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Abstract

Secondary metabolite biosynthesis in microorganisms responds to discrete chemical and 

biological stimuli; however, untargeted identification of these responses presents a significant 

challenge. Herein we apply multiplexed stimuli to Streptomyces coelicolor and collect the 

resulting response metabolomes via ion mobility-mass spectrometric analysis. Self-organizing 

map (SOM) analytics adapted for metabolomic data demonstrate efficient characterization of the 

subsets of primary and secondary metabolites that respond similarly across stimuli. Over 60% of 

all metabolic features inventoried from responses are either not observed under control conditions 

or produced at greater than two-fold increase in abundance in response to at least one of the 

multiplexing conditions, reflecting how metabolites encode phenotypic changes in an organism 
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responding to multiplexed challenges. Using abundance as an additional filter, each of sixteen 

known S. coelicolor secondary metabolites is prioritized via SOM and observed at increased levels 

(1.2 – 22-fold compared to unperturbed) in response to one or more challenge conditions.

Graphical abstract

Microbial producers of secondary metabolites typically contain gene clusters encoding 

dozens of secondary metabolite families (Zerikly et al., 2009; Udwary et al., 2007), the 

expression of which appear to be tightly regulated in response to discrete chemical and/or 

biological stimulus. For example, exposure of actinomycetes to mixed fermentation 

conditions has demonstrated that secondary metabolite families are produced selectively via 

intergeneric (Onaka et al., 2011; Traxler et al., 2013) and interkingdom (Moree et al, 2012) 

microbial interactions. Similarly, the acquisition of antibiotic resistance via point mutations 

(Hosaka et al., 2009; Tanaka et al., 2013), exposure to rare earth metals (Tanaka et al., 2010; 

Ochi et al., 2014), exposure to small molecules (Nodwell et al., 2012); Sayedsayamdost et 

al, 2014), and the formulation of production media (Bode et al., 2002), have also been linked 

to gene-cluster specific upregulation of secondary metabolites in actinomycetes. These data 

are consistent with secondary metabolites governing adaptive organismal responses to 

environmental stimuli. Identifying secondary metabolites and associating them to gene 

clusters that are linked to discrete chemical and biological stimuli can provide insight into 

the chemical ecological role of secondary metabolites. Moreover, the ability to selectively 

stimulate native expression of secondary metabolic gene clusters via chemical or biological 

stimuli, and detect their corresponding products without resorting to genetic recombinant 

methods, would greatly expedite microbial secondary metabolite discovery.

If secondary and primary metabolite regulation has adapted to selectively respond to 

chemical and biological stimulus, then metabolites possessing selective responses may be 

identifiable within metabolomes by possessing characteristic abundance trends across 

multiplexed stimulus conditions. To investigate this hypothesis and enable secondary 

metabolite discovery, we herein assess the potential for stimulus-mediated production of 

secondary metabolites in the native microbe by multiplexed chemical and biological 
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stimulation. To access a broad spectrum of responses, a battery of 23 perturbations in a 

single growth medium was utilized from three reported categories of activating conditions 

for Streptomyces coelicolor A3(2). The resulting collected sum of detectable metabolomic 

response inventories was analyzed by ultra performance liquid chromatography-ion 

mobility-mass spectrometric analysis (UPLC-IM-MS). To structure and categorize the 

response-specificity of metabolic features within these data, we developed and implemented 

a self-organizing map (SOM)-based analysis (Goodwin et al., 2014; Eichler et al., 2003) for 

the identification and prioritization of increased metabolite production resulting from the 

multiplexed perturbations. SOM analysis converted the collected metabolomes into a 

navigable topological response phenotype map and efficiently identified specific primary 

and secondary metabolites that are produced at increased levels in response to stimuli. For 

example, in primary metabolism, we identified discrete changes in guanosine and 

phenylalanine pools on lanthanide exposure and evidence of unique adaptive cell wall 

remodelling in several conditions. Notably, a large fraction (16 total secondary metabolites) 

of detected secondary metabolites was prioritized via this workflow as the most intense 

response-specific features, providing insight into the roles secondary metabolism plays in 

adapting to chemical stimuli and microbial interactions. The combination of multiplexed 

stimulation of native expression and structuring of the resulting metabolomic responses 

comprise a generalizable method for activating and detecting products of natively regulated 

primary and secondary metabolism.

RESULTS

Multiplexing stimuli of secondary metabolism

Streptomyces coelicolor A3(2) was cultivated under a battery of processes known to 

potentiate secondary metabolism. S. coelicolor was selected as a model microorganism 

because it has been extensively mined for secondary metabolites (Bentley et al., 2002), 

methods for native gene cluster activation have been most commonly developed for this 

organism (Hosaka et al., 2009; Luti and Mavituna, 2011b; Tanaka et al., 2010; Xu et al., 

2002), and the majority of secondary metabolites isolated from this strain have been 

correlated to a gene cluster (Barona-Gomez et al., 2006; Bentley et al., 2002; Challis, 2013; 

Song et al., 2006).

We selected three known categories of activating stimuli: eliciting spontaneous resistance to 

transcription or translation-targeting antibiotics, exposure to rare earth elements, and 

cultivation in the presence of competing microorganisms. Our specific adaptations and 

standardizations of these reported methods are described in the Electronic Supplementary 

Information (ESI). In brief, using a single growth medium (International Streptomyces 

Protocol 2, ISP2), we cultivated (1) liquid cultures in the presence and absence of five 

separate scandium or five lanthanum concentrations, (2) liquid cultures of ten different 

spontaneous rifampicin or streptomycin resistance mutants, and (3) agar plate ISP2 co-

cultures with three different challenge organisms, Micrococcus luteus, Rhodococcus 

wratislaviensis, or Tsukamurella pulmonis. Hence, we generated a total of 23 conditions, 

including controls, spanning these three methodologies.
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Total cellular extracts were generated from fermentations via methanol extraction, 

concentrated, and processed for reverse phase UPLC analysis. Technical triplicates of 

extracts were analyzed in a randomized sequence using UPLC-IM-MS (Waters Synapt G2, 

Milford, MA) with lock mass correction to provide accurate mass measurements. During 

each spectral acquisition, an intact and fragmentation spectrum was taken for all ions present 

(herein referred to as MSE analysis (Plumb et al., 2006)) (Goodwin et al., 2012; McLean, 

2009). Fragmentation was performed subsequent to IM separation, which allowed for the 

correlation of product ions to precursor origins through matched mobility.

Raw data were converted to distinct mass-to-charge (m/z) and retention time (Rt) pairs, 

termed “features,” and aligned across all samples (Smith et al., 2006). The resultant data 

matrix of discrete features, or ions, and associated intensities for each condition were 

averaged across technical replicates and subjected to multivariate statistical analysis 

(MVSA) and SOM.

Identifying products of multiplexed stimulation through MVSA

The identification of new metabolites with characteristic responses from multiplexed 

microbial stimuli requires methods for comparing and classifying covarying ions in the 

response inventories. Recently, we (Derewacz et al., 2013) and others (Hou et al., 2012; 

Robinette et al., 2012) have presented MVSA approaches for identifying the most abundant 

new ions resulting from individual stimulating microbial metabolic perturbations. MVSA 

methods for data analysis are powerful tools for identifying distinguishing features of small 

data sets (2 – 3 conditions), or extracting information regarding global sample grouping and 

which metabolites contribute to coarse trends. However, MVSA methods are not ideal for 

similar prioritization of metabolites in multiplexed perturbations, as MVSA is inherently 

biased for the largest differences amongst perturbations and is limited in the ability to reflect 

multiple stimuli in two- or three-dimensional space. Therefore, it omits the lower abundance 

or minorly covarying, yet still unique, metabolic reflexes (i.e., changes in metabolism 

resulting from a stimulus). In applying our previously described MSVA workflow 

(Derewacz et al., 2013) to the 23 conditions, as shown in Figure 1A, we can visualize the 

gross distinctions of metabolomic profiles that exist amongst different stimuli. When each 

perturbation is analyzed in isolation (Figure 1B–D), the distinct differences in global 

metabolism shifts are seen. A loadings plot analysis can be used to determine which ions 

contribute to sample distinction, as seen in Figure S3A. For comparison, detected secondary 

metabolites are annotated, which highlights a significant shortcoming of MVSA-based 

prioritization for a large number of culturing conditions: the largest contributors to sample 

differences are highlighted, but specific features of interest can be masked by the covariance 

of many species in the dataset. To garner conditionally distinct differences, experimental 

subsets (see Figure 1B – D), or even smaller subsets (e.g., a single co-culture versus 

monocultures, or orthogonal partial least squares-discriminant analysis approaches) can be 

analyzed. Thus, MVSA is most suitable for the interrogation of small datasets where the 

number of species is low (e.g. <50). However, for 25 conditions, pairwise analysis of 

multiple iterations of stimulus conditions for prioritization purposes becomes a time-

intensive method of prioritizing secondary metabolites from extracts. As a result, we have 

developed and applied SOM-based methods to ion association and filtering. The primary 
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advantage of SOM-based methods is that they are not prone to masking low abundant 

species of interest in the comparison of large datasets (e.g. >50).

Identifying products of multiplexed stimulation by self-organizing maps

Assessing trends in a large number of biochemical or biological conditions requires methods 

for the rapid visualization and organization of distinct differences in metabolic profiles 

across many perturbations to sort ions in a response-dependent manner. To address this, we 

developed a SOM-based approach to sort the complete inventory of ions across all growth 

conditions into regions based upon similarities in abundance profiles across experiments. 

This method is particularly well suited for secondary metabolite prioritization, as secondary 

metabolites are the end products of biochemical pathways and accumulate during 

fermentation. Differentially expressed, high abundance ions may be ranked subsequent to 

SOM analysis using the percent contribution of an ion to a region of interest (ROI) on the 

self- organized map. These ROIs exclusively contain features that respond specifically to a 

particular perturbation, while other loosely regulated metabolites will cluster outside of 

these prioritized regions. This method then prioritizes metabolites in a response-specific 

manner that performs well for the comparison of large datasets. Note that statistically 

MVSA and SOM are performing similar comparisons, but are representing the resulting 

comparisons in a different graphical manner. In fact many SOM approaches approximate a 

similar graphical presentation to MVSA when the datasets decrease to a small number of 

comparisons (ca. 10–50). Thus, the choice of one approach versus the other directly depends 

on how a specific query is framed and the corresponding number of features to be compared 

across datasets.

Figure 2 demonstrates the general workflow of the SOM-based approach, as applied to 

multiple perturbing conditions. Experimental and control conditions are processed by 

UPLC-IM-MS (Step 1), significant m/z retention time features are identified, and integrated 

intensity trends lines are generated for each feature. SOM analysis of these feature trends is 

performed using the Gene Expression Dynamics Investigator (GEDI) software (Step 2) 

(Eichler et al., 2003). For a more in-depth description, see Figure S2. Conceptually, detected 

ion abundance trends are first randomly seeded into a user-defined asymmetric grid (Step 
3). The coordinates of the grid are only meaningful in relation to other grid locations and 

have no associated dimensions. Feature intensity trends are then iteratively organized based 

upon intensity similarities across experiments in a competitive-cooperative process 

analogous to a tile puzzle (Step 4) (Kohonen et al., 1998). As a result, metabolites that are 

produced as similar responses to the experimental conditions occupy the same or close 

coordinates in the grid. This sorts features in a data-driven manner into regions of correlated 

feature response (Step 5).

The presumed correspondence of secondary metabolite expression profiles to responses is 

premised on the hypothesis that microorganisms use secondary metabolites to respond to 

discrete external stimuli (e.g., antibiotic challenge, competition, and metal exposure). The 

metabolic profile of each sample or experimental condition is then depicted as a topological 

heat map, which is a function of the intensity of each ion in that sample (Step 6). Features 

occupying the same coordinates in the SOM are summed. These heat maps (cf. Figure 3), or 
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metabolic profiles, are then differentially compared with unperturbed metabolic profiles, 

resulting in heat maps with prioritized ROIs, indicating metabolic responses to experimental 

conditions (Step 7). Each pixel or node within the heat maps contains m/z-Rt feature lists, 

which are used for subsequent feature identifications. We selected six ROIs based on visual 

comparison of the differential phenotype heat maps, generated tables of covarying features 

via summing islands of high intensity within the heat maps, and ranked features by 

percentage (for more details, see ESI). The species occupying these regions of interest are 

then prioritized for further identification using accurate mass and fragmentation data 

acquired using MSE technology. A given ROI may comprise only one or several species. To 

ascertain rank within a given ROI, percent contributions of each species to the total ROI 

intensity may be determined (see ESI). Through self-organization, features corresponding to 

fragment ions, adducts, and isotopes are also all clustered for rapid triage. The determination 

of molecular identity of features is facilitated by the untargeted fragmentation acquisition, 

accurate mass measurements, retention time, ion mobility drift time, and other fragmentation 

interpretation afforded by the ion mobility separation dimension, as described in Figure S2.

Figure 3 demonstrates the utility of the SOM-based approach for molecular prioritization 

using this workflow across the multiplexed inducing conditions reported for enhanced 

secondary metabolite production. For heat maps of all tested conditions, please refer to 

Figure S3. Each heat map is representative of 2154 detected features (including detected 

isotopologs) observed in S. coelicolor grown with a unique perturbation or condition, 

following subtraction of the unperturbed culture extract. In the case of monoclonal cultures 

(i.e., streptomycin- and rifampicin-selected point mutations, rare element exposure), this 

baseline subtraction is simply subtraction of the ISP2 unperturbed culture metabolic profile. 

In co-culturing conditions, metabolic profiles from both wild type S. coelicolor and 

competing organism monoculture were subtracted, resulting in a map of feature inventories 

that are produced at increased levels in each mixed culture in comparison to its constituent 

monocultures. Hence, caveats in interpreting mixed culture data are that increased feature 

production can be a result of either organism, and the output of the mixed culture is likely 

more than the sum of its parts. Six dominant ROIs are indicated as boxed regions in Figure 

3, and identified ions that occupy these regions are annotated (for a full list of all features 

occupying these regions, see ESI (Tables S2, S3). A majority of the annotated ions 

correspond to secondary metabolites S. coelicolor is known to produce (Challis, 2013). 

However, we gain additional biological insight into the microbial response to the various 

stimuli by observing the other biochemical results which are sorted with these secondary 

metabolites (e.g., deoxyguanosine, phenylalanine).

Measuring and structuring metabolic perturbations

Each inducing condition provoked unique metabolic responses, as observed in the 

differential profiles in Figure 3. In total, of the 2154 significant features detected, 1318 were 

found to be either previously undetected or produced in at least two-fold abundance in at 

least one perturbed system relative to control (see ESI). This corresponds to induced 

overproduction of ~61% of all detected species. For the subset of known secondary 

metabolites, 16 were observed in at least one S. coelicolor expression condition (<20 ppm 

mass accuracy), including monoclonal culturing in liquid culture or agar. Molecular ions, 
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corresponding mass accuracies, and comparative relative intensities appear in the ESI (Table 

S4, Figures S4). We found increased production of each of the 16 detected metabolites in at 

least one perturbed culture when compared to the matched unperturbed control. The 

magnitude of amplification is shown in Figure 4. In certain cases, a nearly 22-fold increase 

in production was found (i.e., undecylprodigiosin).

Response profile analysis

Secondary metabolic gene clusters in microorganisms are often organized into operons, and 

within a given organism, gene clusters share common regulatory elements programmed to 

respond to specific cellular states (e.g., pleiotropic signals) (Bibb, 2005). Correspondingly, 

we hypothesize that secondary metabolite features that are differentially produced as a result 

of multiplexed chemical and biological stimuli will structure into grouped regions in a SOM 

of metabolites based on similarity of production response profiles. Herein, we describe and 

demonstrate the application of this approach, which ameliorates the limitations of an 

MVSA-based analytics for multiplexed stimuli data interpretation. One practical advantage 

of the SOM approach is that dozens of chemical, biochemical, or genetic perturbations may 

be analyzed using a single computation (in this case 25 × 3 analyses, comprising >780,000 

spectra, in excess of 58 gigabytes of data, spanning three classes of stimuli), resulting in the 

generation of sets of simple and easily navigable metabolic phenotype graphical 

representations that still retain the attributes of MVSA-based analytics. Additionally, though 

features within an ROI can be ranked by abundance, SOM organizes features by intensity 

trends, so low intensity features can also be identified even in the presence of large datasets.

At least 22 gene clusters within the S. coelicolor genome have been assigned involvement in 

secondary metabolite production (Bentley et al., 2002). Of these 22 clusters, SOM maps 

prioritized metabolites associated with 8 of the 22 gene clusters, which are listed in Table 

S1, of which all display elevated secondary metabolite production in some capacity as a 

result of the introduction of challenges (Figure 4). Putative metabolite feature intensity 

trends are shown in Tables S2. In all cases, feature intensity profiles map consistently to 

ROI. In some cases, however, putative features show false positive intensity values due to 

coincident features of similar mass/retention time. For instance, actinorhodins and 

desferrioxamines are not produced by the challenge organisms, though features with a 

similar accurate mass were found. For a full table of relative abundances across all 

conditions, we direct the reader to Table S3. The analytical strategy presented prioritizes 

secondary metabolites generated from these gene clusters from within the metabolomic 

pool, yet this begs the question as to the biological rationale of these lower abundance, yet 

overproduced, species. Significantly, an increase in the production of germicidins (Figure 3, 

ROIs 5 & 6) was observed in both mixed-fermentation conditions and selected antibiotic-

resistant strains. Metabolomic analysis indicated that the process of culturing S. coelicolor 

on agar versus the liquid cultures affected the production of germicidins. However, 

germicidins A and B were present in higher concentrations in the mixed fermentation 

cultures versus the monoclonal cultures grown on agar, in addition to all germicidins 

observed in increased abundances in many of the antibiotic-resistant cultures. The 

production of germicidins inhibits spore germination and is a self-regulatory mechanism in 

the production response to high population densities (Aoki et al., 2011). Additionally, mixed 
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fermentation resulted in the enhanced production of undecylprodigiosin (22-fold increase 

when co-cultured) and streptorubin B (13-fold increase when co-cultured) (Figure 3, ROI 
3), known secondary metabolites of S. coelicolor with antimicrobial and other clinically 

relevant properties (Williamson et al., 2006). This is consistent with previous studies, which 

linked undecylprodigiosin and streptorubin B production to external factors, including 

mixed fermentation with Bacillus subtilis (Luti and Mavituna, 2011a) and salt-stress 

(Sevcikova and Kormanec, 2004). Within this same ROI, we observe the enhanced 

production of siderophores functioning as an iron scavenger for nutrient acquisition in all 

perturbed conditions (Barona-Gomez et al., 2006). This response is likely a concerted 

rebuttal to the microbial competition encountered in the mixed fermentation environment. A 

variant of calcium-dependent antibiotic production was observed to be upregulated (3.3-fold 

increase) specifically in agar culturing and co-culturing conditions with Tsukamurella 

pulmonis (Figure S4). This Gram-positive targeting metabolite may be attributed to T. 

pulmonis production of mycolic acid, which activates secondary metabolite production in 

once silent clusters (Onaka et al., 2011) and underpins the necessity of multi-conditional 

culturing. We also observed altered production of potentially exo-polysaccharides (Figure 3, 

ROI 4) as a result of these persistent resistant mutations.

Furthermore, 2-O-α-D-mannopyranosyl-myo-inositol (3-fold increase in rare element 

exposure) was observed in increased abundance in mutant- and rare element-exposed 

cultures (Figure 3, ROI 2), the production of which has been demonstrated previously in 

liquid culture (Pospisil et al., 2007), supported by the absence in mixed fermentation 

conditions. Elevated production of ectoine (2.8-fold increase) was observed as a general 

response to perturbations and is consistent with previous results we have observed within 

rifampicin- and streptomycin-resistant mutants in Nocardiopis (Derewacz et al., 2013). This 

osmoprotectant has been shown to provide enzyme activity stabilizing effects (Lippert and 

Galinski, 1992) and stimulate growth in osmotically inhibitory environments (Jebbar et al., 

1992).

DISCUSSION

Microbial genome sequencing has revealed a vast reservoir of secondary metabolite-

encoding gene clusters, suggesting largely untapped molecular diversity with potential 

biomedical application. Advances in sequencing have outpaced the developments of the 

requisite steps to produce, study, and ultimately purify the encoded metabolites: gene cluster 

expression and translation, identification and purification of the resulting produced 

metabolites, and structure elucidation. Two complementary strategies for addressing the 

expression component of these processes consist of refactoring targeted gene clusters for 

increased expression, typically in heterologous hosts (Medema et al., 2011; Wilkinson and 

Micklefield, 2007; Yamanaka et al., 2014), or expression of gene clusters in their native 

hosts using non-recombinant chemical or biochemical methods to stimulate native 

expression (Walsh and Fischbach, 2010; Zerikly and Challis, 2009), or via systematic 

modification of cultivation parameters, also called OSMAC (One Strain-Many Compounds) 

(Bode et al,, 2002). In either case, the analysis of the resulting metabolomes for upregulated 

or otherwise perturbed metabolites potentially becomes the next rate-limiting step. Rapid 

unbiased identification and prioritization of newly produced metabolites is an essential 
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prerequisite for what remain the most labor-intensive steps of secondary metabolite 

discovery: purification, isolation, and structure elucidation.

This study analyzes three categories of microbial stimulus (antibiotic induced resistance, 

heavy metal exposure, and co-culture) on a single metabolomic platform. To convert the 

microbial metabolomic responses from 23 distinct conditions spanning these three 

perturbations into navigable phenotypic maps, we develop and implement self-organizing 

map analytics for multiplexed responses to microbial metabolomics. This approach localizes 

metabolomic features that covary across conditions into regions of interest that can be used 

to identify metabolic features that are similarly regulated, or that respond similarly to 

challenge. Secondary metabolites are the end products of metabolic pathways, accumulate, 

and are slowly degraded. As a result, they are well suited for the application of SOM 

analytics that not only prioritize features, but also illuminate trends in similarly responding 

metabolites. Previous studies of biological, biochemical, and chemical microbial challenge 

are consistent with the hypothesis that the upregulation of secondary metabolism may be an 

adaptive response to challenge stimuli (Derewacz et al., 2013; Ochi et al., 2014; Tanaka et 

al., 2009). Moreover, the current study confirms the recent analysis of metabolomic 

dynamics engendered by a cohort of interspecies interactions (Traxler et al., 2013), and 

analyzed by NanoDESI. These results provide additional support for the broad reaching 

effects of chemical and biological stimulus and a new means for identification of important 

microbial response chemicals.

Strategies using topological clustering of metabolomic data are finding increasing 

application in secondary metabolite discovery. For example, a molecular network analysis 

tool has recently been developed and applied to aid in the organization of exometabolic 

inventory analysis and to prioritize secondary metabolite discovery (Nguyen et al., 2013; 

Traxler et al., 2013). Metabolite molecular network analysis uses numerical clustering of 

tandem mass spectra similarity as an organizing principle and provides a map based on 

chemical similarity. This method also permits simultaneous graphical visualization of 

structural relatedness networks for multiple stimuli conditions or organisms and is excellent 

for dereplication and prioritization by chemical structure. The SOM method described 

herein is distinct from this method in that the organizing principle is not structure (inferred 

from fragment data), but rather response trends across more than two dozen conditions. 

Indeed, because SOM regions of interest can contain hundreds of correlating features, 

molecular network analysis can potentially be used as a method to prioritize responsive 

features identified by SOM analytics, underlining the complementary nature of these 

methods. Other comparative metabolomics methods, such as “bubble plot” visualization, 

provide a straightforward and easily interpretable tool for determining differences in 

metabolomic feature production, but are generally only applicable to binary comparison and 

do not render correlations in ion profiles across many experimental conditions (Patti et al., 

2012a). However, meta-XCMS procedures may find significant utility in this type of 

secondary metabolite prioritization (Patti et al., 2012b). Some unique advantages of the 

SOM method described here are that it can analyze the response patterns of 25+ stimuli 

conditions simultaneously, and secondary metabolites can be identified from response trends 

via simple subtractive analysis using the trained map template as an organizing principle.
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As accumulating dead ends of metabolic pathways, secondary metabolites are ideal 

candidates for the application of SOM analytics; however, the utility of this approach 

extends beyond secondary metabolism. For instance, we have recently applied the SOM 

metabolomics to the analysis of mouse serum and used it to identify diagnostic features in 

cocaine addicted mice, demonstrating the general utility of this method for both abundant 

and nonabundant comparative metabolomics (Goodwin et al 2014). Additionally, Kohonen's 

self-organizing map analytics has been used to understand time dependent metabolite 

changes in rice plants, identifying synchronously fluctuating metabolites (Sato et al 2008). 

Importantly, as datasets incorporate ever increasing amounts of data (e.g. time, perturbation, 

etc.) the corresponding ROIs provide correspondingly higher specificity.

From a “genome mining” perspective, we observed substantial metabolomic expansion of 

the biomolecular inventory of S. coelicolor grown in a single medium using multiplexed 

chemical and biochemical induction methods. Of the nearly 2200 total detected molecular 

features, 61% were found to be either undetected in control cultures or produced in at least 

two-fold greater amounts, relative to control, in at least one culture challenge. Indeed, using 

these methodologically simple and rapid non-recombinant techniques, we have observed the 

increased production of all 16 of the detected secondary metabolites, comprising products of 

up to 8 out of 22 annotated gene clusters in at least one unique culturing condition, and 

prioritizing eight natural products within ROIs. These results challenge the notion of “silent” 

gene clusters in native hosts and support the potential of systematic induction of native 

secondary metabolism as a method of accessing the hidden reservoirs of secondary 

metabolic diversity in microorganisms. Indeed, with a comparatively small set of stimuli, 

which can be generated and analyzed in less than a month, the majority of known secondary 

metabolism was activated. Future studies, combining analysis of transcriptional and 

metabolomic covariance with stimuli, offer the potential to target the activation of 

specifically regulated gene clusters with a rationally selected set of challenges. In this way, 

chemistry and biology may be rationally manipulated in the future to quickly elicit the 

expression of cryptic or silent gene clusters in cultivatable organisms, or alternatively in the 

assessment of heterologously or endogenously refactored gene clusters in microorganism.

EXPERIMENTAL PROCEDURES

Materials and Methods

All reagents were obtained from the Sigma-Aldrich chemical company unless otherwise 

specified. Streptomyces coelicolor A3(2) was obtained from the John Innes Center, 

Tsukamurella pulmonis from the American Type Culture Collection (ATCC 700081), and 

Rhodococcus wratislaviensis was obtained via dilution plating from hypogean sediments.

Eliciting antibiotic resistance and fermentations

To generate antibiotic-resistant mutants, the spore inoculum of S. coelicolor was uniformly 

spread on GYM (glucose 0.4 %, yeast extract 0.4 %, malt extract 1 %, peptone 0.1 %, 

sodium chloride 0.2 %, agar 2 %) agar plates containing streptomycin at one of two 

concentrations (100 µg/mL, 300 µg/mL) or rifampicin at either 200 µg/mL or 400 µg/mL 

(concentrations of antibiotics were chosen so they exceed the minimum inhibitory 
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concentration for S. coelicolor on GYM medium). After two weeks of incubation at 30 °C, 

the agar plates were inspected for the presence of resistant colonies, which were then 

aseptically transferred to antibiotic-free ISP2 (glucose 0.4%, yeast extract 0.4 %, malt 

extract 1 %, agar 2 %) plates. Each S. coelicolor mutant was then inoculated to 20 mL ISP2 

liquid seed culture, incubated for 7 days, and from seed culture to 50 mL liquid ISP2 

fermentation culture for 7 days of incubation at 30 °C. Progenitor S. coelicolor was 

incubated under the same conditions to generate the control culture.

Rare earth element fermentations

For rare element additives, the spore suspension of S. coelicolor was inoculated on ISP2 

agar plates for incubation at 30 °C for 7 days, then inoculated from plates int o 20 mL liquid 

seed culture and from seed culture to 50 mL liquid ISP2 production cultures containing 

various concentrations of scandium chloride (20 µM, 50 µM, 100 µM, 200 µM, 500 µM) or 

lanthanum chloride (1500 µM, 1700 µM, 1900 µM, 2100 µM, 2500 µM) for 7 day 

incubations at 30 °C. To generate a control, S. coelicolor was incubated in 50 mL additives-

free ISP2 medium under the same conditions.

Extraction of liquid fermentations

Total culture metabolite extracts from liquid cultures were generated by adding 50 mL of 

methanol to each fermentation flask and shaking the flasks on a rotary shaker for 1 h. 

Mycelia were then separated on a centrifuge, and supernatants were dried in vacuo to yield 

crude extracts.

Co-culture

Co-culture plates were prepared by addition of 40 mL of sterile ISP2 medium to a one well 

OmniTray plate. Cryogenic spore suspensions of S. ceolicolor were cultivated on agar plates 

(100 × 15 mm) containing 30 mL of ISP2 medium and incubated at 30 °C until the 

production of spores occurred. The spores were removed from the surface of the plate using 

a sterile loop and suspended in 25 mL of ISP2 liquid medium at a concentration of 

approximately 108 spores/mL as determined via hemocytometer. This suspension was 

homogenized and decanted into a one well plate as a reservoir. The pins of a 96 well 

replicator were submerged into the spore solution and applied to the surface of the solid 

support within the previously prepared one well OmniTray plate without puncturing the 

surface (Figure S1). The plates were incubated for 24 hours at 30 °C. Cryogenically stored 

M. luteus was inoculated into 5 mL of sterile ISP2 medium 8 h prior to application to the co-

culture plate. Rhodococcus wratislaviensis stock was inoculated into 5 mL of sterile ISP2 

medium 24 h prior to application to the co-culture plate. Cryogenically stored T. pulmonis 

stock was inoculated into 5 mL of sterile heart infusion medium 24 h prior to application to 

the co-culture plate. For all competing organisms, once an OD600 of ~1 was achieved, the 5 

mL sample was diluted into 30 mL of medium in separate one well plate reservoirs. The pins 

of a 96 well replicator were submerged into the solution and applied to the surface of the 

solid support within the one well OmniTray plate without puncturing the surface in an offset 

manner relative to the previously inoculated actinomycete. After 7 days, co-cultures plates 
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were cut into 1 × 1 cm segments and extracted with equal volumes of methanol by shaking 

for 3 h at 170 rpm and 30 °C.

UPLC-IM-MS Data Acquisition and Processing

Extract samples were resuspended in methanol at a concentration of 200 mg/mL. UPLC-IM-

MSE data acquisition was performed with a 25 min gradient. Mobile phase A consisted of 

H2O with 0.1 % formic acid, and mobile phase B consisted of acetonitrile with 0.1 % formic 

acid. A 1×100 mm 1.7 µm particle BEH-T3 C18 column (Waters Co.) was used for 

chromatographic separations with a flow rate of 75 µL/min and a column temperature of 40 

°C. An autosampler with a loop size of 5 µL held at 4 °C was used for sample injection. The 

i nitial solvent composition was 100 % A, which was held for 1 min and ramped to 0 % A 

over the next 11 min, held at 0 % A for 2 min, and returned to 100 % A over a 0.1 min 

period. The gradient was held at 100 % A for the next 10.9 min for equilibration. Prior to 

analysis of the sample queue, ten sequential column-load injections were performed with 5 

µL of the quality control. This protocol increases retention time stability and is critical to 

reproducible analyses. Quality control injections were then performed after every 10 sample 

injections to ensure instrument stability. Quality controls were comprised of pooled equal 

aliquots of all samples analyzed.

IM-MSE spectra were acquired at a rate of 2 Hz from 50–2000 Da in positive ion mode for 

the duration of each sample analysis on a Synapt G2 HDMS platform (Waters, Milford, 

MA). The instrument was calibrated to less than 1 ppm mass accuracy using sodium formate 

clusters prior to analysis. A two-point internal standard of leucine enkephalin was infused in 

parallel to the sample at a flow rate of 7 µL/min, and data were acquired every 10 s. The 

source capillary was held at 110 °C and 3.0 kV, with a desolvation gas flow of 400 L/h and a 

temperature of 150 °C. The sampling cone was held at a setting of 35.0, with the extraction 

cone at a setting of 5.0. In the MSE configuration, low and high energy spectra were 

acquired for each scan. High energy data provided a collision energy profile from 10–30 eV 

in the trapping region, providing post-mobility fragmentation. Ion mobility separations were 

performed with a wave velocity of 550 m/s, a wave height of 40.0 V, and a nitrogen gas 

flow of 90 mL/min, with the helium cell flow rate at 180 mL/min. Internal calibrant 

correction was performed in real time.

Data were converted to mzXML format using the msconvert tool from the ProteoWizard 

package (Kessner et al., 2008). Peak picking and alignment were performed using XCMS in 

R (Smith et al., 2006). See Figure S2 for details and package locations. The resulting data 

matrix contained 2154 detected features and was formatted for analysis using both GEDI 

and Umetrics. Formatting for GEDI is outlined below; formatting for Umetrics was 

performed by extracting and transposing the sample-feature intensity matrix generated from 

XCMS and importing it into Umetrics software. Prior to GEDI and MVSA, analytical 

triplicates were averaged. For GEDI analysis, a grid of 25 × 26 was generated. Software 

specific parameters include: 100 first phase training iterations with an initial training radius 

of 10.0, a learning factor of 0.5, a neighborhood block size of 20, and a conscience of 5.0, 

and 160 second phase training iterations with a neighborhood radius of 1.0, learning factor 
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of 0.05, neighborhood block size of 2, and conscience of 2.0. A random seed of 10 with a 

Pearson’s correlation distance metric and random selection initialization was used.

Metabolite identifications were performed using accurate mass measurements and 

fragmentation spectra extracted from IM-MSE data. Utilizing drift time correlations, product 

ions were correlated appropriately to precursors for extraction of high energy spectra.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

We hypothesize that the inventory of metabolic features resulting from a 

microorganism’s exposure to multiple chemical and biological stimuli can be used to 

identify induced expression of secondary metabolites. Central to this approach is the 

premise that microbial secondary metabolites are produced to respond to environmental 

stimuli. It follows that their production can be revealed by examining the patterns of 

metabolomic feature responses across multiple stimuli. This ‘responsomics’ approach has 

been applied here to the well-characterized actinomycete Streptomyces coelicolor, 

revealing that production of the majority of secondary metabolites in this strain can be 

induced by simple stimuli and subsequently identified by comparative metabolomics 

analysis via self-organizing maps. Regions of interest within the response maps reveal 

those metabolites that are characteristically modulated by multiplexed stimuli and 

ranking these by abundance provides a means of prioritizing compounds for isolation 

studies. Advantages of this self-organizing maps analytics are that it ranks features via 

response profile, not by intensity, permitting the identification of low intensity features 

contributing to a response phenotype, that it carries out the comparison of large numbers 

of datasets (up to 25 in this study) in a single computation, and provides easy to navigate 

heat maps of metabolic response phenotypes. In addition to providing a work-flow for the 

identification of secondary metabolites, the ability to inventory metabolites that are 

modulated consistently via multiplexed stimuli may be used to identify features relevant 

to microbial physiology, development, and chemical ecology.
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Highlights

• Secondary metabolite expression is triggered by environmental stimuli

• Using stimuli and self-organizing maps, we identify a ‘response metabolome’

• Mapping responses to multiplexed stimuli reveals secondary metabolites

• In S. coelicolor, this revealed a large fraction of its biosynthetic potential
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Figure 1. Principal component analyses (PCA) of metabolomic inventories
A. PCA of all cultures. B. Co-culture of S. coelicolor with M. luteus, R. wratislaviensis, and 

T. pulmonis. C. Metabolomic profiles in response to rare earth metals. D. Comparison of 

antibiotic-resistant mutants selected by plating on rifampicin and streptomycin.
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Figure 2. The general self-organizing map (SOM)-based approach to feature prioritization
(1) This method begins with extracts from cultures of an organism cultivated under a battery 

of perturbing conditions. (2) Extracts are analyzed using UPLC-IM-MSE (or other feature-

producing methodology) and converted into a matrix of discrete, aligned peaks with 

associated intensities for each culturing condition. (3–5) These features are then organized 

based upon intensity trends across culturing conditions. (6) Subsequently, extracts are 

represented as heat maps based upon the sum abundance of each organized metabolite in a 

region. (7) Differential analysis comparing data from perturbed cultures to controls allows 

generation of regions of interest.
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Figure 3. Differential metabolic phenotype heat maps representing increased production/
decreased consumption of molecules using a single growth medium
Representative extracts from each culturing condition are shown above, with regions of 

interest boxed and labelled. Corresponding putative identifications and structures for each 

ROI are labelled, and comprehensive catalogues of inhabiting features for each region, 

including relative abundance and percent contribution to total ROI intensity, are presented in 

the ESI.
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Figure 4. 
Maximum resultant metabolite production abundances compared to matched control cultures 

in ISP2 medium.a

a Color scale: 0% (red); 100% (yellow); 200% (green). Heavy metal and antibiotic resistance 

performed in liquid cultures and co-culture performed on agar medium.
b Putative metabolite identification of metabolites reported to be produced by S. coelicolor 

based on accurate mass measurement, and fragmentation pattern, when available.
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