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Abstract

The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent 

projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine 

(DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that 

modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain 

slice preparations; however, this method traditionally requires electrical stimulation to induce DA 

release. Electrical stimulation excites all of the neuronal processes in the stimulation field, 

potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used 

optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA 

responses from electrical and optical stimulation of the same area of tissue around a recording 

electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release 

increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced 

inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, 

increased electrically stimulated DA release significantly more than light stimulated release. The 

nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single 

pulse electrically stimulated DA release while having no effect on optically stimulated DA release. 

Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of 

DA release that is absent with optogenetically targeted stimulation.
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Mesolimbic dopamine (DA) signaling has been suggested to underlie numerous processes 

including reward learning, motivated behavior and addiction, prompting extensive 

investigation into the mechanisms that regulate DA signaling. Within the nucleus 

accumbens (NAc), DA axons branch to provide extensive innervation with signaling 

occurring primarily via volume transmission (fluxes in extracellular DA tone); therefore, 

much attention has focused on the local regulation of DA terminal release and uptake. Fast 

scan cyclic voltammetry allows detection of extracellular DA levels with rapid temporal 

sensitivity, providing insights into DA signaling dynamics. Voltammetry can be combined 

with local stimulation of the NAc in brain slices to specifically measure DA terminal 

properties and how they are altered following various manipulations (Mateo et al. 2005; 

Calipari et al. 2014; Rose et al. 2013; Ferris et al. 2014; Siciliano et al. 2014; Yorgason et 

al. 2014). However, even in a reduced preparation such as accumbal slices ex vivo, DA 

signaling is not examined in isolation. For example, ex vivo voltammetry studies typically 

use electrical stimulation of the tissue to induce action potential dependent DA release. This 

method lacks specificity in heterogenous tissue, resulting in excitation of all cell types in the 

stimulation field. Optogenetics allows direct, selective activation of the terminal fields 

which belong to the ventral tegmental area (VTA)-to-NAc projections, making it possible to 

ask the question of how traditional electrically stimulated DA release in accumbal slices is 

different from selective stimulation of the DA terminals that emerge from the VTA.

The NAc is highly heterogeneous, containing afferent terminals from glutamatergic, 

serotonergic, dopaminergic, and GABAergic projections as well as innervation from local 

GABAergic and cholinergic interneurons (Zhou et al. 2001; Tepper and Bolam 2004). 

Adding to this complexity in neurotransmitter release is the fact that DA terminals express a 

diversity of heteroreceptors, including metabotropic glutamate receptors, GABAB receptors, 

nicotinic acetylcholine receptors (nAChR), kappa opioid receptors, and others. Each of these 

receptor types modulates DA terminal release (Schlöosser et al. 1995; Zhou et al. 2001; 

Schmitz et al. 2002; Zhang and Sulzer 2003). For example, accumulating evidence suggests 

a particularly prominent regulation of presynaptic DA terminals by acetylcholine (Rice and 

Cragg 2004; Zhang and Sulzer 2004), including a mechanism by which synchronous 

excitation of cholinergic interneurons was sufficient to evoke DA release from unstimulated 

DA terminals (Cachope et al. 2012; Threlfell et al. 2012), further demonstrating the impact 

of the local environment on DA terminal release.

Electrical stimulation results in the depolarization of all axonal processes, dendrites and cell 

bodies in the stimulation field. This results in a cumulative regulation of DA release by 

introducing the release of diverse neurotransmitters and numerous mechanisms for 

modulation of presynaptic DA terminals. Concurrent modulation in this manner represents a 

divergence from normal physiology because in the intact brain release of transmitters from 

the different regional projections to the NAc are likely to be temporally distinct, thus, total 

synchronous excitation is unlikely to occur. Often, rapid multi-pulse stimulations 

(stimulation trains) are applied to slices to induce DA release representative of burst activity 

in the VTA. Controlling the activity of non-dopaminergic neurons is especially crucial when 

conducting experiments utilizing stimulation trains because the duration of stimulation is 

Melchior et al. Page 2

J Neurochem. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sufficient to activate metabotropic heteroreceptors on dopaminergic terminals (Phillips et al. 

2002) and inhibit DA release.

Our goal in this study was to examine DA release using optogenetic stimulation of DA 

terminals and compare optical- to electrically stimulated DA release. We hypothesized that 

electrical stimulation recruits non-dopaminergic processes in the local environment, 

resulting in a net inhibition of DA release via heteroreceptors on the DA terminals. To 

stimulate DA release from only the midbrain projection neurons, we injected an adeno-

associated virus (AAV) virus expressing channel rhodopsin-2 (ChR2) directed either to the 

general population of projection neurons or specifically to DA neurons in the VTA of 

C57Bl/6 mice (Wild type or TH : Cre). Voltammetry was performed on slices containing 

NAc to assess DA release following local stimulation of terminal fields using optical and 

electrical stimulation. Here, we characterize the relationship in the profile of DA release 

resulting from either optical or electrical stimulation, and thus provide continued qualitative 

analysis of the optogenetic technique. Furthermore, we characterize the differences in 

release elicited by multi-pulse stimulation trains applied with each stimulation method. To 

evaluate the potential contribution of non-dopaminergic transmitters on electrically 

stimulated release, we chose to target the signaling which occurs from local interneurons 

(GABAergic and cholinergic) which would be concurrently stimulated using electrical 

stimulation, while being insensitive to optical stimulation. Thus, we blocked GABAergic 

receptors or nAChR and measured DA release resulting from either electrical or light 

stimulation of the same area of tissue to gauge the differential modulation of release that 

occurs due to the method of stimulation.

Materials and methods

Animals

Adult (25–40 g) male C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME, USA) were 

group housed in the mouse colony until surgery. All animals were maintained according to 

the National Institutes of Health guidelines and all experimental protocols were approved by 

the Institutional Animal Care and Use Committee at Wake Forest School of Medicine. Mice 

were anaesthetized with 100 mg/kg ketamine and 8 mg/kg xylazine and placed in a 

stereotaxic frame. A custom-made glass micropipette (80 μm outer diameter) was inserted 

directly above the VTA (coordinates from Bregma in mm: −3.3 AP, ±0.5 ML, −4.3 DV). 

Individual injections were performed on each side of the midline resulting in bilateral 

infusion. Microinjections were administered using a Picrospritzer® III Intracellular 

microinjection dispense system (Parker Hannifin Co., Cleveland, OH, USA) by applying 

small pulses of pressure (30–40 psi, 50–100 ms duration) to the infusion pipette. Each 

hemisphere of the VTA was injected with 0.4 μL of purified AAV5 (4 × 1012 virus 

molecules/mL; Virus Vector Core, University of North Carolina) coding for 

hChR2(H134R)-eYFP under control of the Calcium/calmodulin dependent protein kinase 

IIα (CaMKIIα) promoter, over a period of 20 min, followed by an additional 10 min of non-

activity to allow diffusion away from the pipette tip. The pipette was carefully removed, the 

drilled out holes in the skull were sealed with bone wax and the scalp incision was closed 

using tissue adhesive. Following surgery, mice were returned to the mouse colony, single 
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housed, and maintained for an average of 67 days (range 28–117 days) to allow incubation 

and expression of ChR2.

Tyrosine hydroxylase (TH)–internal ribosome entry site–Cre Recombinase knock-in mice 

on a C57Bl/6J background (TH : Cre) were acquired from Dr Garret Stuber at the University 

of North Carolina, and were originally obtained from the European Mutant Mouse Archive 

(EM 00254). Mice were bred in-house, and litters were genotyped to identify males 

expressing the Cre Recombinase gene. TH : Cre mice were housed, maintained, and 

surgeries were performed as described above. Adult (25–40 g) male TH : Cre mice were 

injected with 0.4 μL of a Cre dependent virus rAAV5-DIO-Ef1α-ChR2(H134R)-eYFP (4 × 

1012 virus molecules/mL; Virus Vector Core, University of North Carolina), bilaterally, 

within the VTA to specifically express ChR2 in TH positive neurons and axons as described 

previously (Tsai et al. 2009; Adamantidis et al. 2011). Heterogeneous cellular phenotypes 

exist in the VTA and may express differing levels of TH depending on an individual cells' 

transmitter profile; however, the ventral midbrain neurons that project to the NAc core are 

located in the lateral regions of the VTA (Ikemoto 2007). Previous studies have 

demonstrated a greater than 98% overlap between TH staining and ChR2 expression in these 

regions, in this mouse model (Tsai et al. 2009; Chaudhury et al. 2013; Stamatakis et al. 

2013; Tye et al. 2013). Mice were maintained for a minimum of 28 days following surgery 

to allow incubation and expression of ChR2.

Histology

Immunohistochemistry was used to verify expression of ChR2 at the site of injection and in 

axon terminals in the ventral striatum. Mice were anaesthetized with ketamine (100 mg/kg) 

and xylazine (8 mg/kg) and transcardially perfused with phosphate-buffered saline (PBS) 

followed by 10% buffered formalin phosphate (Fischer Scientific, Waltham, MA, USA). 

Brains were then removed, submerged in 10% buffered formalin phosphate for an additional 

24–48 h, and subsequently transferred to 30% sucrose in PBS for 72 h. Sections (40 μm) 

were obtained on a microtome (American Optical Company, Buffalo, NY, USA) and stored 

in PBS for immunohistochemistry.

Sections were permeablized in 0.3% Triton (Sigma, St Louis, MO, USA) in PBS (PBS-Tx) 

for 2 h, blocked in 5% normal goat serum (Vector Laboratories, Burlingame, CA, USA) in 

PBS-Tx, and incubated in primary antibody in the blocking solution for 24–48 h. Primary 

antibodies include Chicken anti-Green Fluorescent Protein (GFP) (1 μg: 500 μL; Aves Labs, 

Tigard, OR, USA) and Rabbit anti-TH (1 μg: 1000 μL; Cell Signaling Technology, Danvers, 

MA, USA). Sections were rinsed and transferred to secondary antibody in blocking solution 

for 1.5 h. Secondary antibodies include Fluorescein-labeled Goat anti-Chicken IgY (1 μg: 

250 μL; Aves labs) and Goat anti-Rabbit Alexa Fluor 594 IgG (1 μg: 250 μL; Molecular 

Probes, Eugene, OR, USA). Sections were mounted on 1 mm slides with Vectashield 

(Vector Laboratories) mounting medium and images were obtained with an Olympus BX 51 

Microscope (Center Valley, PA, USA) and Optronics Microfire digital camera (Goleta, CA, 

USA). Images were processed in adobe photoshop. In some images the interpeduncular 

nucleus was removed for clarity.
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Fast scan cyclic voltammetry

Slice preparation and ex vivo voltammetry was done as described previously (Ferris et al. 

2012). Briefly, animals were anesthetized with Isoflurane, decapitated, and the brain rapidly 

removed and cooled in ice-cold, pre-oxygenated (95% O2/5% CO2) artificial cerebral spinal 

fluid (aCSF) consisting of (in mM): NaCl (126), KCl (2.5), NaH2PO4 (1.2), CaCl2 (2.4), 

MgCl2 (1.2), NaHCO3 (25), glucose (11), L-ascorbic acid (0.4) and pH was adjusted to 7.4. 

Multiple coronal slices (300 μm thick) containing the NAc were prepared from each animal 

with a vibrating tissue slicer (Leica VT1000S; Leica Instruments, Nussloch, Germany). 

Slices were maintained in oxygenated aCSF at 23°C for > 1 h before transfer to a 

submersion recording chamber through which 32°C oxygenated aCSF was perfused at a rate 

of 1 mL/min; an additional 30 min of incubation allowed slices to equilibrate. A carbon fiber 

microelectrode (100–150 μM length, 7 μM diameter) was placed into the NAc core, 

extending approximately 100 μM below the surface. Extracellular DA was monitored at the 

carbon fiber electrode every 100 ms (10 Hz) using fast scan cyclic voltammetry (Wightman 

et al. 1988) by applying a triangular waveform (−0.4 to +1.2 to −0.4 V vs. Ag/AgCl, 400 

V/s).

For electrical stimulation, a stimulating electrode was placed on the surface of the slice in 

close proximity to the carbon fiber electrode. DA was evoked by an electrical pulse (350 μA, 

4 ms duration) applied as a single pulse or as a multi-pulse train (5, 10 and 20 pulses) at a 

frequency of 20 Hz every 5 min. Optic stimulation was delivered from a 200 μM diameter 

optic fiber (Thor Labs, Newton, NJ, USA) coupled to a 100 mW, 473 nm diode-pumped, 

solid-state blue laser (Viasho Technology, Beijing, China) with a VD-IIIA DPSS laser 

driver. The optic fiber was positioned in the slice bath, above the tissue, and aimed to deliver 

light to the area of tissue immediately surrounding the recording electrode. DA was evoked 

by an optical pulse (~ 5 mW, 4 ms duration) applied as a single pulse or as a multi-pulse 

train (5, 10 and 20 pulses) at a frequency of 20 Hz every 5 min. The electrical stimulator and 

optical fiber were best positioned to stimulate the same area of tissue around the recording 

electrode. Switching between electrical and optical stimulation occurred at the computer 

such that the tissue was not disturbed. For experiments incorporating TH : Cre mice, only 

optical stimulation of the tissue was performed; the parameters of optical stimulation were 

identical, as described above.

Once the extracellular DA response to single pulse electrical stimulation was stable (less 

than 10% variation, not trending up or down, across three successive recordings), baseline 

electrical pulse train stimulations were performed in series (1, 5, 10, and 20 pulses at 20 Hz), 

followed by a return to 1 pulse stimulations, with 5 min intervals between stimulations. The 

same procedure was then repeated using optical stimulation. For pharmacological 

experiments, 1 and 20 pulse baseline recordings were obtained for electrical followed by 

optical stimulations. A `return' 1 pulse stimulation always followed a 20 pulse stimulation, 

and the before and after 1 pulse recordings were averaged obtain the reported 1 pulse value. 

Once baseline measures were obtained, tetrodotoxin (TTX) (1 μM), R 04-1541 (10 μM), 

CGP 55845 (10 μM), or dihydro-β-erythroidine hydrobromide (DHβE) (100 nM) was 

applied to the buffer. Single pulse stimulations occurred every 5 min, alternating electrical 

and optical stimulations. Following 40 min of incubation in drug, 1 and 20 pulse electrical 
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stimulations, followed by 1 and 20 pulse optical stimulations, were performed. Upon 

completion of each experiment, recording electrodes were calibrated by recording their 

response (in current; nA) to DA (3 μM) in aCSF using a flow-injection system. This value 

was used to convert electrical current to DA concentration.

All voltammetry data were collected and modeled using Demon Voltammetry and Analysis 

Software (Yorgason et al. 2011). Parameters of evoked levels of DA are determined based 

on Michaelis–Menten kinetics (Wightman et al. 1988), following standard voltammetric 

modeling procedures (Ferris et al. 2012).

Data analysis

All statistical analysis was performed using GraphPad Prism statistical software (Version 5; 

GraphPad Software Inc., La Jolla, CA, USA). Data are presented as means ± SEM. For 

electrochemistry experiments, `n' refers to a single recording location within a slice (one 

location per slice), and is expressed as the [number of recordings (slices)/number of 

animals]. Baseline voltammetry data were analyzed using a two-way ANOVA to determine main 

effects or interactions. Also, planned comparisons (paired two-tailed t-test) were used for 

direct comparisons between stimulation types at specific measures (e.g. pulse number or 

time) as determined a priori. Data obtained after administration of drugs were analyzed 

using a paired two-tailed t-test for individual comparisons of drug effect versus predrug.

Results

Viral mediated ChR2 expression in VTA and NAc

To achieve optically stimulated DA release in NAc slices we targeted expression of ChR2, 

under regulation of a CaMKIIα promoter, to the neurons of the VTA. Injection of the viral 

construct resulted in robust GFP immunolabeled ChR2 expression throughout the VTA (n = 

6, Fig. 1a). Specifically, ChR2 expression was co-localized with TH immuno-reactivity 

within both anterior and posterior portions of VTA. High magnification analysis of 

individual hemispheres of VTA revealed prominent expression of ChR2 in numerous 

processes extending within a territory rich in DA neuron soma, indicating successful 

targeting of the viral injection (Fig. 1b). ChR2 expression could also be seen in a relatively 

few non-dopaminergic neurons within the target area, which was expected since CaMKIIα 

expression is not limited to DA neurons within the VTA. The striatum exhibited noticeable 

ChR2 expression, particularly in the ventral/accumbal target region (Fig. 1c); also extending 

within the dorsomedial striatum, and generally fading in expression in the dorsolateral 

region. High magnification (Fig. 1d) revealed ChR2 expression within the dense network of 

terminal fibers in the striatum, with comparatively little fluorescence in the neighboring 

cortex.

Light stimulated DA signals in NAc

Coronal slices containing NAc were examined using voltammetry to measure light 

stimulated DA release (n = 28 animals). In these experiments we targeted ChR2 expression 

using the CaMKIIα promotor. To compare light and electrically stimulated release, we 

positioned the electrical stimulating electrode on the tissue approximately 150 μM from the 
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recording electrode, and the optic fiber in the slice bath approximately 200 μM above the 

tissue; aiming the light on the area of tissue between the electrical stimulator and the 

recording electrode. This approach allowed us to alternate between stimulation types 

without moving the recording electrode or disturbing the tissue. Single pulse light 

stimulation produced DA signals with a nearly identical shape and duration, and displaying 

common oxidation/reduction peaks, compared to electrical stimulation of the same tissue 

(Fig. 2). Light stimulation with 20 pulses (20 Hz) also produced robust DA release with 

similar profiles to 20 pulse electrical stimulation; however, generally resulting in larger 

amplitude signals. To further characterize the light stimulated signal, we added Ro 4-1248 

(10 μM), a specific and potent inhibiter of vesicular monoamine transporters which, similar 

to reserpine, depletes vesicular release of DA. Consistent with results from electrical 

stimulation (Jones et al. 1998), Ro 4-1284 decreased the light-evoked signal with each 

successive stimulation until the stimulated release was completely abolished within 1 h; 

including eliminating release from 20 pulse stimulations (Fig. 3, inset). ChR2 are cation 

channels which have calcium permeability (Nagel et al. 2003). Therefore, optical activation 

of ChR2 expressed in DA terminal membranes has the potential to trigger transmitter release 

via aberrant calcium entry into the terminal. To determine if, and to the extent that, light 

stimulated release was action potential dependent, we applied the sodium channel blocker, 

TTX (1 μM). TTX eliminated light stimulated DA release within minutes of reaching the 

tissue (n = 3), using either 1 or 20 pulse stimulations (Fig. 3). Figure 3 shows an example 

trace in which a 20 pulse light stimulation was completely abolished in the presence of TTX.

Electrical versus optical stimulation

A direct comparison of baseline single pulse DA release between stimulation types is 

difficult because of multiple different contributing factors including the amount of ChR2 

expression in the local field, the amplitude differences between electronic and photonic 

activation, as well as the heterogeneity of fibers being targeted with each method. Therefore, 

no attempt was made to match single pulse baseline signals. Instead, we aimed to investigate 

the relative responsiveness of each stimulation type to multiple pulse stimulations within the 

same area of tissue. Thus, DA release was evoked with single pulse and pulse trains (5, 10 

and 20 pulses at 20 Hz) for each stimulation type. Light stimulations utilized CaMKIIα 

promotor-dependent ChR2 expression. On average, single pulse optical excitation (mean ± 

SEM release, 0.62 ± 0.10 μM, n = 12) resulted in less DA release compared to electrical 

stimulation (mean ± SEM, 0.88 ± 0.14 μM, n = 12) of the same area (t(11) = 2.7, p < 0.05). 

However, optically stimulated DA release consistently surpassed that of electrically 

stimulated release at 5, 10, and 20 pulses. To focus on the relative differences in signal 

proliferation during multi-pulse stimulations we normalized the single pulse DA release 

between the two stimulation techniques (Fig. 4a). Thus, the relative DA release was the 

multi-pulse signal as a percentage of the single pulse signal. A two-way ANOVA revealed a 

main effect of stimulation type on relative DA release (F(1,66) = 8.01, p < 0.01), and an 

interaction effect between pulse number and stimulation type (F(3,66) = 5.07, p < 0.01), with 

the difference in relative DA release between stimulation types increasing with the number 

of pulses in the pulse train. Furthermore, we ran planned comparisons analysis of electrical 

versus light stimulation and found the relative DA release was significantly different 

between stimulation types at each pulse train tested (5 pulses, p < 0.001; 10 pulses, p < 
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0.001; 20 pulses, p < 0.001). DA per pulse (DA/p; DA release/# of pulses) was then plotted 

as a percent of the one pulse baseline DA release. There was a decrease in the DA/p as pulse 

number increases (Fig. 4b), consistent with previous reports with similar stimulation 

parameters in mice (Zhang et al. 2009). However, the decrease in DA/p was significantly 

reduced using optical stimulation (F(1,66) = 6.31, p < 0.05).

To further demonstrate the increased sensitivity of fields to optical stimulation, we overlaid 

example traces from a 1, 5, 10 and 20 pulse stimulation series for each stimulation type (Fig. 

5), in which we normalized the 1 pulse release, to view the relative increases in DA release 

with multi-pulse stimulations. The slope of the rising phase was perfectly straight and 

consistent for all optical stimulations (a), while for electrical stimulations (b), there was a 

rightward deflection in the curves, resulting in a reduction in the steepness of the slope. To 

quantify this observation, we analyzed the 10 pulse stimulation group data. We divided the 

total DA release into 100 ms segments that cover the duration of the stimulation train (10 

pulses at 20 Hz = 500 ms). Thus, we could determine the percentage of the total DA signal 

elicited every 100 ms, across the 500 ms stimulation duration (Fig. 5c). A two-way ANOVA 

revealed an interaction effect between stimulation type and time (F(4,88) = 9.21, p < 0.001). 

We found that 41% of the total electrically stimulated DA release occurred in the first 100 

ms of the stimulation train, while 35% of the signal was contributed during the final 300 ms 

combined. Conversely, 28% of the optically stimulated DA release occurred in the initial 

100 ms, while 49% of the signal was contributed across the final 300 ms. Thus, overall, 

electrically stimulated DA release was greater early in the stimulation train (100 ms, p < 

0.001) and declined more rapidly across the duration of the stimulation train relative to 

optical stimulation (300 ms, p < 0.001; 400 ms, p < 0.001; 500 ms, p < 0.001), which 

showed more consistent release throughout the stimulation.

DA uptake occurs during DA release and can offset the amplitude of extracellular DA. 

However, there was no difference in the maximal rate of uptake (Vmax) between stimulations 

methods (Fig. 5d) (t(31) = 0.8, p = 0.432), suggesting that differences in relative release 

amplitude between stimulation methods is not because of differences in DA uptake, and 

therefore exist within the release parameters. We hypothesized that electrical stimulation 

recruits non-dopaminergic processes in the local environment and the net effect of this 

recruitment is an inhibition of DA release via heteroreceptors on the DA terminals. The NAc 

contains GABAergic and cholinergic interneurons (Tepper et al. 2010; Tepper and Bolam 

2004; (Zhou et al. 2001), and these interneurons present logical targets as sources of 

electrically stimulated, non-dopaminergic inhibition. Therefore, we tested our hypothesis by 

investigating possible GABAergic and cholinergic influences on electrically and light 

stimulated DA release.

GABAergic influence on stimulated DA release

To date, GABAA receptors have been tested but fail to show direct modulation of DA 

release at terminals (Smolders et al. 1995; Morikawa and Morrisett 2010; unpublished lab 

results); however, GABAB receptors have been identified on DA terminals (Charara et al. 

2000) and GABAB receptor activation decreases DA release (Schmitz et al. 2002; Pitman et 

al. 2014). We used CGP 55845, a highly potent GABAB receptor antagonist, to block 
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GABAB receptors during single and 20 pulse stimulated DA release using either electrical or 

light stimulation of the same tissue location. CGP 55845 (10 μM) significantly increased 

electrically stimulated DA release resulting from both single pulse (t(11) = 5.8, p < 0.001), 

and 20 pulse (t(11) = 6.4, p < 0.001) stimulations (Fig. 6). However, CGP 55845 showed 

consistent augmentations of both single pulse (20.9%) and 20 pulse (21.5%) stimulations, 

thereby not altering the multi-pulse responsiveness (20 : 1 ratio, data not shown), only the 

net release from electrical stimulation. Optical stimulations in the CaMKIIα promotor model 

of ChR2 expression showed increased release with GABAB antagonism (Fig. 6b) when 

single pulse stimulations were applied (t(11) = 3.5, p < 0.01), however, with 20 pulse 

stimulations there was no effect of CGP 55845 (t(11) = 1.0, p = 0.33). This suggests that 

local GABAB activation occurs with multi-pulse electrical stimulation and significantly 

inhibits DA release compared to optical stimulation of the same tissue.

While the majority of neurons projecting from the VTA to the NAc are dopaminergic (~ 

65%), reports suggest that approximately 25% of this projection population are GABAergic 

neurons (Margolis et al. 2006; Stuber et al. 2012). Therefore, optogenetically targeting VTA 

projections allows for possible GABAergic stimulation and subsequent GABA modulation 

of DA release. To determine if the increase in single pulse light stimulated release observed 

following application of CGP 55845 was because of tonic GABA activity within the slice or 

the co-stimulation of GABAergic terminals arising from the VTA, we used a second 

optogenetic model. We injected a Cre-inducible ChR2 expression viral vector into the VTA 

of TH-internal ribosome entry site-Cre (TH : Cre) knock-in mice (Tsai et al. 2009; 

Stamatakis et al. 2013). This model isolates expression of ChR2 to dopaminergic neurons 

within the lateral VTA regions, which are the source of projections to the NAc core 

(Ikemoto 2007); thus only the dopaminergic terminal fields in the NAc would be activated 

by light stimulation. We found that CGP 55845 had no effect on single pulse (t(7) = 2.2, p > 

0.05; Fig. 7b) or 20 pulse (t(7) = 0.8, p > 0.05) light stimulations in the TH : Cre mouse 

model. Combined, these results suggest that recruitment of GABA signaling occurs during 

electrical stimulation and produces an inhibition of DA release at 1 and 20 pulses, the latter 

of which is not present when only VTA projection terminals are stimulated (CaMKIIα 

promoter model); while inhibition with either 1 pulse or 20 pulses stimulation is absent 

when only DA terminals from the VTA are stimulated (TH : Cre mouse model). However, 

because electrically stimulated release increased equally at both single pulse and 20 pulse 

stimulation parameters, the 20 : 1 pulse ratio (Fig. 4a) was not affected by GABAB 

blockade.

Acetylcholine influence on stimulated DA release

A second potential source of modulation comes from local cholinergic interneurons. 

Acetylcholine has demonstrated a prominent regulation of release acting through nAChR on 

DA terminals; particularly β2 subunit containing nAChRs in the NAc (Grady et al. 2007; 

Exley et al. 2008; Threlfell et al. 2010). We used DHβE, a competitive antagonist for the 

α4β2-containing subunits of the nAChR, to determine if acetylcholine modulates the single 

and multi-pulse sensitivity of electrically and light stimulated DA release.
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We added DHβE (100 nM) to examine the single pulse and 20 pulse release in the same 

location using either electrical or light stimulation. DHβE significantly decreased single 

pulse DA release with electrical stimulation (t(10) = 7.6, p < 0.001), in a manner consistent 

with previous reports (Zhou et al. 2001); however, DHβE did not affect 20 pulse stimulated 

release (Fig. 7a). Also, DHβE had no effect on single pulse or 20 pulse light stimulated 

release using the CaMKIIα promoter model. The lack of effect on light stimulated release 

was further demonstrated using the TH : Cre mouse model. We calculated the ratio of 20 

pulse to 1 pulse release (i.e. % baseline) and found that DHβE significantly increased the 

20 : 1 pulse ratio of electrically stimulated DA release (t(10) = 12.99, p < 0.001), while there 

was no effect on the 20 : 1 pulse ratio for light stimulated release (Fig. 6b). Furthermore, the 

20 : 1 pulse ratio was significantly greater for electrical stimulation compared to light 

stimulation in the presence of DHβE (t(10) = 2.7, p < 0.05), as opposed to it being 

significantly less in the baseline data (Figs 4b and 7b).

To examine whether nAChRs contribute to the differences we saw in the release phase 

responsiveness between stimulation types (Fig. 5c), we examined the effect of DHβE on the 

release of DA across the first 500 ms of the stimulation using either stimulation type (Fig. 

7c). Light stimulated release in these experiments utilized the CaMKIIα promoter model of 

ChR2 expression. We found that in the presence of DHβE (100 nM) there was no longer a 

significant interaction effect between stimulation type and time (F(4,80) = 0.46, p > 0.05). 

Specifically, we found that electrically stimulated release became more consistent in the 

presence of DHβE, with 25% of the total signal occurring in the first 100 ms and 53% 

occurring across the final 300 ms. Furthermore, these numbers were very similar to light 

stimulation in DHβE, in which 26% of the signal occurred in the first 100 ms, and 53% 

occurred across the final 300 ms.

Discussion

We compared electrical and light stimulation of DA release within the NAc core using 

voltammetry in mouse brain slices. We found that viral mediated expression of ChR2 in 

VTA neurons induced robust ChR2 expression in terminal fields within the NAc. These 

terminal fields were responsive to light pulses, resulting in DA signals which were very 

similar in overall physiological profile to electrically stimulated DA release in the same 

slices. However, compared to electrical stimulation, DA release was much greater with 

optical stimulation when applied as multi-pulse stimulation trains. Our results indicate that 

activating DA terminal fields with light stimulation results in a less negatively modulated 

DA signal compared to electrical stimulation, which includes concurrent activation of local 

cholinergic and GABAergic interneurons.

Our results are consistent with other studies which used light stimulation in combination 

with voltammetry ex vivo and measured robust DA release in NAc slices in mice (Stuber et 

al. 2010; Tecuapetla et al. 2010; Stamatakis et al. 2013; Adrover et al. 2014) and rats 

(Witten et al. 2011; Bass et al. 2013). Specifically, this study aimed to compare DA release 

induced using light stimulation with traditional electrical stimulation of the tissue. We found 

similarities in DA release profiles between the stimulation methods, including a dependence 

on vesicular monoamine transport (Tecuapetla et al. 2010), which is necessary for 
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endogenous, action potential dependent release. Light-evoked signals were likewise 

sensitive to TTX, revealing that stimulated release was dependent on voltage gated sodium 

channel activity (Tecuapetla et al. 2010; Witten et al. 2011; Threlfell et al. 2012; Tritsch et 

al. 2012; Adrover et al. 2014). A further interpretation of this TTX effect may extend to the 

cation permeability of ChR2, particularly to Ca2+ (Nagel et al. 2003; Berthold et al. 2008). 

When stimulating DA terminals, it is possible that ChR2 expression in or around the 

terminal membrane would permit Ca2+ entry and trigger release. However, TTX completely 

abolished release. Therefore, our data support the idea that Ca2+ entry via ChR2 within the 

terminal membranes is at levels insufficient to independently generate release or that release 

is below the level of detection using voltammetry. Furthermore, this supports the idea that 

ion flow through the ChR2 during the initial phase of excitation consists primarily of 

protons and sodium (Berthold et al. 2008; Schneider et al. 2013); and that the sodium flow 

alone is insufficient to generate an action potential when the native voltage gated sodium 

channels are blocked with TTX.

We extend the analysis of previous studies (Stuber et al. 2010; Tecuapetla et al. 2010; 

Stamatakis et al. 2013; Adrover et al. 2014) by providing an examination of multiple pulse 

stimulations. The NAc has been implicated in reward signaling during phasic bursting of 

DA neurons; therefore, in a slice it is useful to apply stimulation trains to the tissue to 

analyze modulations of release profiles representing bursting. We found that under these 

conditions, light stimulated release was significantly greater than electrically stimulated 

release, resulting in nearly a twofold increase in relative DA release at 20 pulses. No 

difference in uptake rate was noted, which is consistent with other reports comparing DA 

signal decay constants across stimulation methods (Tecuapetla et al. 2010; Adrover et al. 

2014), and suggests that uptake rate is not influencing differences in release. Instead, our 

evaluation pointed to a marked inhibition of the electrically stimulated release compared to 

light. We propose a dual modulation of the multi-pulse electrically stimulated release in 

which release from the initial stimulation is augmented by acetylcholine while the total DA 

release is inhibited by GABA.

GABAergic modulation of dopamine release

To investigate the role of GABA transmission in modulating DA release we utilized two 

models of optogenetically targeted ChR2 expression. The CaMKII promotor mouse model 

limits light activation to terminal fields that arise from projection neurons of the VTA. This 

population of neurons is reported to be ~ 65% dopaminergic and ~ 25% GABAergic, with 

some small percentage of neurons currently unaccounted for (Margolis et al. 2006; Stuber et 

al. 2012). Therefore, even with light stimulation the terminals from a population of 

GABAergic projection neurons arising from the VTA may be stimulated. However, we 

found that blockade of GABAB receptors with CGP 55845 had no effect on 20 pulse light 

stimulated release in this model; while 20 pulse electrically stimulated release was 

increased. This suggests that GABA release arising from local NAc GABA interneurons 

generates significantly more activation of GABAB receptors on DA terminals compared to 

release from GABAergic projection neurons. It is unclear why 20 pulse light stimulated 

release showed no increase in the presence of CGP 55845, whereas single pulse release in 

the same model was increased. It may be that a 20 pulse stimulation increases the release 
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probability beyond a level where the available GABA could modulate DA release (Citri and 

Malenka 2008; Brimblecombe et al. 2014). That is, increasing the probability of release 

occludes some modulatory effects on DA release which may only be present at low release 

probability stages (Brimblecombe et al. 2014). An increase in release probability would 

occur with multiple pulse stimulations as each pulse allows the accumulation of Ca2+ in the 

terminals (Citri and Malenka 2008). Perhaps the level of GABAB activation that occurs 

during light stimulation is insufficient to modulate a DA terminal that has been excited with 

20 pulses. Such a scenario would further highlight the increased level of GABAB activation 

elicited by electrical stimulation (via GABA release from interneurons), during which there 

was a significant modulation of DA release following 20 pulse stimulations.

Single pulse evoked DA release using either electrical or light stimulation was increased 

with GABAB blockade, although to a larger extent following electrical stimulation. One 

explanation might be the presence of GABA via stimulation of GABA terminals originating 

the VTA, which inhibits DA release and would be present in both the electrical and optical 

induced stimulation when using the CaMKIIα promotor. Alternatively, it has been 

demonstrated that DA terminals take up and co-release local GABA with DA (Tritsch et al. 

2012, 2014). To address this we used the TH : Cre mouse model in which ChR2 is targeted 

to TH expressing neurons of the VTA; thus our light stimulation was limited to only the DA 

projection terminals. Using this model, GABAB blockade was ineffective in increasing 

either single pulse or 20 pulse light stimulated release. This suggests that activation of VTA 

GABA projection neurons, and not GABA co-release from DA terminals, accounts for the 

modulation of single pulse DA release. Thus, cumulatively, these data suggest (i) that 

endogenous GABA tone is either absent in slices or, if present, does not modulate DA 

release, (ii) GABA release occurring from stimulation of VTA GABA projections is 

sufficient to modulate single pulse electrically stimulated DA release, and (iii) stimulation of 

GABA interneurons modulates multiple pulse electrically stimulated DA release.

Acetylcholine modulation of dopamine release

In comparing stimulation types we found a differential effect of the nAChR antagonist 

DHβE on DA release, such that single pulse electrical stimulation was significantly reduced, 

whereas optical stimulation of the same tissue was unaffected. These data suggest that 

electrical stimulation induces a cholinergic augmentation of DA release which does not 

occur with selective, optical stimulation of DA terminals. Our data is consistent with 

previously published data showing no effect of DHβE on light stimulated release in the 

dorsal striatum of mice under single pulse conditions (Threlfell et al. 2012). Here, we extend 

the findings of insensitivity of light stimulated recordings to DHβE modulation to the ventral 

striatum, using two different optogenetic mouse models, C57Bl/6 mice with CaMKII 

promoter-dependent expression of ChR2 and TH : Cre knock-in mice with Cre-dependent 

ChR2 expression.

It has been demonstrated that selective stimulation of a local population of cholinergic 

interneurons, using optogenetic methods, results in measurable DA release from 

unstimulated DA terminals (Cachope et al. 2012; Threlfell et al. 2012), establishing that 

nAChRs exert strong influence over presynaptic DA terminals. Furthermore, when electrical 
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stimulation is applied, this nAChR-driven DA release may be in addition to release resulting 

from direct DA terminal stimulation (Wang et al. 2014), resulting in a cumulative DA 

signal. Our data support this model by showing that the electrical signal is significantly 

reduced by blocking nAChRs with DHβE, while in the light stimulated model, in which 

cholinergic interneurons are not stimulated and thus produce no synchronized cholinergic 

release, DHβE has no effect. We propose that the differences in release between electrical 

and optical stimulation across 10 pulse stimulation trains (Fig. 5c) result from electrically 

induced cholinergic augmentation of DA release during the initial stimulation, a 

phenomenon which is not present during light stimulation or in the presence of DHβE, 

where electrical and light stimulated release profiles look very similar (Fig. 7c). Similarly, 

the difference in release sensitivity (20 : 1 pulse ratios, Fig. 7b) between light and 

electrically stimulated DA release results from cholinergic augmentation of the single pulse 

electrically stimulated signal as there were no effects of DHβE on 20 pulse stimulated 

release using either stimulation method. Thus, cholinergic modulation via nAChRs accounts 

for the differences in observed multi-pulse to single pulse ratio of stimulated release. Our 

demonstration of increased sensitivity to multi-pulse light stimulations in the core is 

consistent with what has been reported in the NAc core of mice (Stamatakis et al. 2013) and 

rats (Bass et al. 2013).

In conclusion, we have reinforced the validity of using optogenetically targeted light 

stimulation of DA terminals in NAc slices to allow for acute investigations of DA terminal 

dynamics ex vivo. Furthermore, we have shown that light stimulation may be more 

beneficial for examining DA release, especially when multiple pulse stimulations are 

applied, because electrical stimulation induces local interneuron activity which corrupts the 

DA signal. The optogenetic model provides greater resolution in the interpretation of 

pharmacological effects on DA terminal dynamics by allowing measures of specific receptor 

types present on and directly modulating DA terminals, while reducing indirect modulation 

that may occur via the presence of the same receptor type on non-dopaminergic processes 

(e.g. interneurons or other afferent inputs) contributing to the DA signal. This is especially 

important when measuring features of terminal plasticity following a chronic treatment, 

where receptor expression or functional efficacy may be altered, because different cellular 

phenotypes may differentially alter the same receptors.
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DA dopamine

DHβE dihydro-β-erythroidine hydrobromide

GFP green fluorescent protein

IRES internal ribosome entry site

NAc nucleus accumbens

PBS phosphate-buffered saline

TH tyrosine hydroxylase

TTX tetrodotoxin
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Fig. 1. 
Expression of channelrhodopsin-2 (ChR2)-eYFP in the ventral tegmental area (VTA) and 

NAc. (a) Coronal midbrain section containing VTA from a virally transfected mouse 

following an incubation period of 76 days. ChR2-eYFP expression immunolabeled with 

anti-GFP (green), midbrain dopamine (DA) neurons immunolabelled for tyrosine 

hydroxylase (TH) (red), and merged overlay showing ChR2-eYFP expression at the site of 

injection in the VTA. (b) Higher magnification of one hemisphere of VTA showing 

prominent co-localization of ChR2-eYFP and TH expression. (c) Coronal section of striatum 

showing expression of ChR2-eYFP in the terminal fields of midbrain projection neurons, 

including NAc. (d) Higher magnification of the bracketed area in (c) reveals the density of 

ChR2-eYFP positive terminals in the striatum relative to the neighboring cortex.
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Fig. 2. 
Light stimulated dopamine (DA) release in NAc, ex vivo. Representative voltammetric 

traces of DA release following electrical or light stimulation of the same location within a 

slice. Left: Single pulse light stimulation produced DA signals with similar profiles of shape 

and duration, displaying common oxidation/reduction peaks (inset), and similar 

representative color plots (below) compared to electrical stimulation of the same tissue. 

Right: Light stimulation with 20 pulses also produced robust DA release with similar 

profiles to 20 pulse electrical stimulation; however, generally resulting in larger amplitude 

signals. Intersecting dotted lines indicate signal location for current versus time plots and 

current versus voltage (inset) data.
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Fig. 3. 
Light stimulation results in action potential dependent, vesicular release. A 20 pulse light 

stimulation produced ~ 10 μM dopamine (DA) release in baseline conditions. Following 

application of tetrodotoxin (TTX, 1 μM, red) the signal was completely eliminated. Inset: 20 

pulse light stimulated signals were abolished in the presence of TTX (n = 3 slices from 2 

animals, 3/2), as well as Ro 4-1284 (n = 3/2); suggesting that release is dependent on both 

endogenous Na+ channels and vesicular transport. ***p < 0.001 versus predrug.
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Fig. 4. 
Multi-pulse light stimulation results in greater dopamine (DA) release than electrical 

stimulation. DA release with 1, 5, 10, and 20 pulse stimulations with either electrical (red) or 

light (blue) stimulation of the same location (n = 12/8). (a) Average multi-pulse (5, 10 and 

20 pulses) DA release, presented as a percentage of the single pulse (1 pulse) baseline 

release, is greater using light stimulation versus electrical stimulation). (b) Average DA 

release per stimulus pulse (DA/p; total DA/# pulses), normalized to 1 pulse baseline release, 

decreases across multi-pulse trains (5, 10, and 20 pulses) for both electrical and light 

stimulation; however, light stimulation results in less inhibition of DA/p than electrical 

stimulation (n = 12/8). *p < 0.05 versus elec stim; ***p < 0.001 versus elec stim.
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Fig. 5. 
Electrical stimulation shows inhibition of dopamine (DA) release. Representative DA 

release curves resulting from 1, 5, 10, and 20 pulse stimulations, within the same location of 

NAc and with normalized 1 pulse baselines, are overlaid for light and electrical stimulation. 

The slope of the rising phase is perfectly straight and consistent for all light stimulations (a), 

while in (b), there is a rightward deflection in the curves, resulting in a reduction in the 

steepness of the slope. (c) Total 10 pulse stimulation data were analyzed for contribution per 

100 ms to total DA signal. Electrical stimulation shows greater contribution during the first 

100 ms of stimulation with less contribution to the total signal during the final 300 ms of 

stimulation duration, compared to light, which was more consistent throughout the duration 

of stimulation (n = 12/8). (d) There was no difference in the maximal rate of uptake between 

stimulation types (n = 16/11). ***p < 0.001 versus elec stim.
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Fig. 6. 
GABAergic modulation of dopamine (DA) release. (a) The GABAB receptor antagonist 

CGP 55845 significantly increased electrically stimulated DA release with 20 pulse 

stimulation trains (n = 12/7), while having no effect on 20 pulse light stimulations in either 

optogenetic model tested. (b) CGP 55845 increased 1 pulse electric stimulated DA release 

and 1 pulse light stimulated DA release in models of non-specific channelrhodopsin-2 

(ChR2) expression in ventral tegmental area (VTA) projection neurons (CaMKIIα; n = 

12/7); but had no effect on 1 pulse light stimulated DA release in models targeting ChR2 

specifically to DA neurons projecting from the VTA (TH : Cre; n = 8/4). **p < 0.01 versus 

predrug; ***p < 0.001 versus predrug.
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Fig. 7. 
Cholinergic modulation of dopamine (DA) release. (a) The nAChR antagonist DHβE 

significantly reduced single pulse electrically stimulated DA release (n = 11/6), with no 

effect on light stimulated DA release, within the same location, using non-specific 

channelrhodopsin-2 (ChR2) expression in ventral tegmental area (VTA) projection neurons 

(CaMKIIα; n = 11/6). DhβE also had no effect on single pulse light stimulated DA release in 

models targeting ChR2 specifically to DA neurons projecting from the VTA (TH : Cre; n = 

8/4). DHβE had no effect on 20 pulse stimulated DA release with either electric or light 

stimulation (elec/CaMKIIα, n = 11/6; TH : Cre, n = 8/4). (b) DHβE increased the 20 to 1 

pulse ratio of DA release resulting from electrical stimulation, with no effects on the ratio of 

DA release resulting from light stimulation. ***p < 0.001 versus predrug. (c) The 

percentage of the total DA signal contributed during each 100 ms across the 500 ms 

stimulation duration. In the presence DHβE (100 nM), electrical and light stimulation show 

comparatively similar release responsiveness across the 10 pulse stimulation. (n = 11/6)
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