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Abstract

Herein, we review evidence that systemic insulin resistance diseases linked to obesity, type 2 

diabetes, and non-alcoholic steatohepatitis promote neurodegeneration. Insulin resistance 

dysregulates lipid metabolism, which promotes ceramide accumulation with attendant 

inflammation and ER stress. Mechanistically, we propose that toxic ceramides generated in extra-

CNS tissues, e.g. liver, get released into peripheral blood, and subsequently transit across the 

blood-brain barrier into the brain where they induce brain insulin resistance, inflammation, and 

cell death (extrinsic pathway). These abnormalities establish or help propagate a cascade of 

neurodegeneration associated with increased ER stress and ceramide generation, which exacerbate 

brain insulin resistance, cell death, myelin degeneration, and neuro-inflammation. The data 

suggest that a mal-signaling network mediated by toxic ceramides, ER stress, and insulin 

resistance should be targeted to disrupt positive feedback loops that drive the AD 

neurodegeneration cascade.
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Crisis of insulin resistance

Insulin resistance diseases, including Alzheimer's disease (AD), obesity, type 2 diabetes 

mellitus (T2DM), non-alcoholic steatohepatitis (NASH), and metabolic syndrome are 

prevalent in modern high tech societies, and they are costly because they consume large 

percentages of healthcare budgets, lead to disability, and cause premature death . The 

unrelenting appetite for highly processed, high starch, high fat, and high caloric content 

foods is literally eroding health status across all age groups in the United States. Thanks to 

the robust domestic and international research efforts over the past decade, it is now clear 

that insulin resistance can afflict any organ and tissue in the body. The consequences include 

deficits in energy metabolism, increased inflammation and oxidative stress, and proneness to 
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cellular degeneration and death. No thanks to commercial luring of the uninformed who 

seek the comfortable lifestyles of the West, insulin resistance diseases are quickly spreading 

throughout the world and beginning to bear their tolls on global health.

Insulin resistance disease states

Insulin stimulates lipogenesis and increases triglyceride storage in liver and adipose tissue 

[Capeau 2008; Leonard et al. 2005]. This process helps to maintain energy balance. Chronic 

high caloric intake disrupts homeostatic mechanisms and causes insulin resistance [Capeau 

2008; de la Monte and Wands 2008; Kraegen and Cooney 2008; Lyn-Cook et al. 2009]. In 

liver, insulin resistance is associated with conversion of simple hepatic steatosis (lipid 

storage) to steatohepatitis (fatty liver with inflammation and cell injury). The accompanying 

inflammation, pro-inflammatory cytokine activation, oxidative stress, and increased cell 

death via mitochondrial or apoptotic mechanisms promote liver degeneration. Insulin 

resistance mediated lipolysis is yet another factor contributing to progression of liver disease 

in NASH [Kao et al. 1999]. Lipolysis leads to increased production of toxic lipids, including 

ceramides (see below), that further impair insulin signaling, mitochondrial function, and cell 

viability [Holland and Summers 2008; Kraegen and Cooney 2008; Langeveld and Aerts 

2009]. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction can worsen insulin 

resistance, lipolysis, and ceramide accumulation [Anderson and Borlak 2008; Kaplowitz et 

al. 2007; Malhi and Gores 2008; Sundar Rajan et al. 2007].

ER functions such as protein synthesis, modification, and folding, calcium signaling, and 

lipid biosynthesis are driven by glucose utilization. Impaired glucose uptake and metabolism 

in insulin resistance diseases such as obesity, T2DM, and NASH activates ER stress 

pathways [Kaplowitz, Than, Shinohara and Ji 2007; Malhi and Gores 2008; Sharma et al. 

2008; Sundar Rajan, Srinivasan, Balasubramanyam and Tatu 2007]. ER stress contributes to 

lipid dyshomeostasis by activating pro-inflammatory, pro-ceramide, and pro-death pathways 

that lead to increased generation of toxic lipids, e.g. ceramides [Banerjee et al. 2008; de la 

Monte et al. 2009; Kaplowitz and Ji 2006; Ronis et al. 2008]. Correspondingly, ceramide 

levels and pro-ceramide gene expression are increased in livers with chronic steatohepatitis 

[Longato et al. 2012; Setshedi et al. 2011].

The consequences of insulin resistance, particularly the stress responses, themselves 

promote insulin resistance. Unchecked, the rates of injury eventually exceed those of repair. 

Organ-system degeneration is mediated by the combined effects of impaired energy balance, 

lipid dyshomeostasis, loss of membrane integrity, and ER stress, all of which contribute to 

increased ceramide generation [DeFronzo 2010; Eckardt et al. 2011; Holland et al. 2007; 

Kaplowitz, Than, Shinohara and Ji 2007; Lipina and Hundal 2011; Malhi and Gores 2008; 

Summers 2010], which itself causes insulin resistance (see below). Therefore, chronic 

insulin resistance initiates a harmful positive feedback loop that results in propagation of 

chronic diseases and tissue degeneration. Underlying pathophysiological mechanisms 

include increased ceramide generation, inflammation, tissue injury, ER stress, and 

mitochondrial dysfunction, all of which worsen insulin resistance.
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Ceramides-the back story

Ceramides comprise a family of sphingolipids [Reynolds et al. 2004; Summers 2010] that 

regulates diverse functions including growth, motility, adhesion, differentiation, senescence, 

and apoptosis. Ceramides also contribute to cell membrane structure by participating in lipid 

microdomains, i.e. rafts [Sonnino and Prinetti 2010]. Ceramides differ in length of their fatty 

acid chains (up to C24), and are formed via complex biosynthetic [Reynolds, Maurer and 

Kolesnick 2004; Stiban et al. 2010], catabolic [Clarke et al. 2011; Reynolds, Maurer and 

Kolesnick 2004], or salvage [Gault et al. 2010; Mullen and Obeid 2011; Reynolds, Maurer 

and Kolesnick 2004] mechanisms. The rapid turnover and short half-life of ceramides 

facilitate their role as second messengers for intracellular signaling.

Ceramides generated de novo regulate physiological functions, whereas those produced via 

catabolic pathways are generated in response to drugs, physical agents, chemotherapeutic 

agents, pro-inflammatory cytokines, trophic factor withdrawal, and ionizing radiation 

[Adibhatla and Hatcher 2008; Farooqui et al. 2010; Holland and Summers 2008; Liu et al. 

1997; Nikolova-Karakashian and Reid 2011; Reynolds, Maurer and Kolesnick 2004; 

Summers 2006], indicating a link to stress and disease states. The salvage pathway accounts 

for 50% to 90% of sphingolipid biosynthesis in cells, and accomplishes this by recycling 

sphingoid bases released by acid ceramidases for use by ceramide synthases. Ceramide 

profiles in different organelles and cell types can shift as an adaptive or pathophysiological 

response. Accumulation of ceramides in lipid rafts [Sonnino and Prinetti 2010] causes small 

rafts to merge into larger units to modify membrane structure and protein function, including 

receptor responsiveness, signal transduction, and stress responses [Corre et al. 2010; 

Hajduch et al. 2001; Li et al. 2010; Lingwood et al. 2010; Lingwood et al. 2010].

Ceramides cause insulin resistance and insulin resistance increases 

ceramides

Ceramides are lipid signaling molecules that can be cytotoxic, cause insulin resistance 

[Arboleda et al. 2007; Chalfant et al. 1999; Chavez et al. 2005; Chavez et al. 2003; Delarue 

and Magnan 2007; Holland and Summers 2008; Kraegen and Cooney 2008; Liu, Obeid and 

Hannun 1997], and activate pro-inflammatory cytokines. Ceramides cause insulin resistance 

[DeFronzo 2010; Eckardt, Taube and Eckel 2011; Holland, Knotts, Chavez, Wang, Hoehn 

and Summers 2007; Kaplowitz, Than, Shinohara and Ji 2007; Lipina and Hundal 2011; 

Malhi and Gores 2008; Summers 2010] in obesity, T2DM, NASH [Alessenko et al. 2004; 

Han et al. 2008; Katsel et al. 2007; Summers 2010], and probably AD [de la Monte et al. 

2012]. Ceramides cause insulin resistance by activating pro-inflammatory cytokines [Bryan 

et al. 2008; Summers 2006; Van Brocklyn 2007] and inhibiting insulin signaling at various 

levels in the pathway. For example, ceramides: 1) inhibit signaling through PI3 kinase-Akt 

[Bourbon et al. 2002; Hajduch, Balendran, Batty, Litherland, Blair, Downes and Hundal 

2001; Nogueira et al. 2008; Powell et al. 2003]; 2) alter the phosphorylation states of 

proteins that regulate insulin signaling [Silveira et al. 2008]; 3) inhibit Akt [Arboleda, 

Huang, Waters, Verkhratsky, Fernyhough and Gibson 2007] by activating protein 

phosphatase 2A [Chalfant, Kishikawa, Mumby, Kamibayashi, Bielawska and Hannun 1999] 

and glycogen synthase kinase 3β (GSK-3β) [Arboleda et al. 2010; Stoica et al. 2003], and 
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recruiting phosphatase and tensin homologue deleted on chromosome 10 (PTEN) [Hajduch 

et al. 2008]; and 4) stimulate pro-apoptotic mechanisms such as interleukin-1β converting 

enzyme (ICE)-like proteases [Liu, Obeid and Hannun 1997]. Therefore, ceramide 

homeostasis is needed to maintain insulin responsiveness and minimize cell injury. 

Correspondingly, inhibition of ceramide synthesis and accumulation was shown to prevent 

obesity-associated insulin resistance [Chavez, Holland, Bar, Sandhoff and Summers 2005; 

Holland, Knotts, Chavez, Wang, Hoehn and Summers 2007].

In chronic obesity, T2DM and NASH, lipid dyshomeostasis results in increased generation 

of ceramide in adipose tissue and/or liver [Alessenko, Bugrova and Dudnik 2004; Han, Park, 

Shinzawa, Kim, Chung, Lee, Kwon, Lee, Park, Chung, Hwang, Yan, Song, Tsujimoto and 

Lee 2008; Katsel, Li and Haroutunian 2007; Summers 2010]. Pro-inflammatory cytokines, 

such as tumor necrosis factor-alpha (TNF-α) [Summers 2006], are activated in obesity, 

T2DM, NASH, and AD [Lieber et al. 2004; Rosenberg 2005; Sahai et al. 2004; Sastre et al. 

2006; Satapathy et al. 2004; Tuppo and Arias 2005; Yalniz et al. 2006]. Inflammation and 

insulin resistance increase ceramide production, and ceramides promote oxidative and ER 

stress. Consequently, these interconnecting pathophysiological processes induce a positive 

feedback mal-signaling loops that establishes a cascade of progressive organ-system 

degeneration.

Brain metabolic derangements and insulin resistance in Alzheimer's 

disease

AD shares several features in common with systemic insulin resistance diseases including, 

reduced insulin-stimulated growth and survival signaling, increased oxidative stress, pro-

inflammatory cytokine activation, mitochondrial dysfunction, and impaired energy 

metabolism [de la Monte 2012; de la Monte et al. 2009]. The concept that AD represents a 

metabolic disease stems from the findings that cerebral glucose utilization is impaired in the 

early stages of AD [Adolfsson et al. 1980; Caselli et al. 2008; Fujisawa et al. 1991; 

Langbaum et al. 2010; Mosconi et al. 2009; Mosconi et al. 2008], and that brain metabolic 

derangements worsen with AD progression [Hoyer and Nitsch 1989; Hoyer et al. 1991].

Human postmortem studies established that brain insulin resistance mediated by reduced 

insulin receptor expression and insulin receptor binding were consistent and fundamental 

abnormalities in AD [Rivera et al. 2005; Steen et al. 2005]. In AD, the deficits in brain 

insulin and IGF signaling involves pathways needed to maintain neuronal survival, energy 

production, gene expression, and plasticity [Frolich et al. 1998]. Correspondingly, nearly all 

of the critical features of AD, including increased: 1) activation of kinases that aberrantly 

phosphorylate tau and lead to the accumulation of neurofibrillary tangles, dystrophic neuritic 

plaques and neuorpil threads; 2) expression of amyloid-beta precursor protein (AβPP) and 

accumulation of AβPP-Aβ peptides that are neurotoxic and result in senile plaque formation; 

3) oxidative and ER stress that propagate cell death cascades; 4) mitochondrial dysfunction 

which causes energy deficits; and 5) disruption of cholinergic homeostasis needed for 

neuronal plasticity, memory, and cognition, could represent consequences of brain 

insulin/IGF resistance.
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In the central nervous system (CNS), insulin and insulin-like growth factor (IGF) signaling 

networks regulate a broad array of functions including cell growth and survival, metabolism, 

gene expression, protein synthesis, cytoskeletal assembly, synapse formation, 

neurotransmitter function, and plasticity [D'Ercole and Ye 2008; de la Monte and Wands 

2005; Hoyer 2004]. Impairments in insulin and IGF signaling could be mediated by reduced 

ligand availability, reduced receptor rexponsiveness, or inhibition of downstream signaling. 

Chronic insulin/IGF-1 resistance has dire consequences on the functional integrity of the 

CNS [de la Monte and Wands 2005; Schubert et al. 2003; Schubert et al. 2004; Xu et al. 

2003] due to impairments in neuronal survival, energy production, gene expression, and 

plasticity [Frolich, Blum-Degen, Bernstein, Engelsberger, Humrich, Laufer, Muschner, 

Thalheimer, Turk, Hoyer, Zochling, Boissl, Jellinger and Riederer 1998]. Moreover, 

inhibition of insulin/IGF signaling disrupts cholinergic homeostasis, thereby compromising 

one of the most important neurotransmitter systems utilized for neuronal plasticity, memory, 

and cognition.

Another major adverse effect of insulin/IGF resistance in the brain is chronically increased 

stress caused by oxidative and endoplasmic reticulum (ER) stress, generation of reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) that damage proteins, RNA, 

DNA, and lipids [Reddy et al. 2009], mitochondrial dysfunction; and activation of pro-

inflammatory and pro-death cascades [de la Monte, Longato, Tong and Wands 2009; de la 

Monte and Wands 2005; de la Monte et al. 2008; Haan 2006; Lester-Coll et al. 2006; Rivera, 

Goldin, Fulmer, Tavares, Wands and de la Monte 2005; Steen, Terry, Rivera, Cannon, 

Neely, Tavares, Xu, Wands and de la Monte 2005; Tilg and Moschen 2008]. Oxidation of 

amino acid residues leads to formation of advanced glycation end products (AGEs) or 

advanced oxidation protein products. Oxidation of proteins causes them to become unfolded, 

inactivated, and more susceptible to cleavage. Moreover, oxidation of aliphatic side-chains 

leads to the formation of peroxides and carbonyls (aldehydes and ketone). Peroxides attack 

other molecules and produce radicals. Carbonyls are toxic and cause stress-induced AGE 

accumulation, which contributes to progressive impairment of cellular functions in aging, 

diabetes, AD, experimental models of AD, and degenerative diseases [Greilberger et al. 

2010; Greilberger et al. 2008; Gu et al. 2008; Stadtman 2001]. In AD, elevated levels of 

AGE in amyloid plaques and neurofibrillary tangles [Gella and Durany 2009; Krautwald and 

Munch 2010; Rahmadi et al. 2011] quite likely contribute to the ongoing cell death and 

neurodegeneration [Gella and Durany 2009; Krautwald and Munch 2010; Reddy, Zhu, Perry 

and Smith 2009].

Peripheral insulin resistance states are linked to cognitive impairment and 

Alzheimer's disease

The molecular and biochemical abnormalities in brains with AD closely mimic those in 

T2DM and NASH, and until recently, the vast majority of sporadic AD had no association 

with diabetes. In fact, prior to 1980, the epidemiological trends for AD (increasing 

prevalence) were opposite those for diabetes mellitus (declining as a cause of death) [de la 

Monte, Neusner, Chu and Lawton 2009]. Within the past 2-3 decades, morbidity and 

mortality rates have trended upward for diabetes and other insulin resistance diseases, 
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including metabolic syndrome (dyslipidemic states), non-alcoholic steatohepatitis (NASH), 

and obesity, despite improvements in medical care [de la Monte, Neusner, Chu and Lawton 

2009]. At the same time, the increasing overlap between cognitive impairment or AD and 

peripheral insulin resistance diseases has raised concerns about the potential contributions or 

even causal roles of obesity and diabetes mellitus in neurodegeneration and dementia [de la 

Monte, Neusner, Chu and Lawton 2009; Qiu et al. 2007].

Epidemiologic studies showed that people with glucose intolerance, deficits in insulin 

secretion, T2DM, obesity/dyslipidemic disorders, and NASH had significantly higher risks 

for developing MCI or AD-type dementia [Craft 2005; Craft 2006; Craft 2007; de la Monte, 

Longato, Tong and Wands 2009; Hoyer 2004; Luchsinger et al. 2007; Martins et al. 2006; 

Pasquier et al. 2006]. For example, obese individuals were found to have higher rates of 

MCI [Lokken et al. 2009] and impaired performance on executive function tests [Gunstad et 

al. 2007; Lokken, Boeka, Austin, Gunstad and Harmon 2009]. In adition, their risk for 

developing dementia or AD was at least two-fold higher than for the general population 

[Yaffe 2007]. These results were corroborated by experimental data showing that chronic 

high fat feeding and diet induced obesity with T2DM impair spatial learning and memory 

[Winocur and Greenwood 2005; Winocur et al. 2005] and cause atrophy, insulin resistance, 

inflammation, oxidative stress, and cholinergic dysfunction in the brain [Lyn-Cook, Lawton, 

Tong, Silbermann, Longato, Jiao, Mark, Wands, Xu and de la Monte 2009; Moroz et al. 

2008]. Moreover, in NASH, which is associated with hepatic insulin resistance, the rates of 

neuropsychiatric diseases such as depression and anxiety [Elwing et al. 2006], and risks for 

developing cognitive impairment [Felipo et al. 2011] are significantly increased. On the 

other hand, weight loss leading to reduced peripheral insulin resistance improves cognitive 

performance [Baker et al. 2010; Baker et al. 2010] and enhances neuropsychiatric function 

including mood and behavior [Bryan and Tiggemann 2001].

Several studies have shown that cognitive impairment and neuropsychiatric dysfunction 

occur with liver disease caused by various agents, including alcohol abuse, obesity, chronic 

Hepatitis C virus infection, Reyes syndrome, and nitrosamine exposure [Elwing, Lustman, 

Wang and Clouse 2006; Karaivazoglou et al. 2007; Kopelman et al. 2009; Loftis et al. 2008; 

Perry et al. 2008; Schmidt et al. 2005; Weiss and Gorman 2006]. These diseases are linked 

because they are all associated with hepatic steatosis or steatohepatitis and hepatic insulin 

resistance, endoplasmic reticulum (ER) stress, and increased generation of cytotoxic 

sphingolipids, including ceramides [de la Monte et al. 2006; Lester-Coll, Rivera, Soscia, 

Doiron, Wands and de la Monte 2006; Lyn-Cook, Lawton, Tong, Silbermann, Longato, Jiao, 

Mark, Wands, Xu and de la Monte 2009; Moroz, Tong, Longato, Xu and de la Monte 2008; 

Tong et al. 2010; Tong et al. 2009]. Mechanistically, inflammation, superimposed on disease 

states that promote lipid storage in hepatocytes promotes ER stress, oxidative damage, 

mitochondrial dysfunction, and lipid peroxidation, which together drive hepatic insulin 

resistance [Capeau 2008; Kraegen and Cooney 2008].

Hepatic insulin resistance stimulates lipolysis [Kao, Youson, Holmes, Al-Mahrouki and 

Sheridan 1999], and lipolysis leads to increased generation of toxic lipids e.g. ceramides, 

which further impair insulin signaling, mitochondrial function, and cell viability [Holland 

and Summers 2008; Kraegen and Cooney 2008; Langeveld and Aerts 2009]. Moreover, with 
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steatohepatitis, hepatic and peripheral insulin resistance are accompanied by increased local 

and peripheral levels of ceramides [de la Monte, Tong, Lester-Coll, Plater and Wands 2006; 

Lester-Coll, Rivera, Soscia, Doiron, Wands and de la Monte 2006; Moroz, Tong, Longato, 

Xu and de la Monte 2008; Tong, Longato and de la Monte 2010; Tong, Neusner, Longato, 

Lawton, Wands and de la Monte 2009], suggesting that distant target organs may be 

susceptible to their toxic effects. Experimentally, molecular and biochemical abnormalities 

associataed with AD can be produced by in vitro exposure to short-chain cytotoxic 

ceramides [Adibhatla and Hatcher 2008; Alessenko, Bugrova and Dudnik 2004]. In 

addition, in vivo administration (i.p.) of toxic ceramides causes cognitive-motor deficits, 

brain insulin resistance, oxidative stress, metabolic abnormalities, and neurodegeneration, 

similar to AD-type neurodegeneration [Tong and de la Monte 2009]. Further investigations 

showed that toxic ceramides delivered into peripheral blood by i.p. injection localize in brain 

membranes and therefore cross the blood brain barrier [de la Monte 2012].

Toxic lipids produced in peripheral insulin resistance states contribute to 

brain insulin-resistance and neurodegeneration

In obesity, adipose tissue, skeletal muscle, and liver have abnormal sphingolipid metabolism 

results in increased ceramide production, inflammation, and activation of pro-inflammatory 

cytokines, with impairments in glucose homeostasis and insulin responsiveness [Delarue and 

Magnan 2007; Shah et al. 2008; Summers 2006]. In human [Kolak et al. 2007] and 

experimental models of NASH [Cong et al. 2008], ceramide levels in adipose tissue are 

elevated due to increased activation of serine palmitoyl transferase, and acidic and neutral 

sphingomyelinases [Liu, Obeid and Hannun 1997]. In addition, liver ceramide synthase and 

serine palmitoyl transferase mRNA levels are increased in the early stages of hepatic 

steatosis, but with the development of NASH and neurodegeneration, ceramide synthase 

mRNA transcripts decline while sphingomyelinase gene expression increases [Lyn-Cook, 

Lawton, Tong, Silbermann, Longato, Jiao, Mark, Wands, Xu and de la Monte 2009]. Since 

neurodegeneration in models of obesity and diabetes have not been associated with 

increased CNS expression of pro-ceramide genes, we suspect that the AD-type 

neurodegeneration with brain insulin/IGF resistance is mediated by secondary effects of 

peripheral insulin resistance, i.e. dysregulated lipid metabolism, increased production of 

cytotoxic ceramides, and increased trafficking of cytotoxic ceramides from peripheral blood 

to brain.

Corresponding with the above concept, mass spectrometry-based lipidomics analysis of 

plasma detected elevated levels of saturated sphingolipids (N16:0 and N21:0) in AD relative 

to control subjects, and linked severity of cognitive impairment with altered levels of 

specific very long chain ceramides [Han 2010]. In addition, elevated plasma levels of very 

long-chain saturated ceramides (C22:0 and C24:0) were found to be predictive of memory 

loss and hippocampal atrophy in patients with MCI [Mielke et al. 2010], whereas increased 

ratios of dihydrosphingomyelin to dihydroceramide and sphingomyelin to ceramide were 

shown to be correlated with slower progression of AD [Mielke et al. 2011]. Although these 

studies did not interrogate the sources of plasma sphingolipids and ceramides or the 

presence of underlying peripheral insulin resistance diseases, they provide evidence that 
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shifts in plasma spingolipid profiles and levels could be used as peripheral biomarkers for 

individuals at risk for progression from MCI to dementia. Ideally, it would be beneficial to 

determine the degree to which peripheral blood very long chain ceramide profiles shift with 

treatment of AD with insulin, insulin sensitizers, or measures to support neurotransmitter 

function and metabolic homeostasis in the CNS.

Hypothesis: Peripheral insulin resistance diseases can cause MCI and 

contribute to progressive AD-type neurodegeneration

The aggregate results from several studies suggest that peripheral, including hepatic insulin 

resistance with associated chronic injury, inflammation, and metabolic dysfunction leads to 

dysregulated lipid metabolism with increased ceramide production. Intra-hepatic (or visceral 

fat) accumulation of cytotoxic ceramides promotes ER stress, which exacerbates insulin 

resistance, inflammation, and oxidative stress. Consequences include increased DNA 

damage, mitochondrial dysfunction, energy depletion, ROS production, and eventually the 

formation lipid, protein, and DNA adducts, which further impair cellular functions. Finally, 

a reverberating cascade of mal-signaling and insulin resistance with impaired cell survival 

gets established, resulting in leakage of toxic ceramides from liver (visceral fat) to 

peripheral blood [de la Monte, Longato, Tong and Wands 2009]. Toxic lipids, including 

ceramides can cross the blood-brain barrier and cause insulin resistance by interfering with 

critical phosphorylation events [Arboleda, Huang, Waters, Verkhratsky, Fernyhough and 

Gibson 2007; Chalfant, Kishikawa, Mumby, Kamibayashi, Bielawska and Hannun 1999; de 

la Monte et al. 2010; Liu, Obeid and Hannun 1997; Tong and de la Monte 2009] and 

activating pro-inflammatory cytokines [Bryan, Kordula, Spiegel and Milstien 2008; 

Summers 2006; Van Brocklyn 2007], CNS Therefore, brain insulin resistance, which is an 

early and important feature of AD, may be mediated by chronic exposure to cytotoxic 

ceramides generated in extra-CNS sources [de la Monte, Tong, Nguyen, Setshedi, Longato 

and Wands 2010] and capable of penetrating the blood brain barrier. cause CNS insulin 

resistance, oxidative stress, and pro-inflammatory cytokine activation, which ultimately 

result in dysregulated lipid metabolism, myelin breakdown, increased endogenous ceramide 

generation, and ER stress.

The epidemic of peripheral insulin resistance diseases which includes obesity, T2DM, and 

NAFLD/NASH, is likely responsible for the staggering increases in morbidity and mortality 

rates from AD across all age groups, 50-years and older [de la Monte, Neusner, Chu and 

Lawton 2009]. Mechanistically, we propose that this extrinsic pathway of brain insulin/IGF 

resistance with attendant ER stress is initiated through insults arising from toxic ceramides 

generated in peripheral tissues, e.g. liver, and traffic through peripheral blood to the CNS to 

exert their neurotoxic and degenerative effects. Future therapeutic strategies for restoring 

cognitive function and preventing progression to AD should consider the inclusion of agents 

that block toxic ceramide and other toxic lipid production in both peripheral tissues and the 

brain.
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Figure 1. 
Extrinsic mechanisms of brain insulin/IGF resistance and neurodegeneration. In Type 2 

diabetes, non-alcoholic steatohepatitis, and visceral obesity (visceral obesity shown as 

yellow discs below livers), excess lipid accumulation leads to insulin resistance, which 

promotes inflammation, ER stress, and oxidative injury. This process establishes a positive 

feedback cycle of mal-signaling and insulin resistance with impaired cell survival that 

results in leakage of toxic ceramides from liver (or visceral fat) to peripheral blood. Toxic 

ceramides capable of penetrating the blood brain barrier, cause CNS insulin resistance, 

oxidative stress, and pro-inflammatory cytokine activation, which ultimately result in 

dysregulated lipid metabolism, myelin breakdown, increased endogenous ceramide 

generation, and ER stress.
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