowercase first letter for the ignored category.

Data Analysis
The HR T1-weighted structural scans were normalized to Talairach
space.

Functional data were analyzed using Brain Voyager (www.
brainvoyager.com) and in-house Matlab scripts. Preprocessing in-
cluded registration to the original (nontransformed) structural scan,
slice scan time correction (cubic spline), 3D motion correction
(trilinear/sinc interpolation) and temporal filtering (high-pass criterion
of 2 cycles per run) with linear trend removal.

Regions of interest (ROIs) were defined using the Face > Object con-
trast from the face-localizer scan, without any spatial smoothing was
applied. We localized bilaterally ROIs that responded more to faces

than objects in the posterior fusiform gyrus (FFA1), middle fusiform
gyrus (FFA2), occipital face area (OFA), and more to objects than faces
in the parahippocampal gyrus (PHG). We localized 2 discrete peaks of
face selectivity in bilateral fusiform gyri of 27 subjects (FFA1 and
FFA2), and in both the right and left hemispheres another 2 subjects
had one peak corresponding to right FFA1 (Pinsk et al. 2009; Weiner
et al. 2010, Table 1). We had no specific prediction about the difference
between FFA1 and FFA2, but they were clearly distinct anatomically. In
addition, we defined in each subject bilateral control clusters in the
EVC of a fixed size and position based on Talairach coordinates corre-
sponding to the medial aspect of the striate and extrastriate cortex.

All ROIs were initially defined based on the 1 mm (interpolated)
statistical maps using a fixed millimeter spread of activation to ensure
consistency with reported sizes of these functional ROIs in the litera-
ture as well as consistency across subjects (Table 1). However, to
ensure that the signal was weighted per functional voxel, ROIs were
subsequently down-sampled to functional (3 mm) resolution. Any
functional voxel containing one or more 1 mm voxel from the initial
ROI was considered to be part of the final ROI, thus leading to larger
final ROIs relative to those initially defined. This procedure also
ensured that identical ROIs were used for univariate and multivariate
analyses (see below).

Functional voxels that were members of multiple initial ROIs were
dropped from all final ROIs. This latter qualification avoided partial-
volume effects with regard to functional region membership. For full-

Figure 1. Example trial structure from fMRI runs where cars and faces were shown in
isolation (top), attended in the presence of another to-be-ignored category (middle), or
ignored while subjects were instructed to attend to another category (bottom).
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brain group analyses only, 3D spatial smoothing was applied to all
functional data using a Gaussian filter of 8 mm full-width at half-
maximum, and preprocessed functional slice-based data were aligned
to the Talairach-transformed brain. For visualization purposes only,
the maps were projected onto a representative subject’s segmented
and flattened, Talairach-normalized right and left hemisphere. All cor-
relations between neural activation and behavioral expertise were
tested for bivariate outliers, which were denoted as points whose ex-
ternally studentized residual was >3.5 or less than −3.5. The distri-
bution of car expertise was positively skewed (skewness = 0.64), which
should not bias our correlations since Pearson’s r does not require nor-
mality (Nefzger and Drasgow 1957).

Univariate ActivationMaps
For each voxel, a Michelson contrast ratio (CR) as described below was
computed for stimulus blocks over 8–18 s after trial onset, an interval se-
lected to account for the rise and fall times of the blood oxygen level-
dependent (BOLD) response. The responses from all voxels within a
predefined ROI were then averaged for a given condition. Expertise
effects were computed by correlating behavioral expertise with the
voxel-by-voxel differences across conditions. The isolated conditions of
interest were defined as (Car− Face)/(Car + Face), which will be referred
to as C− F, and (Car−Butterfly)/(Car + Butterfly), which will be referred
to as C−B. In the attend conditions, we tested expertise effects for cars
versus faces in the context of ignored butterflies (CARb− FACEb)/
(CARb + FACEb), or Cb− Fb, and cars versus butterflies in the context
of ignored faces, (CARf−BUTTERFLYf)/(CARf + BUTTERFLYf), or
Cf−Bf. The comparisons of interest in the ignored conditions were cars
versus faces when both categories were ignored amongst attended but-
terflies, (cBUTTERFLY− fBUTTERFLY)/(cBUTTERFLY + fBUTTERFLY),
or cB− fB, and cars versus butterflies when both categories were
ignored amongst attended faces (cFACE− bFACE)/(cFACE + bFACE), or
cF− bF. Thus, we can compare car expertise effects on univariate BOLD
activation for cars relative to faces to that for cars relative to butterflies
when images are shown in isolation, are attended with distractors, or are
ignored.

Separately for each whole-FOV contrasts, an initial contrast with an
uncorrected threshold of P < 0.05 was corrected for multiple compari-
sons using Brain Voyager’s Cluster Threshold Estimator (Forman et al.
1995; Goebel et al. 2006), which uses a Monte Carlo simulation with
iterative Gaussian filtering to calculate the cluster size that yields a
corrected threshold of P < 0.05 separately for each contrast of interest
(C–F [162 mm3], C–B [142 mm3], Cb–Fb [137 mm3], Cf–Bf [137 mm3],
cB–-fB [132 mm3], and cF–bF [126 mm3]).

Multi-Voxel Pattern Analysis (MVPA)
For each univariate contrast in each ROI, we carried out a parallel MVP
analysis (e.g., Car vs. Face). MVPA was performed using LIBSVM
(Chang and Lin 2011) and custom Matlab code. All MVPA used a linear
support vector machine with the C-parameter fixed at 1. Classification
was performed using a leave-one-run-out approach in which one run
was held out as test data, and the remaining data were used as the train-
ing set. All data were z-transformed and mean-subtracted within ROI
to ensure that we did not simply duplicate the univariate analysis.

Instead of the standard SVM categorization scheme, in which pre-
diction values are binarized to yield trial- or block-level categorization,
we instead utilized LIBSVM’s ability to generate block-level probabil-
ities. Instead of outputting a prediction for each block (e.g., “Face, not
Car”), the SVM yielded a probability for each category (e.g., “Face—
72%; Car—28%”). This probability estimate was averaged across all
blocks for a given classifier to yield a final prediction result for each
combination of subject, ROI, and classification comparison. Because
the predicted category is the category with higher probability in the
SVM, this procedure effectively gives the classifier’s confidence in its
categorization, yielding greater information than standard binary cat-
egorization. Many ROIs yielded ceiling-level classification in at least
some subjects when using conventional categorization; thus, this
MVPA confidence measure (which was not at ceiling even when categ-
orization was at or near 100%) allowed us to correlate MVPA perform-
ance with behavioral expertise in a manner parallel to that by which
we correlated univariate activation with behavioral expertise.

Results

Behavioral Results From the Lab
In the behavioral matching test expertise sensitivity scores
were computed for each subject for cars (car d′, range 0.23–
4.21), planes (plane d′, range 0.45–3.00) and birds (bird d′,
range 0.45–2.14).

Principal component analysis has revealed that the under-
lying structure of the 8-category VET can be largely explained
by 2 independent factors that map onto living and nonliving
objects. Therefore, we reduced VET performance to a Living
Objects score (average of butterflies, leaves, mushrooms, owls,
and wading birds) and a NonLiving Objects score (average of
motorcycles and planes, excluding cars).

An aggregate car expertise index was calculated based on
the standardized performance for cars in the matching test and
standardized car performance on the VET Car category (r =
0.68). An aggregate noncar performance index was calculated
based on the standardized performance for planes and birds in
the matching test, and the standardized VET Living Objects
and NonLiving Objects scores (average r = 0.29). In the follow-
ing analyses, we regress out the influence of the noncar aggre-
gate scores from the car aggregate score. Henceforth, all
mention of car expertise refers to the car aggregate residua-
lized by the noncar aggregate. The distribution of car expertise
was positively skewed (skewness = 0.64), which should not
bias our correlations since Pearson’s r does not require normal-
ity (Nefzger and Drasgow 1957).

Behavioral Results From the Scanner
In the isolated fMRI runs, sensitivity was high for all categories:
(hit rate, false alarm rate) Face (0.84, 0.10), Car (0.76, 0.12),

Table 1
For 5 bilateral regions, mean peak Talairach coordinates, mean volume (mm3), and results from a one-sample t-test (P-value) on the mean PSC values for faces relative to butterflies from the Isolated runs

Mean Talairach coordinates for peak voxel ± SD Average volume (mm3) ± SD One-sample t-test (P-value) on mean face PSC
(relative to butterflies) from isolated runs

Right FFA1 (N= 29) 40.3, −58.4, −23.1 (4, 7.5, 5.2) 1786 (259) 7.0 (<0.0001)
Right FFA2 (N= 27) 39.9, −37.6, −22.6 (3.2, 7.1, 4.1) 1680 (308) 9.6 (<0.0001)
Right OFA (N= 29) 30.2, −84, −21.7 (8.6, 7.3, 7) 955 (289) 4.1 (0.0003)
Right PHG (N= 29) 27.1, −54, −18.8 (2.6, 6.6, 3.8) 3034 (760) −10.8 (<0.0001)
Right EVC (N= 29) 10.1, −79.2, −1.64 (0, 0, 0) 1593 (0) 0.3 (ns)
Left FFA1 (N= 29) −39.5, −59.2, −24 (4.1, 7.5, 4.5) 1569 (460) 5.1 (<0.0001)
Left FFA2 (N= 27) −40.6, −39.7, −23.8 (4.2, 6.7, 5.3) 1593 (404) 6.8 (<0.0001)
Left OFA (N= 27) −33.6, −80.6, −24.1 (8.2, 8.1, 5.1) 1028 (383) 3.6 (0.002)
Left PHG (N= 29) −28.9, −52.6, −19.2 (3.8, 7, 4) 2817 (503) −11.4 (<0.0001)
Left EVC (N= 29) −10.1, −79.2, −1.64 (0, 0, 0) 1728 (0) −0.2 (ns)
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Butterfly (0.74, 0.13), however paired t-tests revealed signifi-
cantly better detection of faces relative to cars (t = 5.5, P < 0.001)
or butterflies (t = 4.51, P < 0.001) with no difference for cars and
butterflies. Subjects were also able to perform the task in the At-
tended/Ignored fMRI runs (hit rate, false alarm rate): 1) Attend
Car, Ignore Face (0.71, 0.12); 2) Attend Car, Ignore Butterfly
(0.74, 0.13); 3) Attend Face, Ignore Car (0.84, 0.11); (4) Attend
Face, Ignore Butterfly (0.84, 0.10); 5) Attend Butterfly, Ignore
Face (0.75, 0.11), 6) Attend Butterfly, Ignore Car (0.72, 0.12).
Paired t-tests on hit rates revealed an advantage for face detec-
tion (FACEc > all comparison, t > 3.0, P < 0.001; FACEb > all
comparisons, t > 3.01, P < 0.001) with no difference between
FACEc and FACEb (t =−0.12, ns) or between Attend Butterfly
and Attend Car conditions.

MRI Results
Most of the analyses conducted below consist of a correlation
with behavioral car expertise. We based our sample size on
what we can expect to give sufficient power to detect the typical
car expertise effect in right FFA. A meta-analysis of all published
fMRI studies of expertise with cars (Gauthier et al. 2000; Xu
2005; Harel et al. 2010; McGugin, Gatenby, et al. 2012) using
the correlation between the percent signal change (PSC) to cars
(relative to a high-level baseline) and a behavioral measure of

car expertise yielded a value of r = 0.54, 95% CI [0.4; 0.652].
With 29 subjects, our power to find such an effect is 0.96 for a
one-tail test at an alpha of 0.05, which we use for correlations
with univariate contrasts in face-selective ROIs. This relatively
liberal threshold was chosen because car expertise effects in
these ROIS are replications using univariate analyses, at least in
the Isolated runs. Our main goal is to test if these effects are still
observed under various conditions, so we chose to test them all
at the same threshold. The multivariate ROI analyses are thre-
sholded using 2-tails tests with an alpha of 0.05, so that the
pattern of significant effects is comparable to the univariate con-
trasts. We favor a focus on effect sizes (here, Pearson’s r) rather
than on a specific statistical threshold, because treating any
given threshold as a cliff can lead to unjustified conclusions
(Rosnow and Rosenthal 1989).

We use a corrected 2-tail alpha of 0.05 for whole-brain
analyses—these analyses are reported for completeness but
they are less powerful both due to the multiple comparison
correction and to the greater variance expected when subjects
are compared in regions aligned according to gross anatomical
landmarks rather than functional ones. For simplicity’s sake,
we report whole-brain analyses by showing and describing the
maps for the right hemisphere (Fig. 2; Table 2; Supplementary
Table 1), but foci of activity for the left hemisphere are shown

Figure 2. Group-average partial correlation maps depicting the BOLD response to cars relative to faces in (a) isolated, (b) attended, or (c) ignored conditions, with car expertise
regressing out the influence of noncar performance, overlaid on an individual’s flattened right hemisphere. The maps are shown at a corrected threshold of 0.05 based on an alpha of
0.05. See Table 3 for names, peak r-values, and peak Talariach coordinates of each activation cluster. Group-average coordinates for FFA1, FFA2, and OFA are marked on the
flattened hemisphere. Sulci labels: calcarine sulcus, CaS; collateral sulcus, CoS; middle fusiform sulcus, MFS; occipitotemporal sulcus, OTS; arietoocciptial sulcus, POS; intraparietal
sulcus, IPS; middle temporal sulcus, MTS; superior temporal sulcus, STS; postcentral sulcus, PCS; Rolandic Sulcus, RS; cingulate sulcus, CiS; superior frontal sulcus, SFS; inferior
frontal sulcus, IFS; orbitofrontal sulcus, OF; lateral sulcus, LS.
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Table 2
Results from group-average full-brain partial correlations maps between the BOLD response to cars (relative to faces) in isolated, attended, and ignored runs, with behavioral car expertise (regressing out the influence of noncar performance)

C–F × car expertise Cb–Fb × car expertise cB–fB × car expertise

Name Cluster peak r-value Mean Talairach coordinates for peak voxel Name Cluster Peak r-value Mean Talairach coordinates for peak voxel Name Cluster Peak r-value Mean Talairach coordinates for peak voxel

Right hemisphere Right hemisphere Right hemisphere
1 inf front s −0.51 44, 34, 15 1 hipp 0.43 20, 4, −24 1 ca s 0.49 8, −38, 5
2 intra par s −0.61 20, −56, 45 2 inf front g −0.47 49, 23, 15 2 cing g 0.63 1, −41, 54
3 lat s −0.66 47, −2, −6 3 inf front g −0.56 35, 22, −6 3 cing s 0.5 14, −35, 42
4 lat s −0.51 50, 22, 12 4 inf temp g −0.55 47, −56, 18 4 front g 0.59 14, 46, 23
5 lat s −0.63 35, −17, 21 5 med fus g 0.41 34, −43, −20 5 hipp 0.59 45, −5, −39
6 ling g 0.41 5, −68, −11 6 med fus g 0.46 32, −29, −25 6 med front g 0.57 17, 64, 6
7 ling g 0.53 1, −62, 3 7 mid temp g −0.45 44, −80, 18 7 orb front g −0.51 14, 37, −15
8 med front g 0.6 8, 67, 3 8 min front g −0.51 48, 26, 18 8 post cing g 0.48 2, −41, 15
9 med front g 0.53 2, 55, 24 9 orb front 1 0.51 12, 31, −15 9 post occ s 0.56 8, −59, 15
10 med fus g 0.53 32, −32, −18 10 orb front 2 0.49 8, 13, −9 10 ro s 0.57 20, −29, 54
11 mid temp g 0.58 46, −76, 27 11 orb front 3 0.48 8, 40, −6 11 supp front g 0.43 11, 25, 57
12 mid temp g 0.49 2, −86, 24 12 parahipp g −0.56 23, −41, −6 12 supp front s 0.58 20, −5, 54
13 occ temp s 0.64 59, −41, −18 13 post cent g −0.44 47, −26, 51 13 supp front s 0.53 18, 50, 24
14 parahipp g 0.48 31, −30, −17 14 post cent g 0.42 −2, −38, 18
15 parahipp g −0.51 26, −47, −6 15 pre cent g −0.59 32, −11, 54
16 post cent g −0.45 65, −23, 35 16 sup front g −0.59 35, −11, 54
17 post cent g −0.5 56, −20, 42 17 sup front g −0.54 20, 28, 42
18 post cent g −0.46 53, −2, 12 18 sup par g −0.48 11, −68, 48
19 post cing 0.63 1, −41, 21 19 sup temp g −0.49 51, −54, 20
20 post cing 0.49 1, −61, 6 20 sup temp g −0.56 50, −53, 18
21 post co s 0.48 23, −71, −9
22 pre cent g −0.6 29, −41, 45
23 ro s −0.56 56, −5, 21
24 sup front s 0.46 44, 17, 36
25 sup front s −0.47 15, 43, 31
26 sup par g −0.46 5, −62, 62
27 sup par g −0.56 2, −71, 36
28 sup temp g 0.56 29, 9, −33
29 sup temp s −0.51 55, −54, 41

Left hemisphere Left hemisphere Left hemisphere
1 cing s 0.45 −1, 61, 3 1 fus g 0.54 −43, −41, −18 1 ant cing g 0.51 −1, 36, 9
2 evc 0.46 −4, −63, 12 2 intra par s −0.49 −22, −68, 51 2 ant cing g 0.47 −13, 25, 24
3 evc 0.55 −4, −92, 0 3 orb front g 0.55 −22, 19, −15 3 evc 0.46 −1, −65, 21
4 fus g 0.61 −34, −29, −15 4 post cing 0.43 −7, −38, 15 4 evc 0.55 −7, −38, 9
5 hipp 0.62 −19, −5, −24 5 sup temp g 0.46 −58, −47, 12 5 mid front g 0.59 −34, 55, 3
6 inf front s 0.47 −46, 4, 54 6 sup temp g 0.45 −67, −17, 0 6 parahipp g 0.51 −16, −77, −18
7 inf front s 0.47 −48, 28, 5 7 sup temp s 0.51 −40, 1, −27 7 sup front g 0.47 −4, 28, 54
8 inf par g −0.64 −63, −31, 39 8 sup temp s 0.46 −52, −38, 3 8 sup front g 0.47 −7, 52, 33
9 intra par s −0.52 −19, −75, 51 9 sup front g 0.64 −22, 40, 30
10 intra par s −0.53 −40, −41, 33
11 lat s 0.53 −28, 16, −9
12 lat s 0.48 −42, 28, 3
13 ling g 0.49 −25, −86, −25
14 mid temp g 0.46 −55, −38, 0
15 mid temp g 0.5 −52, −11, −18
16 orb front 0.46 −49, 22, −9
17 parahipp g 0.46 −7, −77, −18
18 parahipp g 0.65 −7, −59, 0
19 parahipp g 0.62 −16, −17, −12
20 post occ g 0.63 −7, −47, 12
21 ros −0.47 −55, −2, 24
22 sup front g 0.59 −10, 61, 24
23 sup front g 0.55 −16, 31, 54
24 sup front g 0.54 −28, 43, 42
25 sup front s 0.54 −31, 40, 38
26 sup temp g 0.52 −37, 16, −21
27 sup temp g −0.52 −49, −8, 0
28 sup temp s 0.47 −43, 7, −24

Note: The table gives the name, peak r-value, and peak Talairach coordinates for each cluster of activation.
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in Supplementary Figure 1 and reported in Table 2 and Sup-
plementary Table 1.

Univariate Activation Across all Subjects
First, we analyzed the data averaged over all voxels within
each ROI, without considering car expertise. To confirm that
the localizer-defined ROIs (OFA, FFA1, FFA2, and PHG ROI in
both hemispheres) were face selective, we report the results
for the faces versus butterflies contrast. As expected, the OFA
and FFAs from the localizer showed higher response to faces,
the PHG showed a higher response to objects than faces, and
no category preference was observed in the anatomically
defined EVC (Table 1).

Multivariate Decoding of Category Across all Subjects
MVPA demonstrated high levels of decoding between all pairs
of categories (Faces, Cars and Butterflies) in the Isolated con-
ditions in all ROIs except in EVC (Table 3). As expected, decod-
ing outside of EVC was greater between isolated faces and
either object category than between cars and butterflies.
Though this difference did not achieve statistical significance
in bilateral PHG when we compared decoding performance
for Cars versus Faces to that for Cars versus Butterflies
(t28 < 1.1, P > 0.28), all other non-EVC comparisons achieved
statistical significance (t > 2.22, P < 0.035). In spite of this, Cars
versus Butterflies achieved above-chance decoding in all

non-EVC ROIs (Table 3). Notably, Cars and Butterflies were
most robustly decoded in the PHG and least in FFA2. Decoding
was also significant in all ROIs (except EVC in several cases)
for all pairs of categories in the Clutter Attended conditions.
Finally, decoding was much more limited in the Clutter
Ignored conditions, showing a significant decrease in all
non-EVC ROIs for all conditions relative to the corresponding
Clutter Attended conditions. Most striking was the Ignored
cars versus Ignored butterflies (among attended faces) con-
dition, which could only be decoded above chance in the left
PHG and right OFA.

Car Expertise Effects in Isolated Conditions
Next, we sought to replicate prior work showing effects of car
expertise in face-selective regions with cars and control objects
viewed in isolation (Gauthier et al. 2000; 2005; Xu 2005;
McGugin, Gatenby, et al. 2012; McGugin et al. submitted). To
maximize power and because at least one study reported a car
expertise effect in each of these ROIs (including in the EVC in
Harel et al. 2010), we used one-tailed tests for positive corre-
lations of car-evoked activity and car expertise. With faces used
as baseline (Gauthier et al. 2005; Xu 2005; Furl et al. 2011;
McGugin et al. submitted),we computed the partial correlation
between the BOLD response to cars with the behavioral car ag-
gregate measure, regressing out the noncar aggregate measure
(Materials and Methods; McGugin et al. submitted). Behavioral

Table 3
Multivariate results for all regions and all category comparisons in isolated, attended, and ignored conditions

Isolated

Car versus face Car versus butterfly Face versus butterfly

Region N Mean SD t P Mean SD t P Mean SD t P

Left OFA 27 83.2 18.3 9.43 0.0000 74.1 16.6 7.55 0.0000 86.1 16.9 11.09 0.0000
Left FFA1 29 89.1 13.6 15.41 0.0000 78.5 16.6 9.27 0.0000 94.2 11.3 21.11 0.0000
Left FFA2 26 84.8 17.6 10.08 0.0000 65.2 19.2 4.03 0.0005 90.2 15.8 12.96 0.0000
Left PHG 29 91.5 9.1 24.71 0.0000 89.0 10.0 21.06 0.0000 94.5 7.9 30.42 0.0000
Left EVC 29 53.6 12.2 1.57 0.13 50.2 9.0 0.09 0.93 55.6 13.0 2.33 0.03
Right OFA 28 79.1 16.2 9.47 0.0000 69.2 17.7 5.72 0.0000 80.0 18.4 8.62 0.0000
Right FFA1 29 91.6 10.5 21.24 0.0000 84.8 13.8 13.62 0.0000 97.3 4.1 62.08 0.0000
Right FFA2 27 88.5 13.1 15.26 0.0000 69.2 19.4 5.13 0.0000 95.0 8.6 27.22 0.0000
Right PHG 29 89.3 11.6 18.33 0.0000 87.6 10.3 19.67 0.0000 92.4 12.2 18.71 0.0000
Right EVC 29 51.8 12.1 0.81 0.43 55.2 12.0 2.32 0.03 53.2 9.7 1.80 0.08

Clutter attended
Cb versus Fb Cf versus Bf Fc versus Bc

Region N Mean SD t P Mean SD t P Mean SD t P
Left OFA 27 79.8 17.5 8.84 0.0000 63.2 16.3 4.21 0.0003 80.7 19.6 8.16 0.0000
Left FFA1 29 90.0 11.3 19.04 0.0000 68.2 17.8 5.50 0.0000 92.2 12.2 18.63 0.0000
Left FFA2 26 89.0 9.9 20.04 0.0000 56.2 15.1 2.10 0.05 86.4 15.8 11.77 0.0000
Left PHG 29 86.3 13.1 14.90 0.0000 76.8 17.6 8.23 0.0000 90.9 11.1 19.93 0.0000
Left EVC 29 56.4 12.1 2.83 0.01 56.1 11.7 2.83 0.0084 51.5 13.9 0.59 0.56
Right OFA 28 68.1 19.2 4.99 0.0000 62.5 15.2 4.34 0.0002 74.4 23.7 5.46 0.0000
Right FFA1 29 94.0 8.5 27.96 0.0000 66.4 18.2 4.84 0.0000 95.0 10.5 23.03 0.0000
Right FFA2 27 89.0 13.7 14.81 0.0000 56.5 16.0 2.10 0.05 90.0 15.3 13.55 0.0000
Right PHG 29 85.1 15.6 12.14 0.0000 76.6 14.8 9.65 0.0000 88.4 12.4 16.63 0.0000
Right EVC 29 51.3 16.4 0.41 0.68 47.8 11.8 −1.03 0.31 50.3 15.7 0.10 0.92

Clutter ignored
cB versus fB cF versus bF fC versus bC

Region N Mean SD t P Mean SD t P Mean SD t P
Left OFA 27 60.7 15.7 3.54 0.0015 51.9 17.7 0.56 0.58 58.3 16.7 2.60 0.02
Left FFA1 29 72.7 20.1 6.09 0.0000 49.9 11.5 −0.07 0.95 66.4 17.2 5.14 0.0000
Left FFA2 26 65.2 16.0 4.86 0.0001 51.2 15.4 0.38 0.71 55.3 16.2 1.66 0.11
Left PHG 29 67.6 19.5 4.87 0.0000 55.9 12.9 2.46 0.02 61.8 15.0 4.22 0.0002
Left EVC 29 50.9 13.8 0.37 0.71 49.3 12.5 −0.28 0.78 50.4 10.9 0.21 0.83
Right OFA 28 53.8 18.7 1.07 0.29 44.3 10.4 −2.89 0.01 53.7 14.3 1.38 0.18
Right FFA1 29 77.2 19.9 7.36 0.0000 47.8 11.3 −1.03 0.31 67.7 15.9 5.97 0.0000
Right FFA2 27 66.5 18.5 4.64 0.0001 48.2 9.6 −0.97 0.34 64.0 14.3 5.09 0.0000
Right PHG 29 54.1 16.1 1.38 0.18 53.4 16.3 1.12 0.27 62.8 15.1 4.57 0.0001
Right EVC 29 50.3 13.0 0.11 0.92 49.3 9.8 −0.41 0.69 51.4 10.5 0.74 0.47
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car expertise predicted the neural selectivity to cars relative to
faces in bilateral FFA1, FFA2, and OFA, as well as in the right
PHG ROI (Table 4). ROI analyses were supported by whole-
brain group analyses (Fig. 2a; Supplementary Fig. 1a; Table 2).
Similar results were obtained when butterflies were used as a
baseline (Supplementary Figs 2a and 3a; Supplementary
Table 1).

We explored the effect of defining right and left FFA1 and
FFA2 ROIs of different sizes, starting from the single most face-
selective voxel in the localizer, and growing the ROI size up to
64 functional (3 mm isotropic) voxels following the spread of
face > object activation. Strikingly, changing the size of the ROI
had virtually no effect at all the expertise effects we report
below for both the right and left FFA2. The peak of face selec-
tivity shows expertise effects that are as large as those in the
larger ROI (as in McGugin, Gatenby, et al. 2012). Expertise
effects in the left FFA1 were also relatively insensitive to ROI
size and virtually unchanged across a size of 4 voxels to 64
voxels. In contrast, expertise effects in the rFFA1 showed a
near linear increase with size, reaching significance only for
sizes of 32 and 64 voxels.

The Influence of Clutter and Attention on Expertise
Effects
In the Cb–Fb (Attended) comparison, that is, when clutter was
added to the displays, car expertise effects were obtained in
bilateral FFA1/FFA2 and left OFA, but relative to their corre-
sponding isolated conditions, these effects were no longer ob-
served in right OFA and right PHG (Table 4). Whole-brain
analyses looking for areas where the Cb–Fb contrast correlated
with car expertise revealed expertise effects in the fusiform
gyrus, and areas that are recruited in novices more than
experts in middle temporal, parietal, and frontal areas (Fig. 2b;
Supplementary Fig. 1b). Showing cars in clutter (among butter-
flies) produced less extensive expertise effects in ventral
cortex, but the effects remained robust in several face-selective
ROIs.

In the Ignored condition, cB–fB, that is, when we looked for
changes in expertise effects when attention was diverted from
cars, we found marginal effects of car expertise in bilateral
FFA1/FFA2 and left OFA ROIs, although the effect was only
significant in left FFA2 (Table 4). In a whole-brain analysis the
cB–fB contrast correlated with car expertise in bilateral areas
very distal from the OFA/FFA region, including in the posterior
cingulate and superior frontal gyrus as well as a left

parahippocampal region (Fig. 2c; Supplementary Fig. 1c). Cri-
tically, it may be premature to conclude that limiting attention
to cars fully abolished car expertise effects. Indeed, the pattern
of expertise effects across our different ROIs in the ignored
cB–fB condition replicates what is observed in the attended
condition (Cb–Fb): r = 0.65, P = 0.04 (Fig. 3). Likewise, the
pattern of expertise effects across ROIs in Cb–Fb replicates
what is observed in C–F: r = 0.69, P = 0.03. In other words,
across our ROIs, there is no question that clutter or diverted at-
tention dampens the effect sizes of car expertise effects, but
the effects do not seem to be abolished. This is in contrast to
what we observed next, when we consider the effect of compe-
tition on expertise effects.

The Influence of Competition on Expertise Effects
To test whether car expertise effects were robust to compe-
tition from to-be-ignored faces, we turn to the Cf-Bf condition.
Interestingly, in contrast to the widespread car expertise
effects in Cb–Fb, only a single ROI (left FFA2) showed an effect
of expertise for Cf–Bf (Table 3). Since car expertise effects
were clearly obtained in the C–B condition, this cannot be
attributed to the butterfly baseline. Nonetheless, in a whole-
brain analysis, Cf–Bf showed a positive correlation with car
expertise in several areas near the average coordinates for
right FFA1 and FFA2 (Supplementary Fig. 2b).

Competition from faces also appears to limit expertise
effects when cars are ignored and faces are attended (cF-bF):
none of the ROIs show evidence of expertise effects in this
condition (Table 4), and in whole-brain analyses, attending
faces led to expertise effects in posterior fusiform and lingual
gyri, near the average coordinates for bilateral OFA and FFA2
(Supplementary Figs 2c and 3c).

Perhaps most telling, while we found that the magnitude of
car expertise effects across ROIs was robust to clutter and to di-
verted attention when cars were presented among butterflies,
this is not the case for cars amongst faces. Here, the pattern
breaks down; there was no correlation between the car exper-
tise effects in various ROIs for C–B and Cf–Bf (r =−0.07, ns)
nor between Cf–Bf and cF–bF (r =−0.30, ns, Fig. 3).
Altogether, these results suggest that car expertise effects are
quite robust to clutter (high similarity of effects between C–F
and Cb–Fb) and are dampened by reducing attention to cars
(reduction of expertise effects in cB–fB relative to Cb–Fb), but
are nonetheless more robust to a manipulation of attention
than to one that induces competition with another domain

Table 4
Univariate results for all regions during conditions where cars are presented in isolated, attended, and ignored attention conditions, or in attended and ignored competition conditions

Attention Competition

Critical r values, P< 0.05, 1-tail Isolated C–F Isolated C–B Attended Cb–Fb Ignored cB–fB Attended Cf–Bf Ignored cF–bF

Right FFA1 r(29) = 0.32 0.40 0.29 0.57 0.30 0.09 0.02
Right FFA2 r(27) = 0.33 0.51 0.55 0.41 0.26 0.07 −0.12
Right OFA r(29) = 0.32 0.52 0.24 0.25 0.14 0.13 0.00
Right PHG r(29) = 0.32 0.38 0.47 0.25 0.25 0.03 0.01
Right EVC r(29) = 0.32 0.27 0.34 0.28 0.22 0.10 −0.08
Left FFA1 r(29) = 0.32 0.33 0.48 0.34 0.28 0.21 −0.10
Left FFA2 r(27) = 0.33 0.60 0.43 0.61 0.36 0.42 −0.08
Left OFA r(27) = 0.33 0.51 0.13 0.37 0.30 0.20 −0.10
Left PHG r(29) = 0.32 0.29 0.40 0.09 0.14 0.07 0.00
Left EVC r(29) = 0.32 0.22 0.30 0.08 0.29 0.15 −0.23

Note: Significant correlations are shown in bold.
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of expertise (cB–fB more similar to Cb–Fb than cF–bF is to
Cf–Bf).

Comparing Univariate andMultivariate Analyses of car
Expertise Effects
In the analyses above, when we first only considered corre-
lations of expertise with activity in ROIs, car expertise seemed
to be abolished by reducing attention to cars. However, consid-
ering the correlation between relative effect sizes across ROIs
in different conditions revealed that car experts are still re-
sponding to cars differently than car novices. Indeed, distribu-
ted patterns of brain activity can be more sensitive and
multivariate analyses often prove to be more sensitive than uni-
variate methods (Kriegeskorte et al. 2006). However, some
authors have reported that the 2 approaches can sometimes
produce markedly different results (Jimura and Poldrack 2012;
also see, e.g., Tamber-Rosenau et al. 2011, 2013). Only a
subset of fMRI studies using multivariate methods focus on
individual differences (e.g., Carp et al. 2011; Clithero et al.
2011; Tong et al. 2012) and still fewer have explicitly compared
these methods (Coutanche et al. 2011; Hoeft et al. 2011; Cou-
tanche 2013).

Here our goal was to explore how the 2 approaches can
help relate brain activity to behavioral measures of expertise.
Specifically, we asked 1) do MVP analyses also predict behav-
ioral expertise for cars?; 2) are these effects qualitatively similar
to those obtained using univariate methods?; and iii) are MVPA
correlations with car expertise dependent on attention and
competition? To compare univariate and multivariate effects,
the correlations between car expertise and univariate effects

from Table 3 are graphed in Figure 4 alongside the correlations
between car expertise and MVP effects. We first report MVPA
correlations with expertise (question 1) and then compare
these results to those obtained using univariate activation
(questions 2 and 3).

In the Isolated runs, correlations for C versus F MVPA with
car expertise were predominantly negative, achieving signifi-
cance only in right FFA2 (r =−0.39, P = 0.04). Thus, pattern
representations of faces and cars in right FFA2 are more similar
to one another in car experts than in novices, consistent with a
shared representational mechanism for faces and other cat-
egories of perceptual expertise, here cars. In contrast, the cor-
relations of MVPA for C versus B with car expertise were
positive in most ROIs, although this was only significant in left
FFA2 (r = 0.45, P = 0.022). Thus, pattern representations of cars
and butterflies were more distinct in car experts than in car
novices in this region, a result that is also consistent with the
expertise account’s suggestion that car representations are
more face-like in car experts. We note however that the only
other correlation of behavior with the C versus B MVPA to
achieve statistical significance was a negative correlation in
right OFA, a result that is more puzzling.

MVP analyses of Ignored categories led to results that were
qualitatively similar to those obtained in the Isolated runs. In-
terestingly, while expertise effects in univariate analyses were
generally dampened by reducing attention, the magnitude of
several correlations with pattern representations was not
reduced (see Fig. 4, rightmost column), perhaps suggesting
that attention enhances perceptual signals that are present in
ventral cortex regardless of stimulus task-relevance, as
opposed to gating signals prior to arriving in these brain

Figure 3. Bar graphs show the partial correlations between the BOLD response to cars relative to either butterflies or faces shown attended or ignored in the presence of either
faces or butterflies, respectively, with behavioral car expertise regressing out the influence of noncar performance. Right hemisphere face-selective regions—FFA1, FFA2, and
OFA—are shown. The effect sizes are reduced but the pattern is similar for conditions where cars are ignored in the presence of butterflies relative to when they are attended.
In conditions of competition, where cars are shown with competing faces, the expertise effect is no longer present. Asterisks denote significant correlations (one-tail, P< 0.05).
The top scatterplot depicts a significant relationship for car expertise effects when cars are attended versus ignored in the context of noncompeting butterflies when considering all
functionally defined regions. However, when competing faces are shown alongside cars, the pattern breaks down (bottom scatterplot).
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regions. Under this account, less-sensitive univariate effects
are more prominent under conditions of attention while
pattern effects are equally prominent for attended and ignored
items. Correlations between decoding and behavioral expertise
were generally negative in the cB versus fB condition, again
consistent with the expertise account because greater car ex-
pertise yields reduced dissimilarity between cars and faces,
though the only significant correlation was in the left OFA (r =
−0.38, P = 0.05). In the cF versus bF condition, 2 ROIs showed
a significant positive correlation with car expertise, the left
OFA and left FFA2 (both r = 0.40, P = 0.04), and one area
showed a negative correlation with car expertise, the right
PHG (r =−0.45, P = 0.01). These results are consistent with an
account in which, for experts, cF reflects 2 items of expertise
with similar representations, leading to an enhanced represen-
tational pattern compared with that for a single item of exper-
tise plus a nonexpert item (bF).

Interestingly, in the Clutter runs with and without compe-
tition, a somewhat different pattern emerged: whereas univari-
ate analyses had suggested that competition abolished almost
all effects of expertise but for the lFFA1, multivariate analyses
reveal expertise effects under competition that are not observed

otherwise. For Cb versus Fb, no ROI exhibited a significant cor-
relation of MVPA performance with behavioral car expertise,
but for Cf versus Bf, bilateral FFA1 (left: r = 0.40, P = 0.030;
right: r = 0.55, P = 0.002) and left PHG (r = 0.38, P = 0.044)
achieved significant positive correlations of MVPA with exper-
tise. An additional region, left FFA2, approached significance (r
= 0.33, P = 0.097). Surprisingly, MVPA decoding in the Cf-Bf
condition yields more expertise effects than both the other
clutter condition (Cb vs. Fb) and the corresponding C versus B
comparison. This is especially salient in rFFA1, wherein Cb
versus Fb leads to a strong correlation with behavior for univari-
ate analyses and virtually no effect for MVPA, with the opposite
result in the Cf-Bf comparison. In other words, under compe-
tition between cars and faces, we find evidence that new infor-
mation related to car expertise emerges in patterns of activity.

Discussion

The present work represents the most systematic effort to date
in looking at how individual differences in performance for an
object category are expressed in the responses to objects from
that same category across a range of different situations. Our

Figure 4. Bar graphs depict the correlations between car expertise and univariate or multivariate effects plotted side-by-side for isolated, attended and ignored conditions. The
stippled bars are those that are significant, using one-tail P<0.05 as in Table 2 for the univariate analyses, and 2-tails <0.05 for the MVP analyses. Brackets indicate Steiger’s Z
tests comparing the absolute values of the expertise effects for univariate and multivariate analyses, 2-tails P<0.05.
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results converge with a number of prior studies reporting ex-
pertise effects in face-selective areas and beyond under rela-
tively standard testing conditions in which objects are
presented alone on the screen and attended (Gauthier et al.
2000; Xu 2005; Harley et al. 2009; Harel et al. 2010; Bilalic
et al. 2011; McGugin, Gatenby, et al. 2012). As in prior work
that looked at very small ROIs (Gauthier et al. 2000; McGugin,
Gatenby, et al. 2012), we find these expertise effects even in
the single most face-selective voxel in most of our FFA ROIs, in
particular in left and right FFA2. Consistent with another study
(McGugin et al. submitted), we find that when the low-level
visual content of images is controlled for, individual differ-
ences in car expertise are not consistently expressed in EVC.
We did find expertise effects in the EVC only in the RH and
only in the condition where butterflies were used as a baseline.
Lacking an explanation for why this effect was lateralized and
dependent on the choice of baseline, we assume it to be spur-
ious. However, it should be noted that effects of expertise in
bilateral OFA were also dependent on baseline (obtained with
a face baseline and not with the butterfly baseline). Exploring
different baselines was not a primary goal of the present work,
but these effects could potentially result from more long-term
competition between car and face expertise, as has been ob-
served between the representations of faces and words
(Dehaene et al. 2010).

It is important to note that we were not concerned here with
showing statistical evidence of reductions of expertise effects in
any given area. Testing for such reductions can require a rela-
tively large sample (as discussed in McGugin et al. submitted)
because of the moderate effect size (r∼ 0.5) of the expertise
effect in isolated conditions. In addition, our goal is not to show
that clutter or attention can influence selectivity, but rather to
test the hypothesis that some areas carry information about ex-
pertise despite these manipulations. The general conclusion that
clutter or attention influences responses in the visual system,
consistent with other work (Harel et al. 2010; Reddy and Kanw-
isher 2007), is broadly supported by the reduced number of
ROIs (or foci in the whole-brain analyses) in extra-striate cortex
that show expertise effects during these conditions.

We investigated how expertise effects for cars were affected
by the presence of task-irrelevant clutter (images of butter-
flies). While both our ROI and whole-brain analyses found
some reductions of expertise effects in extrastriate areas, it is
notable that all FFA ROIs (FFA1 and 2 bilaterally) revealed car
expertise effects under clutter conditions, without any evi-
dence of being dampened.

We also investigated how expertise effects for cars were af-
fected by reduced attention to cars. In this case, the dependent
measure of interest matters: when expertise effects are investi-
gated in ROIs or in univariate whole-brain analyses, reduced
attention appears to almost entirely abolish car expertise
effects. One exception was the left FFA2, where car expertise
effects were still observed (and were significant even in the
single most face-selective voxel, r = 0.50, P = 0.01). Despite a
severe dampening of local expertise effects, the relative
pattern of expertise effects across regions observed in isolated
conditions was found to be preserved under conditions
where cars were unattended, revealing that the response to
cars across ventral areas still expressed individual differences
in car expertise.

Finally, we investigated how expertise effects are affected by
competition between cars and faces, which behaviorally has

been found to reduce effects of expertise (Behrmann et al.
2005; McKeeff et al. 2010; McGugin et al. 2011), and in ERP
studies leads to reduced neural markers of expertise (Gauthier
et al. 2003; Rossion et al. 2004; 2007). We originally suggested
that Harel et al. (2010) mistook an effect of competition
(between planes and cars) for an effect of attention on exper-
tise. Given that Harel et al. only used ROIs and univariate ana-
lyses, our results in the attentional manipulation with
butterflies suggest that they may in fact have captured a dam-
pening of expertise effects with attention. However, our results
in competition conditions suggest that if there was indeed
competition between cars and planes in Harel et al.’s study (as
suggested by their behavioral results), it may also account in
part for the reduced expertise effects. ROI analyses did not
reveal any effect of car expertise when faces were present, with
the single exception of the left FFA2, and only when cars were
attended. In contrast to the effect of attention, competition also
abolished the relative pattern of expertise effects across
regions that we observed in the Isolated conditions. However,
the patterns of activity for attended cars relative to attended
butterflies, both in the context of faces, revealed significant ex-
pertise effects in regions that did not otherwise show such
expertise-related decoding.

Thus, pattern representations of cars and butterflies, when
shown in the presence of faces, were more distinct in car
experts than in car novices in this region. One interpretation is
that in car experts, cars (but not butterflies) will compete with
faces, such that the pattern of activity may actually be less face-
like in the Cf condition. This would increase the difference
between Cf and Bf, because the face representation elicited by
Bf would be more easily distinguished from that of objects in
car experts. An alternative explanation is that at least in some
brain areas, categorical pattern representations of cars and
faces reinforce or summate in car experts, for whom these cat-
egories lead to similar representations, thus increasing the
strength of the categorical pattern, allowing MVPA to differen-
tiate it from Bf. While this latter explanation remains highly
speculative, if correct, it raises an interesting avenue for further
exploration—the reconciliation of category-level patterns,
which may be more similar across categories when both cat-
egories are domains of expertise, with item-level patterns,
which presumably become more differentiable as a product of
expertise, both within- and between-category, rather than
more similar. In addition, behavioral studies and ERP studies
(Gauthier et al. 2003; Rossion et al. 2007; McGugin et al. 2011)
have consistently found that presenting faces and cars together
results in a reduction of behavioral hallmarks of expertise.
What this suggests is that the abolition of expertise effects in
univariate analyses when cars are shown among faces may be
more relevant to behavioral performance than the correlation
with multivariate effects. Regardless of the preferred expla-
nation for the multivariate expertise effects under competition,
one thing is clear: more work is required to understand how
univariate and multivariate effects relate to stable individual
differences in a given domain, as well as to performance under
specific bottom-up and top-down conditions.
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