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Copyright © 2015 Maria Luca et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Oxidative stress (OS) has been demonstrated to be involved in the pathogenesis of the two major types of dementia: Alzheimer’s
disease (AD) and vascular dementia (VaD). Evidence of OS and OS-related damage in AD is largely reported in the literature.
Moreover, OS is not only linked to VaD, but also to all its risk factors. Several researches have been conducted in order to investigate
whether antioxidant therapy exerts a role in the prevention and treatment ofADandVaD.Another research field is that pertaining to
the heat shock proteins (Hsps), that has provided promising findings. However, the role of OS antioxidant defence system andmore
generally stress responses is very complex. Hence, research on this topic should be improved in order to reach further knowledge
and discover new therapeutic strategies to face a disorder with such a high burden which is dementia.

1. Oxidative Stress and Brain Aging

Redox homeostasis is a complex mechanism that can be
resumed as the maintenance of the balance between reac-
tive oxygen species (ROS) production and elimination [1].
Largely generated from mitochondria, ROS are by-products
of cellular metabolism [2]. Among them, we include free
radicals (superoxide), hydroxyl radicals (the most reactive
species), and nonradicals (hydrogen peroxide). Even though
ROS exert a role in crucial physiological processes, such
as signaling and apoptosis [3, 4], they are highly reactive
species; as a result, they can damage proteins, lipids, deoxyri-
bonucleic acid (DNA), and sugars with remarkable negative
consequences on the cellular functioning [5].The antioxidant
defence system, composed by nonenzymatic and enzymatic
antioxidants (e.g., glutathione, flavonoids, superoxide dismu-
tase (SOD), catalases, and glutathione peroxidase (GPx)),
protects the cells from the ROS-related injuries [6]. If the
redox homeostasis fails, this system is not sufficient to coun-
teract the high amount of ROS and the so-called “oxidative
stress” (OS) occurs [7]. The balance between oxidants and
antioxidants is not a static condition and a great number of

stimuli can interfere with the redox status. Hence, OS has
been recently redefined as a “disruption of redox signaling
and control” [8]. OS and its detrimental effects on the cellular
functioning have been demonstrated to be involved in aging
[9], as well as in a variety of illnesses, particularly age-related
ones, amongwhich are diabetes [10], atherosclerosis [11],mild
cognitive impairment (MCI) [12], Parkinson’s disease [13],
and other neurodegenerative disorders, such as Huntington’s
disease [14] and amyotrophic lateral sclerosis [15]. In addi-
tion, OS seems to be involved in the pathogenesis of the
two major types of dementia: Alzheimer’s disease (AD) and
vascular dementia (VaD) [16]. The importance of OS in so
many neurodegenerative disorders is not surprising, since the
brain is highly susceptible to ROS, because

(1) it is rich in fatty acids, which are sensible to peroxida-
tion;

(2) it has not a powerful antioxidant activity;

(3) it consumes a lot of oxygen; therefore, it is exposed to
free-radicals accumulation [17].
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Previous researches highlighted the importance of OS in
both normal brain aging and pathological brain aging [18],
sharing the same altered biochemical and anatomopatholog-
ical pattern: neural loss and altered mitochondrial activity
and accumulation of degradated mitochondria and tangles
[19–21]. However, AD brains show substantial qualitative
and quantitative differences when compared to controls.
More specifically, the redox homeostasis is different: the
activity of mitochondrial pyruvate dehydrogenase, ketog-
lutarate dehydrogenase, and cytochrome oxidase is more
severely affected; moreover, the antioxidant defence system is
critically impaired [20, 22]. In addition, even though normal
brain aging is related to the accumulation of degradatedmito-
chondria and tangles, both conditions are more represented
in AD [20, 21]. The amount of tangles certainly increases
with age, particularly in the hippocampus. However, it is
remarkably higher in demented brains and the more the
dementia is severe, the more the tangles affect the neocortex,
which is usually spared in normal brain aging [21].

High levels of peripheral markers of oxidative stress and
low antioxidant power have been reported in patients with
MCI, late onset AD, and VaD. Even though the three disor-
ders seem to share a common oxidative-related pathogenesis,
they maintain distinctive features, since other variables (e.g.,
homocysteine levels) allow for their differentiation [16]. An
interesting study published in 2013 reported how young
healthy individuals at risk of developing AD (as determined
through genetic analysis) presented an apparently paradoxi-
cal condition: high levels of antioxidants and reductive, rather
than oxidative, stress. On the contrary, in case of overt
AD, the opposite situation was noticed: low antioxidants
and high indicators of oxidative stress. The hypothesis is
that the individuals at risk of developing AD, presenting an
increased generation of ROS, respondwith an overexpression
of antioxidants, thus suffering from reductive stress. Later on,
the antioxidant defence system collapses and the OS becomes
evident, along with the symptoms of dementia [23]. The role
ofOS in the physiopathology of dementia is very complex and
the knowledge pertaining to this topic needs to be enhanced.
In the present review, data on the role of OS in AD and VaD,
as well as a discussion on the therapeutic implications of such
a role, are reported.

2. OS and AD

In the last decades, several researches investigating the role
of OS in neurodegenerative disorders have been conducted.
Despite the fact that the knowledge on this topic is certainly
larger than before, it is still unclear whether OS is the
cause or the consequence of the neurodegenerative processes.
Notwithstanding, it is almost certain that OS is involved in
the crucial events leading to the neural death and in the
propagation of such events.Hence, if the complex and various
neurodegenerative phenomena are intended as a cycle for
more than a cascade, it is clear that, one way or another, OS is
the “main actor” [24]. AD, themost common cause of demen-
tia in the elderly, is an age-related neurodegenerative disorder
causing the progressive loss of the higher cerebral functions,
such as memory, language, and cognitive thinking, with huge

consequences on mood, behaviour, and self-sufficiency [25].
This type of dementia is characterized by the accumulation
of misfolded beta-amyloid (A𝛽), a protein produced from
the cleavage of the amyloid precursor protein (APP), and
neurofibrillary tangles (aggregates of hyperphosphorylated
tau protein) in the brain [26, 27]. Evidence of OS and OS-
related damage in AD is largely reported in the literature
[27–30].More specifically, markers of lipid peroxidation have
been found in plasma, urine, and cerebral tissue of trans-
genic mice models of AD amyloidosis [31]; OS-related DNA
damage has been demonstrated in AD patients, so that some
authors suggested that urinary oxidized nucleosides could be
used as biomarkers [32]; high levels of carbonyls, markers of
protein oxidation, have been found in AD brains [33]. Also
tau phosphorylation has been related to OS and it is known
that hyperphosphorylation is responsible for its misfolding
[34, 35]. It is known that the ROS production is crucially
involved in the physiological mechanisms regulating folding,
misfolding, and the elimination of unfolded proteins [36–
38]. The endoplasmic reticulum (ER) plays a fundamental
role in the regulation of protein folding. In case of abundance
of misfolded proteins, ER stress occurs, thus determining an
enhanced production of ROS during the oxidative folding
process (formation of disulfide bonds) and the uncontrolled
accumulation of unfolded/misfolded proteins [36, 39]. The
consequential depletion of the antioxidant glutathione and
the ROS-related damage of the mitochondrial electron trans-
fer system amplify the production of ROS and lead to cell
death. In fact, the ER alteration is one of the common features
linking neurodegenerative disorders, mostly characterized
by protein misfolding, to each other [36]. In addition, a
sustainedOS alters the functions of the ubiquitin-proteasome
pathway, which is responsible for the degradation of the
damaged proteins [38]. As far as AD is concerned, there are
several conditions causing the excessive production of ROS:
mitochondrial dysfunctions, A𝛽-related microglial activa-
tion, inflammation, and binding of redox active metals to
deposits [40]. A deficiency in cytochrome c oxidase has been
reported in platelets and in postmortem brain tissue of AD
patients. As a result, mitochondrial degradation is stimulated
and neurons are damaged by the mitochondrial debris and
the excessive production of ROS [41]. As if that were not
enough, the altered mitochondria generate high levels of
ROS, exposing themselves to the OS-related injuries to which
they are so sensitive [42]. Another important issue in AD
is inflammation. In fact, this neurodegenerative disorder is
characterized by an uncontrolled inflammatory activation of
microglial cells [43]. The peroxisome proliferator-activated
receptor gamma (PPAR-𝛾) is a regulator of the inflammatory
processes which exerts anti-inflammatory properties [44].
OS, leading to the phosphorylation of PPAR-𝛾, is responsible
for the functional alteration of this important transcription
factor [45]. In addition, it has been reported that mild OS
could trigger the amyloid cascade being, therefore, involved
in the very early stages of AD: in fact, it causes an alteration
of the subcellular compartmentalization of BACE1 (beta-
site APP cleaving enzyme 1), an enzyme involved in the 𝛽-
secretase cleavage of the APP; as a result, the amyloidogenic
processing of APP is favoured [46]. As in a vicious cycle,
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A𝛽 produces ROS through a metal-catalyzed reaction [47].
The lesions observed in brains suffering from AD are those
typical of OS (e.g., damage to DNA, protein oxidation, and
lipid peroxidation) [18] and contain metals (e.g., zinc, iron)
exerting catalytic activity and causing ROS production [48];
thesemetals have beendemonstrated to be highly represented
in AD brains [49]. From what has been discussed above, it
is apparent that OS is involved in the occurrence of the core
aspects of AD, that is, phosphorylation and misfolding [46,
50].Obviously, the exposure ofOS stimulates the activation of
compensatory responses [51]. Unfortunately, both enzymatic
and nonenzymatic antioxidant defences seem to be impaired
in AD patients [52, 53]. Even though literature data are not
exempted from inconsistencies [22], it is plausible that SOD
could be induced by OS in the early stages of AD and, then,
consumed in the advanced stages [22]. GPx and glutathione
reductase (GR) seem to be, respectively, higher and lower
in AD patients versus controls. Hence, the GR/GPx activity
ratio turns out to be higher in healthy subjects, intermediate
in MCI, and lower in AD patients. In addition, the ratio
has been found to be positively correlated with the scores at
the Mini Mental Sate Examination (MMSE), a tool used to
assess the cognitive performances [12]. It is easy to imagine
that since GR (which regenerates reduced glutathione from
oxidized glutathione (GSSG)) is low, the levels of GSSG
should be high. In fact, the levels of GSSG are higher in AD
patients and relate to the severity of the dementia [22]. As
far as nonenzymatic defences are concerned, even in this case
literature data show some inconsistencies, but various studies
report vitamin deficiency in patients versus controls [22].
Since the redox homeostasis is so deeply altered, the neurons
are dangerously exposed to the detrimental effects of OS and
to the fearsome mechanism of neurodegeneration.

3. OS and VaD

VaD is the second cause of dementia in the elderly. Executive
functions, more than memory, are severely impaired in this
type of dementia [54]. Even if hypoxia and haemorrhagic
stroke (e.g., subdural haematoma) can cause VaD, the latter
is mostly related to ischaemic stroke [55]. In particular, one
of the most common forms of VaD, the subcortical one,
is caused by multiple subcortical ischaemic lesions. Hyper-
tension, diabetes mellitus, hypercholesterolemia, and hyper-
homocysteinemia favour the occurrence of atherosclerosis,
cardiovascular diseases, and stroke and represent important
risk factors for VaD [54]. As far as oxidative stress is
concerned, it is linked not only to VaD, but also to all its risk
factors; in fact, OS has been demonstrated to play a role in
the pathogenesis of diabetes [10] and to be involved in the
tissue toxicity determined by hypercholesterolemia [56] and
hyperhomocysteinemia [57]. Moreover, it has been reported
that the dysfunction of mitochondrial proteins, leading to
OS, is involved in the hypertension-related target organ
damage affecting vasculature, heart, kidneys, and brain [58].
Mitochondrial dysfunction is considered to be an important
step in the pathogenesis of atherosclerosis, also because it

subtends the previously mentioned risk factors [59]. The OS-
related oxidation of low-density lipoproteins (LDL) is crucial
in the atherosclerotic process [60, 61] and high levels of
lipid hydroperoxides have been reported in patients with
ischemic stroke [62]. As a matter of fact, patients with VaD
have been found to show high levels of malondialdehyde (a
marker of lipid peroxidation) and these levels were higher
than those reported in AD patients [63]. The association
between folate deficiency and OS-related LDL dysfunction
seems to be typical of VaD and could help to differentiate
it from other types of dementia [64]. In addition, OS is
certainly a mediator of the stroke-related neuronal damage
and cognitive dysfunctions, as demonstrated by the high
levels of plasmatic ROS in patients with ischaemic stroke
as well as the finding of oxidative DNA damage within the
peri-infarct brain regions in rats [65–67]. Moreover, OS is
indirectly and directly involved in the deep alterations of the
blood-brain barrier (BBB) occurring after an ischaemic brain
injury. More specifically, the activation of metalloproteinases
and the proteases involved in the proteolytic disruption of
the BBB and in the white matter lesions typical of VaD is
strictly linked to OS [68, 69]. In addition, ROS are directly
responsible for the alterations in the cerebral perfusion and
permeability, thus contributing to the cerebrovascular disease
[70]. The OS-induced dysfunction of the previously cited
anti-inflammatory agent PPAR-𝛾 is involved in vascular aging
[71]. In practice, OS and inflammation “cooperate” in deter-
mining the endothelial damage and the BBB failure occurring
in VaD [72]. As in AD, even in VaD the antioxidant defence
system seems to be insufficient. Apart from the previously
reported folate deficiency [64], also vitamin E has been found
to be lower in VaD versus controls and also versus AD [73]. In
addition, SOD andGR are reduced in VaD too [74]. However,
it is worth pondering over that, from a clinical point of view,
the difference between AD and VaD is not so strict. In fact,
microvascular degeneration and atherosclerotic processes
are often documented in AD, in which an ROS-related
amyloid cerebral angiopathy occurs [75–77]. In addition, the
LDL oxidation, involved in the atherosclerotic process as
previously mentioned [60, 61], seems to be a common feature
shared by AD and VaD [78]. An important antioxidant
enzymatic system, influenced by the redox status [79], pro-
tecting LDL from oxidation and exerting anti-inflammatory
properties, is represented by the serumparaoxonases [78, 80].
Paraoxonase activity (as a protective factor) and macrophage
OS (as a deleterious condition) take part in atherogenesis
[81, 82]. Additionally, macrophage OS has been related to
the paraoxonase 1 deficiency [83]. Considering dementia,
both AD and VaD patients have been found to show a
lower paraoxonase activity when compared to controls [78].
In the light of what has been discussed, OS represents a
common important contributor in the pathogenesis of these
two forms of dementia, whether alone or in comorbidity
(mixed AD and VaD) [76]. Moreover, not only GR/GPx ratio,
but also other markers of OS have been related to cognitive
performances in dementia. High levels of 4-hydroxynonenal
and malonaldehyde relate to worse scores at the MMSE [12,
84]. Notwithstanding, the use of biomarkers as predictors of
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severity or outcome of dementia seems to be not strongly
enough supported, at least for now [22].

4. Antioxidants in AD and VaD:
Future Therapeutic Perspectives

Several researches have been conducted in order to investi-
gate whether antioxidant therapy exerts a role in the preven-
tion and treatment of AD and VaD.The findings arisen from
a cohort study considering more than 1300 subjects indicate
that the intake of flavonoids is inversely related to the risk
of incident dementia [82]. Hence, vitamin supplementation
could play a positive effect in bothAD andVaD [85, 86]. It has
been demonstrated that curcumin reduces the levels of A𝛽
in cell lines and mouse primary cortical neurons and exerts
a neuroprotective effect in vascular dementia enhancing the
expression of antioxidants in rats and ischemic cells [87,
88]. In fact, the enhancement of the enzymatic defences is
the key of the efficacy of treatments such as the EUK-207
(SOD/catalase mimetic) in mice with AD and resveratrol in
rats with VaD [89, 90]. It has been reported that resveratrol
increases SOD activity and glutathione levels in the cerebral
cortex and hippocampus of rats with VaD [90]. Another
research field is pertaining to the heat shock proteins (Hsps),
which has provided interesting findings. It is well known that
OS is involved in the activation of such important chaperons,
which regulate the aggregation of misfolded proteins and
apoptosis [91]. However, in case of neurodegeneration, the
chaperones could paradoxically facilitate the aggregation of
disease-related proteins, attempting to repair them and trying
to avoid the formation of toxic aggregates [92]. This data
explains why Hsp90 inhibitors are one of the promising
therapeutic tools for the treatment of AD [93, 94]. It has
been affirmed that Hsp90 “may play a role in maintaining
pathogenic changes that lead to neurodegenerative diseases”
[95]. This concept is easier to understand if it is considered
that the tau protein is a client protein for Hsp90 [96] and
that the latter is a repressor of the heat shock factor-1
(HSF-1), which regulates the heat shock response through the
expression of Hsps [93, 97]. Hsp90 inhibitors, through the
activation of HSF-1, exert neuroprotective effects favouring
the induction of Hsps, such as Hsp70 [93, 98], that has been
found to exert therapeutic properties in mice with AD [99].
Hsps are also expressed in response to ischemic brain lesions
[100, 101] and transgenic mice expressing human inducible
Hsp70 have shown to have ischemia-resistant hippocampal
neurons [102]. Since inflammation plays an important role in
the pathogenesis of AD and VaD [43, 72], the enhancement
of the anti-inflammatory defence, through PPAR-𝛾 agonists,
could represent another potential target for the treatment
of these severe dementias. In mice models of AD, PPAR-
𝛾 agonism resulted in the reduction of parenchymal A𝛽,
microglial activation, and neural loss [43]. In addition, it
showed efficacy in improving reversal learning [103].The oral
antidiabetic drugs pioglitazone and rosiglitazone, exerting
agonistic properties on PPAR-𝛾, were found to reverse some
clinical (memory, learning) and biochemical (OS, endothelial
dysfunction) features of diabetes-induced VaD dementia

[104]. Moreover, their antiatherogenic effect is not only
linked to their insulin sensitizing properties, but also to
the modulation of endothelial activation markers, platelet
activity, and vasodilatation. Hence, their therapeutic effects
could be useful also for patients without diabetes mellitus
affected by dementia [105]. However, the antioxidant therapy
has not reached the aimed results. Among the more credible
causes of this failure, (a) the activity of many nutritional
antioxidants is strictly linked to that of other antioxidants;
hence, monotherapy could not be sufficient; (b) therapy is
often administered in too advanced stages of dementia; (c)
since the brain is separated from the periphery trough the
BBB, the peripheral redox status may not reflect the cere-
bral homeostasis; (d) the researches available used different
methods to analyze the antioxidant levels in blood in order to
evaluate the outcome after therapy [106]. Therefore, there are
many fascinating plausible therapeutic targets that need to be
further investigated to addnewandmore efficient therapeutic
tools to the nowadays available disappointing options.

5. Concluding Remarks

In the light of what has been discussed, OS seems to be a cru-
cial contributor in the pathogenesis of AD and VaD, directly
or indirectly affecting the steps leading to neurodegeneration.
AD and VaD are linked by many anatomical features, as well
as byOS. However, the role of OS, antioxidant defence system
and,more generally, stress responses, is very complex. Hence,
research pertaining to this topic should be improved in order
to reach further knowledge and discover new therapeutic
strategies to face a disorder with such a high burden which
is dementia.
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