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Autism spectrum disorder (ASD) includes deficits in social cognition,
communication, and executive function. Recent neuroimaging
studies suggest that ASD disrupts the structural and functional or-
ganization of brain networks and, presumably, how they generate in-
formation. Here, we relate deficits in an aspect of cognitive control
to network-level disturbances in information processing. We re-
corded magnetoencephalography while children with ASD and typic-
ally developing controls performed a set-shifting task designed to
test mental flexibility. We used multiscale entropy (MSE) to estimate
the rate at which information was generated in a set of sources dis-
tributed across the brain. Multivariate partial least-squares analysis
revealed 2 distributed networks, operating at fast and slow time
scales, that respond completely differently to set shifting in ASD
compared with control children, indicating disrupted temporal organ-
ization within these networks. Moreover, when typically developing
children engaged these networks, they achieved faster reaction
times. When children with ASD engaged these networks, there was
no improvement in performance, suggesting that the networks were
ineffective in children with ASD. Our data demonstrate that the co-
ordination and temporal organization of large-scale neural assem-
blies during the performance of cognitive control tasks is disrupted
in children with ASD, contributing to executive function deficits in
this group.
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Introduction

Defined by atypical behavior, including deficits in social cogni-
tion, communication, and cognitive control, autism spectrum
disorder (ASD) refers to a constellation of developmental disor-
ders with uncertain neurobiological etiology. The heterogen-
eity of ASD suggests that it should be studied with respect to
specific behavioral phenotypes and in specific contexts.

ASD has been associated with difficulties in mental flexibil-
ity, including the capacity to switch between response or atten-
tional sets (Yerys et al. 2009; Maes et al. 2011). Poor mental
flexibility, often seen as a tendency to get “stuck” in a pattern
of behavior, is thought to be an underlying basis of the persev-
eration, rigidity, and resistance to change behaviors that are a
defining hallmark of ASD (Hill and Bird 2006). Cognitive or
mental flexibility is classically assessed using the Wisconsin
Card Sorting Task (WCST), and behavioral studies have shown
impaired performance on the WCST in individuals with ASD
(Lopez et al. 2005). An alternative measure of cognitive flexibil-
ity, the Cambridge Neuropsychological Test Automated

Battery (CANTAB), which includes an intra- and extradimen-
sional (ID–ED) shift task (developed by Dias et al. 1996), has
also been used to demonstrate impairment in ASD participants
(Hughes et al. 1994; Ozonoff et al. 2004). These studies
showed that individuals with ASD were impaired on the ED
shifts (which demand greater cognitive flexibility) and per-
formed similarly to controls on ID shifts. The focus of the
present study is on impairments in cognitive control and cogni-
tive flexibility that are characteristic of this population.

Despite the fact that the literature has implicated several dis-
crete brain regions in cognitive flexibility deficits in ASD, in-
cluding frontal and parietal areas (Schmitz et al. 2006; Shafritz
et al. 2008), structural and functional neuroimaging research
suggests that ASD is a network disorder, characterized by aber-
rant patterns of anatomical connectivity (Belmonte et al. 2004;
Geschwind et al. 2007; Minshew and Williams 2007; Rippon
et al. 2007; Anagnostou et al. 2011; Vissers et al. 2012). As a
result, neuroimaging studies are increasingly focusing on dis-
tributed brain networks in ASD (Noonan et al. 2009; Just et al.
2012). Diffusion-weighted imaging studies have demonstrated
local as well as global differences in white matter microstruc-
ture in individuals with ASD, who are often reported to have
decreased fractional anisotropy (Barnea-Goraly et al. 2004;
Alexander et al. 2007; Keller et al. 2007; Sundaram et al. 2008;
Thakkar et al. 2008; Lee et al. 2009) and increased mean diffu-
sivity (Alexander et al. 2007; Barnea-Goraly et al. 2010; Fletch-
er et al. 2010; Sivaswamy et al. 2010), indicating aberrant
organization and reduced coherence within white matter
tracts. Although specific findings are variable in the literature
(Mak-Fan et al. 2012; Travers et al. 2012), the abnormalities are
typically widespread and encompass various fiber tracts, in-
cluding corpus callosum, internal capsule, arcuate fasciculus,
uncinate fasciculus, as well as projections to numerous loca-
tions in orbitofrontal and medial prefrontal cortex, cingulate
cortex, and temporal lobes.

The changes to the underlying anatomical connectivity and
network organization are reflected by atypical patterns of acti-
vation and functional connectivity in individuals with ASD. A
consistent finding is that long-range functional connectivity is
reduced, as measured by functional magnetic resonance
imaging (fMRI) (Cherkassky et al. 2006; Kennedy and Courch-
esne 2008; Monk et al. 2009), as well as magneto- and electro-
encephalography (MEG and EEG; Coben et al. 2008; Barttfeld
et al. 2011; Catarino et al. 2013; Khan et al. 2013; Peters et al.
2013; but see also Murias et al. 2007; Domínguez, Stieben,
et al. 2013). Such altered connectivity among brain regions
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appears to affect the overall functional topology of the
network (Tsiaras et al. 2011), with greater clustering and lower
efficiency of information transfer (Barttfeld et al. 2011; Peters
et al. 2013). This atypical connectivity, together with varying
levels of hyper- and hypoactivation across the brain (Wang
et al. 2004; Dapretto et al. 2005; Kennedy et al. 2006; Philip
et al. 2012), suggests that the “disconnection” in ASD alters
how information is generated and integrated (Domínguez,
Stieben, et al. 2013; Domínguez, Velázquez, et al. 2013; Veláz-
quez and Galán 2013).

The goal of the present study was to investigate network-
level patterns of information generation in the context of
cognitive flexibility, in children with and without ASD. We
recorded MEG activity while children diagnosed with ASD, as
well as typically developing control children, performed a set-
shifting task involving ID and ED shifts. As an index of
cognitive flexibility, set shifting requires both attention and in-
hibitory functions, both of which are thought to be disrupted
in ASD, allowing us to study neural activity related to the perse-
verative and repetitive behaviors that are characteristic of this
population. Using beamformer analysis, we estimated neural
activity at 529 locations evenly distributed throughout the
brain, allowing us to investigate network interactions with a
high degree of spatial and temporal resolution.

To quantify information generation, we used multiscale
entropy (MSE) analysis (Costa et al. 2002, 2005). MSE is often
described in the literature as a measure of signal complexity
(Lippé et al. 2009; Catarino et al. 2011), variability (McIntosh
et al. 2008), and information generation (Mišić et al. 2010;
Vakorin and McIntosh 2011). In practical terms, MSE mea-
sures the temporal organization of neural activity and, specif-
ically, its unpredictability. Significant departures from
regularity indicate a system that generates information at a
high rate due to communication and integration among dis-
tributed areas (Mišić et al. 2011; Vakorin et al. 2011). A
system that is capable of fluidly establishing and dissolving
large-scale neural assemblies will display high variability and
unpredictability. Thus, MSE is thought to reflect the dynamic
repertoire of the brain: The ability to flexibly transition
between global metastable states and engender complex
mental phenomena, such as perception, cognition, and motor
control. As a result, MSE has proved to be a reliable index of
atypical neural function in numerous pathological conditions,
including Alzheimer’s disease (Mizuno et al. 2010), schizo-
phrenia (Takahashi et al. 2010), and traumatic brain injury
(Raja Beharelle et al. 2012). In addition, MSE is sensitive to
long-term changes such as development (McIntosh et al.
2008; Lippé et al. 2009; Mišić et al. 2010; Vakorin et al. 2011)
and aging (Yang et al. 2013; McIntosh et al. 2014), as well as
transient changes in information flow elicited by sensory and
cognitive processing, such as learning (Heisz et al. 2012) and
face perception (Mišić et al. 2010).

To capture network-level differences in information pro-
cessing, we studied group and task effects on MSE using
partial least-squares (PLS) analysis (McIntosh and Lobaugh
2004; McIntosh and Mišić 2012). As a multivariate technique,
PLS determines the combination of groups/conditions and a
spatiotemporal pattern of neural activity that optimally relate
to each other. For the present study, this offered 2 distinct ad-
vantages. First, we were able to isolate networks of brain
regions that collectively covary with experimental manipula-
tions. Secondly, we were able to investigate the dominant,

data-driven patterns in the data without having to specify a
priori hypotheses about the differentiation between groups
and conditions, or about the specific spatiotemporal profiles of
these differences.

Materials and Methods

Participants
Fourteen children diagnosed with ASD (10.9±2.5 years) and 14 typical-
ly developing age-, sex- and IQ-matched children (11.2±2.3 years) par-
ticipated in the study. The ASD diagnosis was confirmed using the
Autism Diagnostic Observation Schedule-Generic (ADOS-G; Lord et al.
2000) and/or Autism Diagnostic Interview-Revised (ADI-R; Lord et al.
1994) and expert clinical opinion. Exclusion criteria for both groups in-
cluded a history of neurological or neurodevelopmental disorders
(other than ASD for the clinical group), acquired brain injury, use of
psychotropic medications, uncorrected vision, color blindness, IQ
lower than 65, language skills inadequate for completion of the tasks,
and standard contraindications to MEG and MRI. The study was ap-
proved by the Research Ethics Board at the Hospital for Sick Children.
All children gave informed assent and their parents gave informed
written consent.

Stimuli and Task
Participants performed a set-shifting task, in which they were required
to make a two-alternative forced-choice by matching 1 of 2 stimuli with
a target stimulus, based either on the color or the shape “dimension” of
the target (Fig. 1A). Stimuli were 6 geometric shapes in 6 different
colors (a total of 36 bi-dimensional compound stimuli) centered on
gray squares. Choice stimuli were presented side by side, above the
target stimulus. The stimuli were back-projected onto a screen with a
black background. A white cross was displayed in the center of the
screen between trials.

The children were instructed to indicate as quickly as possible
whether the left or right stimulus was in the same set as the target, by
pressing a left or right key on a Lumitouch button box. For all trials,
the target matched only one of the choice stimuli and on only one di-
mension (shape or color). Thus, no trials were presented in which
both dimensions provided possible matches. Sets of trials included a
maximum of 8 trials during which the match was always provided in
the same dimension. A shift occurred after a minimum of 3–4 correct
trials, whereby a new rule was instantiated.

Half of the sets involved an ED color-to-shape or shape-to-color
shift (ED shift), whereas half involved an ID color-to-color or
shape-to-shape shift (ID shift). The order of ED and ID shifts was ran-
domized. Stimulus duration was self-paced with a maximum duration
of 4 s and an inter-stimulus interval that randomly varied between 1
and 1.5 s. All participants completed two 6-min runs. On average, 48±3
shift trials for both ID and ED shifts were acquired for each child.

Magnetoencephalographic Acquisition
MEG data were recorded using a 151-channel whole-head CTF system
(MEG International Services Ltd, Coquitlam, BC, Canada) at the Hos-
pital for Sick Children in Toronto. Children lay supine in a dimly lit
magnetically shielded room. Prior to acquisition, 3 localization coils
were placed at the nasion and bilateral preauricular points to localize
the participant’s head relative to the MEG sensor array at the start and
finish of each block. Motion tolerance was limited to 1 cm, which is ne-
cessary for reliably recording MEG data from clinical child populations
without creating an overly biased sample (Taylor et al. 2011). Neuro-
magnetic activity was digitized at a rate of 625 Hz. Data were epoched
into [−1500 2500] ms segments time-locked to stimulus onset. Follow-
ing the MEG recording session, the 2 fiducial coils were replaced by
MRI-visible contrast markers and 3D SPGR (T1-weighted) anatomical
images were acquired in all children using a 1.5-T Signa Advantage
system (GE Medical Systems).
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Beamformer Source Reconstruction
We reconstructed time series representing the activity of multiple loca-
tions in the brain using beamformer analysis, which implements a 3D
adaptive spatial filter that uses surface field measurements to estimate
activity at desired locations in the brain (Robinson and Vrba 1999; Seki-
hara et al. 2005; Cheyne et al. 2007; Quraan and Cheyne 2010). Individ-
ual anatomical MR images were warped into the standard Talairach
space using a nonlinear transform in SPM2. A total of 529 source loca-
tions were chosen on a grid of size 5 mm such that they were uniformly
spaced and sufficiently few to allow reasonable computation time
(Fig. 1B). These locations were then warped back into the individual
participants’ MRIs. Activity at each target source was estimated as a
weighted sum of the surface field measurements. Weight parameters
and the orientation of the source dipole were optimized in the
least-squares sense, such that the average power originating from all
other locations was maximally attenuated without any change to the
power of the forward solution associated with the target source. The
forward solution for the beamformer was modeled by fitting multiple
sphere models to the inner skull surface of each child’s MRI. The
weights were then used to compute single-trial time series for each
source.

Multiscale Entropy
In MSE analysis (Costa et al. 2002, 2005), each single-trial time series is
downsampled to multiple temporal scales and sample entropy (SE)
(Richman and Moorman 2000) is calculated for each scale. For a given
temporal scale τ, the corresponding time series is derived by averaging
data points in nonoverlapping windows of length τ from the original
time series (τ = 1 corresponds to the original time series) (Fig. 2B).

Time scales can be converted to seconds by dividing scale τ by the sam-
pling rate (625 Hz). The SE algorithm calculates the conditional prob-
ability that any 2 sequences of (m+1) data points will be similar to each
other given that they were similar for the first m points, which reflects
the degree of regularity in a given time series (see example in Fig. 2A).
The SE metric is the negative of the natural logarithm of this quantity,
so higher values of SE are assigned to less regular and more variable
time series (Fig. 2C,D). In the present study, pattern length was set to
m = 2 and the similarity criterion to r = 0.5. The pattern length (also
known as the embedding dimension) was judged to be optimal follow-
ing the method proposed by Small and Tse (2004). The similarity cri-
terion (also known as the tolerance) was chosen following the
procedure described by Richman and Moorman (2000). MSE was cal-
culated for each of the 529 sources and averaged across trials. To
convert time scale into milliseconds, we divided the time scale by the
sampling rate (625 Hz).

The downsampling procedure employed in MSE systematically
alters the spectral content of the signal. At fine time scales, the time
series retains most of the energy in the original signal. As the time
series is downsampled to progressively coarser time scales, energy at
high frequencies is reduced and the downsampling procedure effect-
ively acts as a low-pass filter. As a result, fine time scales are dominated
by higher frequencies and coarse time scales are dominated by lower
frequencies. To denote these differences in spectral content, we refer
to fine time scales as “fast” and coarse time scales as “slow”.

Power Spectral Density
Multiple studies have found that changes in MSE tend to mirror
changes in power spectral density (PSD) (McIntosh et al. 2008; Lippé

Figure 1. Set-shifting task and source grid. (A) In the set-shifting task, participants must match the target stimulus presented at the bottom of the screen to 1 of 2 choice stimuli
presented at the top. Within a set of trials, the match is always made on the basis of one dimension (e.g., red if matching by color, or square if matching by shape). A set shift
occurs when the matching rule changes. ID shifts are color-to-color or shape-to-shape. ED shifts are color-to-shape or shape-to-color. (B) Source locations are arranged as a
uniformly distributed grid.
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et al. 2009), and that they offer complementary information about the
underlying neural dynamics (Gudmundsson et al. 2007; Mišić et al.
2010). To determine the extent to which group- and task-based differ-
ences in MSE are related to the spectral density, we additionally
computed PSD for all single-trial time series and performed the same
statistical analyses as with MSE (see below).

Single-trial power spectra were computed using the Fast Fourier
Transform. To account for individual differences in global signal
power, all time series were first normalized to a mean of 0 and a stand-
ard deviation of 1. Given a sampling rate of 625 Hz and N = 1562 data
points per trial, the frequency resolution was effectively 0.4 Hz; the
analysis was constrained to the [0.4 50] Hz range.

Figure 2. MSE analysis. Sample entropy is calculated by counting the number of sequences of (m+ 1) data points will be similar to each other given that they were similar for the
first m points. This reflects the unpredictability of the time series and the information that is generated by the underlying system. (A) An example of the sample entropy algorithm
(m=1), for 2 different starting points. (B) A multiscale representation of the signal is achieved by downsampling the original time series to progressively coarser time scales. (C)
Two example signals and (D) their MSE curves.

Figure 3. Groups means for MSE and PSD. Group means for both measures are presented for one randomly selected source. Error bars represent the standard error. Top: Group
means for the MSE analysis, at 2 time scales. The data suggest a group by condition interaction, which is confirmed by the subsequent PLS analysis. Bottom: Group means for the
PSD analysis, at 2 frequencies. The data suggest a group effect, which is confirmed by the subsequent PLS analysis.
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Partial Least-Squares
We treated PSD and MSE as measures of neural activity and assessed
the effects of group and condition for each of these measures separate-
ly using mean-centering PLS analysis. PLS analysis is a multivariate stat-
istical technique that can be used to relate 2 “blocks” or sets of
variables to each other (McIntosh et al. 1996; Lobaugh et al. 2001;
McIntosh and Lobaugh 2004; McIntosh and Mišić 2012). In the context
of neuroimaging, one set of variables may be exogenous, such as the
study design (e.g., groups and/or conditions), while the other may re-
present a set of endogenous variables, such as neural activity (e.g., SE)
that varies across one or more dimensions (e.g., sources and time

scales). In the present study, we related the differentiation between
groups and conditions to source- and frequency-dependent patterns of
sample entropy and spectral power.

In PLS, this is achieved by computing the covariance matrix
between the 2 sets of variables and decomposing this matrix into mu-
tually orthogonal “latent variables” using singular value decomposition
(SVD; Eckart and Young 1936). Each latent variable represents a par-
ticular relation between the study design on one hand and neural activ-
ity on the other. Specifically, each latent variable is expressed as a
vector of design saliences (e.g., Fig. 4A) and a vector of source sal-
iences (e.g., Fig. 4B), as well as a scalar singular value (s). The elements

Figure 4. PLS analysis of PSD. Taken together, (A) and (B) represent the dominant latent variable in the data, accounting for the greatest covariance between the study design and
neural activity (PSD). (A) The optimal combination (contrast) of groups and conditions, weighted by their contribution to the latent variable. Error bars are estimated by bootstrap
resampling. (B) Bootstrap ratios: the optimal combination (spatiotemporal pattern) of sources and frequencies, weighted by the reliability of their contribution to the latent variable.
For a given source and frequency, a high-valued positive bootstrap ratio means that the contrast in (A) is reliably expressed (i.e., greater power for the Control group). A high-valued
negative bootstrap ratio means that the opposite contrast is reliably expressed (i.e., greater power for the ASD group). (C) The number of sources with positive/negative bootstrap
ratios exceeding ±2. “Peak” frequencies (4, 10, 20, 27, and 40 Hz) are marked by gray lines. (D) Statistical maps showing networks of regions that most reliably express the
contrast in (A), shown for each of the peak frequencies in (C).
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of the design salience vectors are interpreted as a contrast between
groups and/or conditions, while the source saliences represent a
weighted pattern of sources and frequencies/scales that maximally
express that contrast. The singular value reflects the proportion of co-
variance between the design variables (groups and conditions) and
neuromagnetic variables (sources and frequencies/scales) that is
accounted for by each latent variable. This allows effect size (ηk) for
the kth latent variable to be estimated as the ratio of the square of the
singular value associated with that particular latent variable to the sum
of all squared singular values derived from the decomposition.

hk ¼
s2kP
i s

2
i
: ð1Þ

Nonparametric resampling was used to assess the statistical signifi-
cance and reliability of experimental effects. For each effect, statistical
significance was determined using permutation tests. The rows (i.e.,
the observations) of the neural activity data matrix were randomly reor-
dered (permuted) and the new data were subjected to SVD as before,
to obtain a new set of singular values. Note that it is the subject and
condition labels that are permuted, rather than the original time series
data. These singular values are effectively generated under the null hy-
pothesis that there is no association between neural activity and the
task. The procedure was repeated 500 times to generate a sampling dis-
tribution of singular values under the null hypothesis. Since the singu-
lar value is proportional to the magnitude of the effect, the P-value is
estimated as the probability that singular values from the distribution
of permuted samples exceed that from the original, nonpermuted data.

To estimate the reliability of the spatiotemporal patterns associated
with each effect, standard errors of the source saliences were estimated
using bootstrap resampling (Efron and Tibshirani 1986). Bootstrap
samples were generated by randomly sampling participants with re-
placement, while preserving group and condition assignment (500 re-
plications). The goal of creating a bootstrap distribution for each
source salience is to identify saliences that are stable regardless of
which participants are included in the sample. For each source, the
magnitude and stability of its contribution to the overall multivariate
pattern was assessed by taking the ratio of the source salience and its
bootstrap-estimated standard error. The resulting bootstrap ratio (bi)
indexes the statistical reliability of each source i, because it is large for
sources with a large salience (li) and a small standard error [SE(li)].

bi ¼ li
SEðliÞ : ð2Þ

Under the assumption that the bootstrap distribution is approximately
unit normal (Efron and Tibshirani 1986), bootstrap ratios are approxi-
mately equivalent to a Z-score. Statistical maps were generated using
tessellation-based linear interpolation to estimate bootstrap ratios for
each voxel. Bootstrap ratios were thresholded at the 95% confidence
interval to identify networks of regions that reliably express the statis-
tical effect captured by the latent variable.

Results

We performed 2 analyses of the effects of group and condition.
In the first, the dependent variable was PSD at multiple fre-
quencies. In the second, the dependent variable was sample
entropy (SE) at multiple time scales. Overall significance and
P-values associated with each data-driven effect were esti-
mated by permutation tests, whereas effect size was estimated
as the proportion of cross-block covariance accounted for by
the latent variable. The spatiotemporal distribution of each
effect was characterized by thresholding maps of bootstrap
ratios to reveal those combinations of sources and frequencies
or sources and time scales that reliably express the effect.

Power Spectral Density
Group means for the power spectra suggested a main effect of
group (Fig. 3), and this was confirmed by the subsequent PLS
analysis (Fig. 4A). The power spectra produced a strong group
effect (P = 0.004, accounting for 84.4% of cross-block covari-
ance) (Fig. 4A). Much of the effect was stratified according to
classical frequency bands. Compared with typically developing
children, children with ASD expressed decreased power in θ
(4 Hz), lower β (20 Hz) and γ (40 Hz), and increased power in
α (10 Hz) and upper β (25 Hz) (Fig. 4A).

The effect suggests an underlying shift in the power spectra
of the ASD group relative to the typically developing children.
To investigate this possibility, at each frequency we calculated
the number of sources for which the effect was reliably ex-
pressed (by the bootstrap test) (Fig. 4C). The figure shows a
pattern alternating between positive and negative bootstrap
ratios, with peaks at 4, 10, 20, 27, and 40 Hz. The largest peak
was observed at 10 Hz, suggesting that this effect may be primar-
ily driven by an upward shift in the α frequency band in ASD.

To show the spatial expression of these group differences,
we created images of bootstrap ratios, thresholded at the 95%
confidence interval to include only those regions that reliably
expressed the contrast (Fig. 4D). The group differences were
spatially constrained, but variable across frequency bands.
Group differences were primarily observed in cuneus, precu-
neus, right hippocampus, bilateral putamen, left caudate, and
temporal pole. Supplementary Figure 1 shows an unthre-
sholded, whole-brain montage of these bootstrap ratios.

Multiscale Entropy
Group means for MSE suggested a group by condition inter-
action (Fig. 3), and this was confirmed by the subsequent PLS
analysis (Fig. 5A). Unlike for PSD, the dominant effect for MSE
was not a group difference, but rather an interaction between
group and condition (P = 0.004, accounting for 47.7% of cross-
block covariance) (Fig. 5A). The interaction primarily con-
cerned ID and ED shifts, whereby the 2 groups both showed a
difference between ID1/ID3 and ED1/ED3, but did so in op-
posite ways.

The prominent horizontal bands in the matrix of bootstrap
ratios indicate that this contrast had 2 main modes of expression
(Fig. 5B). At fast time scales (<8 ms), bootstrap ratios were posi-
tive, indicating greater information for ED shifts compared with
ID shifts in the ASD group and the opposite contrast for the con-
trols. At slow time scales (>8 ms), bootstrap ratios were negative,
indicating greater information for ID shifts compared with ED
shifts in the ASD group and the opposite contrast for the con-
trols. In other words, there were 2 networks of regions —one
operating at fast time scales and the other at slow time scales—
that responded to ID and ED shifts differently in individuals
with ASD compared with typically developing controls.

To show the spatial distribution of these networks, we
created images of bootstrap ratios, thresholded at the 95% con-
fidence interval to reveal regions that reliably express this inter-
action (Fig. 5C). Since there was little variance across time
scales other than the difference between fast and slow time
scales, these networks are shown for a representative fast time
scale (5 ms) and a representative slow time scale (30 ms). At
the 5-ms time scale, the interaction was reliably expressed in
hippocampi, superior parietal cortex, and inferior frontal
gyrus. At the 30-ms time scale, the interaction was reliably
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http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu082/-/DC1


expressed in the cerebellum, cuneus, posterior cingulate, infer-
ior parietal lobule, paracentral lobule, and anterior cingulate.
Supplementary Figure 2 shows an unthresholded, whole-brain
montage of these bootstrap ratios. Compared with PSD, the
MSE results were more spatially distributed.

Note also that the contrast was stronger for ID1 versus ED1
than for ID3 versus ED3 (Fig. 5A). This is consistent with the
fact that ID1/ED1 constitutes the first trials following a rule
change and signifying a set shift. ID3/ED3 comprises the third

trial following a rule change, when the cognitive set had been
established. Since the contrast captures the effect of set shift-
ing, it is not surprising that condition differences are more ex-
aggerated for ID1/ED1 compared with that for ID3/ED3.

Multiscale Entropy and Behavior
Figure 6A displays the reaction times for children with ASD
and typically developing controls in the 2 tasks. For the

Figure 5. PLS analysis of MSE. Taken together, (A) and (B) represent the dominant latent variable in the data, accounting for the greatest covariance between the study design and
neural activity (MSE). (A) The optimal combination (contrast) of groups and conditions, weighted by their contribution to the latent variable. Error bars are estimated by bootstrap
resampling. (B) Bootstrap ratios: the optimal combination (spatiotemporal pattern) of sources and time scales, weighted by the reliability of their contribution to the latent variable.
For a given source and time scale, a high-valued positive bootstrap ratio means that the contrast in (A) is reliably expressed. A high-valued negative bootstrap ratio means that the
opposite contrast is reliably expressed. (C) Statistical maps showing networks of regions that most reliably express the contrast in (A).
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typically developing controls, reaction times were significantly
longer for ED1 trials compared with ED3 trials (P < 0.02), but
there was no significant difference between ID1 and ID3 trials
(P = 0.54). Similarly, for children with ASD, reaction times
were significantly longer for ED1 trials compared with ED3
trials (P < 0.05), but there was no significant difference
between ID1 and ID3 trials (P = 0.17). Comparing the 2
groups, there was no significant difference between children
with ASD and controls on either ED1 (P = 0.5) or ID1 (P = 0.49)
trials.

The MSE analysis identified a set of networks that respond
differently in children with ASD compared with typically de-
veloping controls. A natural question is whether these net-
works are ineffective with children with ASD (i.e., do not help
them to do the task), or whether they are engaged in some
compensatory fashion (i.e., helping them to do the task). To
determine whether the rate at which information is generated
by these networks has behavioral consequences, we related
the PLS results to reaction times. We calculated the extent to
which individual children express the patterns in Figure 5C by
projecting these weighted patterns onto individual children’s
MEG data, separately for each condition.

Specifically, brain scores are calculated as follows. For
subject i in condition c, there is a column vector Xi;c with k ele-
ments, corresponding to k sources. PLS analysis produces a set
of weights (a column vector U) that represent the contribution
of each of the k sources to the latent variable. The scalar-valued
brain score bi;c is then calculated by projecting the weights U
onto the individual’s MSE data X.

bi;c ¼ X0
i;cU: ð3Þ

We then correlated the resulting condition-specific brain
scores with mean reaction times for each participant (Fig. 6B).
Control children showed a significant negative correlation (r =
−0.63, P = 1.3 × 10−5), indicating that the more they expressed
the patterns in Figure 5C (i.e., generated information in those
networks), the faster their reaction times. Conversely, for indi-
viduals with ASD there was no significant association (r = 0.09,

P = 0.58), indicating that information generation in these par-
ticular networks did not improve reaction times.

Discussion

We provide the first evidence for network-level disturbances in
information generation in children with ASD in the context of
executive function and, in particular, mental flexibility and
cognitive control. We used a data-driven multivariate analysis
to capture the dominant group- and task-related trends in in-
formation generation across a network of MEG sources. Our
analyses revealed 2 networks, operating at fast and slow time
scales, which responded completely differently to cognitive set
shifting in ASD compared with typically developing children.
We also demonstrate that information generation in these dis-
tributed networks is related to successful performance in typic-
ally developing controls, but not in children with ASD. This
suggests that children with ASD are unable to effectively co-
ordinate information generation to support performance when
cognitive flexibility demands are high. As we discuss below,
children with ASD may be making use of an alternative neural
mechanism to perform the task. These findings provide further
evidence that functional disconnection in distributed networks
is linked to executive function in ASD. These results also
uniquely demonstrate that such disruptions of functional con-
nectivity in ASD are related to the ability to coordinate informa-
tion generation across distributed neuronal ensembles in a
task-relevant manner. Moreover, this study demonstrates that
MSE analysis of neurophysiological networks can provide
valuable insight into atypical cognitive development in clinical
child populations.

It is tempting to interpret the task-dependent differences in
MSE as reflecting the relative difficulty of the ID and ED shifts,
but that does not explain why the direction of the effect, as
well as the underlying networks, depends on time scale. In the
control group, at fast time scales, one network generates more
information for ID compared with ED shifts, while at slow time
scales a different network generates more information for ED
compared with ID shifts. This time scale dependency may be
related to how the set shifts are physiologically implemented.

Figure 6. Relation between MSE and behavior. (A) Group mean reaction times in the set-shifting task. Errors bars represent standard errors of the mean. (B) Correlations between
reaction times and the degree to which individual participants express the networks identified by the MSE–PLS analysis in Figure 5B (brain scores).
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Shifting within a single-stimulus dimension requires less in-
hibitory control and updating cognitive set, so the fast neural
dynamics may primarily reflect the integration and information
generation that happens in response to ID shifts. Conversely,
shifting between stimulus dimensions requires greater inhibi-
tory control and presumably, longer, more sustained episodes
of integration. Thus, the slow neural dynamics may primarily
reflect information processing in response to ED shifts. This is
further supported by the fact that the main contrast was stron-
ger for the first trials following a rule change (ID1 vs. ED1),
compared with the third trials following a rule change (ID3 vs.
ED3) (Fig. 5A).

In children with ASD, networks involved in cognitive set
shifting were expressed differently at both fast and slow time
scales, indicating that atypical network activity and integration
at 2 distinct time scales may be pertinent to problems with cog-
nitive flexibility in this population. At fast time scales, the ASD
group generated more information during ED shifts than con-
trols, while at slow time scales they generated more informa-
tion during ID shifts. This reversal is counter-intuitive, as
previous behavioral studies utilizing set-shifting tasks suggest
that individuals with ASD have greater difficulty with ED set
shifting (Hughes et al. 1994; Ozonoff et al. 2004; Rugg and
Curran 2007). Our data suggest that, at least in those particular
networks and at those particular time scales, individuals with
ASD may be misappropriating physiological and cognitive re-
sources to perform the 2 tasks. The notion that these networks
operate ineffectively in ASD is further supported by the behav-
ioral analysis. When control children activated these networks,
they were better able to perform the task, in the sense that
their reaction times were faster. When individuals with ASD ac-
tivated these networks, there was no overt improvement in
task performance.

The networks identified by the MSE analysis encompass a
diverse set of regions, ranging from primary extrastriate cortex,
to parahippocampal gyrus, to superior parietal, and to pre-
frontal cortex. Our results, which show atypical information
processing in these networks in ASD, are reminiscent of previ-
ous literature, which has demonstrated widespread patterns of
hypo- and hyperactivation in ASD (Belger et al. 2011; Philip
et al. 2012), as well as disrupted structural and functional con-
nectivity (Anagnostou et al. 2011). Many of these regions have
previously been implicated in ASD, including cuneus and ex-
trastriate cortex (Bonilha et al. 2008; Wong et al. 2008), precu-
neus and posterior cingulate (Wang et al. 2004; Cherkassky
et al. 2006; Kennedy et al. 2006; Oblak et al. 2011), inferior
parietal lobule (Koshino et al. 2005), superior parietal cortex
and paracentral lobule (Courchesne et al. 1993; Belmonte and
Yurgelun-Todd 2003; Hadjikhani et al. 2006), hippocampal
formation (Raymond et al. 1995; Aylward et al. 1999; Schu-
mann et al. 2004), anterior cingulate (Haznedar et al. 1997;
Mundy 2003; Thakkar et al. 2008), and inferior frontal gyrus
(Dapretto et al. 2005; Villalobos et al. 2005). Our data are con-
sistent with the recent literature because they demonstrate that
ASD does not affect any one region or pathway, but ensembles
of regions, supporting the view that disruptions of integrated
network functions may play an important role in the
pathophysiology of ASD. In particular, ASD affects the tem-
poral organization of these networks, perturbing the global in-
teractions required to perform specific cognitive tasks.

It is also important to note that, given the lack of overt be-
havioral differences in the present sample, children with ASD

may be using an alternate strategy to complete the task. The
possibility that individuals with ASD develop an alternate strat-
egy comes from several recent studies that have produced
seemingly conflicting results regarding set shifting (Geurts
et al. 2009). For instance, several investigations have reported
deficits (Hughes et al. 1994; Ozonoff et al. 2000, 2004), while
others did not find evidence of such deficits (Edgin and Pen-
nington 2005; Goldberg et al. 2005; Landa and Goldberg 2005;
Happé et al. 2006; Sinzig et al. 2008; Corbett et al. 2009). The
fact that children with ASD are capable of achieving compar-
able behavioral performance is consistent with the notion that
pathophysiology in clinical child populations may be concomi-
tant with a compensatory reorganization of function (Schafer
et al. 2009).

Therefore, the present results, which show that specific net-
works are engaged differently for ID/ED shifts in typically de-
veloping children and children with ASD, must be interpreted
carefully. One possibility is that these networks reflect an
adaptive, compensatory reorganization that allows children
with ASD to perform as well as typically developing controls.
Another possibility is that these networks are simply ineffect-
ive in children with ASD, and that they use some different
neural process to perform the task. The brain–behavior corre-
lations suggest that the latter possibility is more likely, because
they show that when typically developing children engage
these networks, they achieve better performance, but when
children with ASD engage the same networks, their perform-
ance is unaffected.

The present results address the question of how set shifting
is particularly affected by ASD. Wager et al. (2004) performed
a meta-analysis of attention shifting studies in healthy partici-
pants and found that all types of shifting were associated with
a common set of brain regions, including medial prefrontal, su-
perior and inferior parietal, medial parietal, premotor, and oc-
cipital cortices. Recent fMRI studies of set shifting in ASD have
consistently found these regions to be involved, but there is
little consensus about how they are affected by ASD and the
underlying mechanism that contributes to the disorder.
Schmitz et al. (2006) found that the right mesial parietal cortex
is more active in adults with ASD. Conversely, Shafritz et al.
(2008) found decreased activity in frontal (dorsolataeral pre-
frontal cortex and anterior cingulate cortex) and parietal (intra-
parietal sulcus) regions in adults with ASD, while Solomon
et al. (2009) also reported reduced activity in adolescents with
ASD, specifically in anterior frontal, parietal, and occipital
regions.

Our results contribute further evidence that ASD affects set
shifting through a network comprising frontal, parietal, and
occipital regions. Moreover, our results suggest that informa-
tion coordination among these regions is affected by ASD and
in that sense, they are consistent with several recent reports.
For instance, Solomon et al. (2009) found that individuals with
ASD showed reduced fronto-parietal connectivity during set
shifting, while Doesburg et al. (2013) reported that children
with ASD express reduced interregional theta synchronization
during set shifting. Our results build on these findings by offer-
ing 2 additional observations. First, ASD does not affect all
aspects of set shifting in the same way. The interaction
between group and condition that we found suggests that ASD
differentially affects ID and ED shifts, raising the possibility
that the 2 types of shifts may capture different phenotypes.
Secondly, ASD does not just affect activation (i.e., the mean),
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but the temporal dynamics of neural activity. There is a
growing recognition in the literature that many aspects of
neural structure and function are reflected not only in the
mean signal, but also in the variability around that signal
(McIntosh et al. 2008; Garrett et al. 2013). It is possible that the
conflicting findings about increased versus decreased activa-
tion in ASD are simply 2 sides of the same underlying abnor-
mality in how information is generated. Moreover, several
recent reports have posited that ASD affects the rate at which
information is generated, which is reflected in the variability
and “noise” present in neural activity (Domínguez, Velázquez,
et al. 2013; Velázquez and Galán 2013).

Our data also support the notion that ASD affects neural syn-
chrony. The PSD analysis revealed a large upward shift in the
power spectrum that was particularly prominent in the alpha
band, such that children with ASD displayed increased power
in delta and lower beta, as well as decreased power in alpha,
higher beta, and gamma. These data are consistent with the lit-
erature on power spectra (Murias et al. 2007; Coben et al. 2008;
Cornew et al. 2012; Tierney et al. 2012; Lushchekina et al.
2013), but they also provide 2 significant advances in this
regard. First, our multivariate analysis demonstrates that the
various band-specific group differences are not independent
of each other, but occur together as part of a large shift in the
entire power spectrum (Fig. 4B). Secondly, the distributed
beamformer source solution allows us to (Fig. 4D) localize dif-
ference in spectral power, which previous EEG studies were
not able to do.

It is also important to note that the PSD results were substan-
tially different from the MSE results, producing a different
optimal contrast and a different spatial distribution. This indi-
cates that MSE captures an aspect of neural information pro-
cessing in ASD above and beyond what can be gleaned from a
traditional analysis of spectral power. Group differences in
spectral power in ASD are typically interpreted as being reflect-
ive of an imbalance between excitation and inhibition at the
neuronal level. Our MSE results indicate that ASD causes add-
itional problems, particularly with how information is gener-
ated at the large-scale network level.

Our results are consistent with the notion that ASD must be
studied in appropriate behavioral contexts, designed to target
specific cognitive processes associated with core difficulties in
ASD (Belger et al. 2011; Philip et al. 2012; Poljac and Bekker-
ing 2012). This is best demonstrated by the finding that the
dominant MSE effect in the present report is an interaction
between task and group, rather than a main effect of group.
Interestingly, 2 previous EEG studies have found evidence for
reduced MSE in ASD, but one used resting-state recordings
(Bosl et al. 2011), while the other used a simple detection task
involving faces and chairs (Catarino et al. 2011). In the latter
study, the authors found no significant interaction between
task and group, but did note that the spatial distribution of
group differences appeared to reflect the visual nature of the
task. Our data complement and build on these studies by
showing that ASD cannot be characterized in terms of a unitary
difference in information generation. By utilizing a task de-
signed to elicit behaviors known to be disrupted in ASD and
focusing on how networks of regions are affected, we have
shown that individuals with ASD do not have a tonic reduction
in information generation, but rather a dissonant temporal or-
ganization of the functional architecture necessary to support
cognitive set shifting.

Altogether, the present report demonstrates network disor-
ders in children with ASD that affect how distributed regions
communicate and generate information at multiple time scales.
These results indicate that ASD involves disrupted temporal or-
ganization of the networks required to integrate information
for flexible cognitive control, rendering them less effective.
The relation between ASD and the functional architecture of
the brain is an important question for future research. In par-
ticular, future studies should investigate whether the temporal
disturbances observed for cognitive control are characteristic
of other ASD-related deficits, such as communication and
social cognition.
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