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Abstract

The production and degradation of RNA transcripts is inherently subject to biological noise that 

arises from small gene copy numbers in individual cells. As a result, cellular RNA levels can 

exhibit large fluctuations over time and from one cell to the next. This article presents a range of 

precise single-molecule experimental techniques, based upon RNA fluorescence in situ 

hybridization, which can be used to measure the fluctuations of RNA at the single-cell level. A 

class of models for gene activation and deactivation is postulated in order to capture complex 

stochastic effects of chromatin modifications or transcription factor interactions. A computational 

tool, known the Finite State Projection approach, is introduced to accurately and efficiently 

analyze these models in order to predict how probability distributions of RNA change over time in 

response to changing environmental conditions. These single-molecule experiments, discrete 

stochastic models, and computational analyses are systematically integrated to identify models of 

gene regulation dynamics. To illustrate the power and generality of our integrated experimental 

and computational approach, we explore cases that include different models for three different 

RNA types (sRNA, mRNA and nascent RNA), three different experimental techniques and three 

different biological species (bacteria, yeast and human cells).
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1. Introduction

In recent years, advanced experimental techniques have provided biologists with 

unprecedented abilities to probe and observe the myriad parts of biological processes. 

Techniques such as RNA sequencing, super-resolution fluorescent imaging, and flow-

cytometry have provided details of individual biological components, even at single-cell and 

single-molecule resolutions [1, 2, 3, 4]. Such detailed observations have largely out-paced 

our ability to understand, interpret, predict or influence these processes. A key contributor to 

the disconnect between the availability of high-throughput biological data and quantitative, 

predictive biological understanding is the extremely complex and often random nature of 

biological systems. Large numbers of chemical species all interact in complex, non-linear 

networks to carry out even the most basic biological tasks, such as transcription regulation. 

Furthermore, inherent in any experimentally observed biological system are several types of 

“noise”, including intrinsic fluctuations in cellular constituents, extrinsic heterogeneities 

between cells, measurement inaccuracies, and inadvertent environmental fluctuations. When 

these complex processes and unavoidable noise combine together, the result may make it 

extremely difficult to match or predict biological phenomena.

Mathematical modeling of biological systems can serve a variety of purposes, such that 

different models may satisfy different goals. The goal of some models may be to create a 

comprehensive representation of a biological process by compiling all known understanding 

of that particular system [5, 6]. While such models are qualitative in nature, they can provide 

a complete picture of how a particular system is currently understood to behave and can be 

used to test broad qualitative hypotheses. Conversely, the goal of conceptual models may be 

to capture a small part of larger biological networks, or to reveal physical principles about 

how an individual subsystem behaves in specific circumstances [7, 8]. In this article, we 

investigate a third goal of modeling: to quantitatively predict how a system will behave 

under experimental conditions. Where comprehensive models may be complex 

combinations of hundreds of reactions and biophysical parameters, and principle based 

models may be exceptionally simple, in optimally predicting models, the complexity is 

dictated by existing quantitative data and predictive goals [9]. Uncertainty from 

measurement noise combined with highly complex biological systems may lead to poor 

parameter identification and a resulting loss in predictive power. Two questions naturally 

arise: how do the challenges presented by biological complexity restrict predictive modeling 

and in what ways can emerging experimental approaches enable improved predictive 

understanding?

The first such challenge of model identification is “model sloppiness”–the notion that 

parameters are often poorly constrained, especially in biological models [10]. For a given 

amount and type of experimental data, only certain parameter combinations will be well 

defined, leading to large regions of parameter uncertainty. Moreover, addition of more data 

of the same type may fail to reduce the parameter uncertainties. This diminishing return 

from additional data motivates a need for enhanced experiments that complement models or 

reduced models that complement the available data. In some fortuitous cases, additional data 

may already exist that has not yet been fully utilized. For example, fitting deterministic 

models (i.e., sets of ordinary differential equations, or ODEs) to single-cell distributions 
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may partially constrain parameters, but often ignoring cell-to-cell heterogeneity may limit 

success in model identification [11]. In other words, biochemical noise, the fluctuations 

inherent to the biological process being measured, may provide information inaccessible 

when measured with bulk analysis (e.g., PCR or western blot analysis of RNA or protein 

content) or when modeled by ODE analysis. By reducing parameter uncertainty, it may 

become possible to constrain more realistic models, and the errors associated with these 

predictions may be reduced [9, 12].

Several approaches have been suggested to utilize biochemical fluctuations to improve 

parameter estimation for gene regulatory circuits. These approaches have used many 

different types of experimental data and computational analyses. Several studies have 

examined regulation at the post-translational level, using fluorescent protein reporters 

combined with flow cytometry [12, 13, 14, 15, 16] or time lapse fluorescence microscopy 

[17, 18, 19, 20, 21]. Others have examined regulation at the level of single mature RNA 

transcripts [9, 22, 23, 24, 25, 26] or at the level of active transcription sites [23, 27]. 

Although many studies have focussed on steady state responses [28, 29], others have 

explored how the variability of responses changes over time or from one condition to 

another [9, 30, 31]. On the computational modeling side, several studies have used reduced 

order expressions for parameter moments (i.e., the means and variances) to characterize the 

variability of the single-cell responses in the presence of intrinsic or extrinsic noise [16, 26, 

32, 33, 34, 35]. Other approaches have used kinetic Monte Carlo simulations such as the 

stochastic simulation algorithm (SSA, [36]) to generate many simulated trajectories to 

represent the underlying biological system [14, 15, 19]. Others have used approximate 

solutions of the infinite dimensional linear equation known as the chemical master equation 

to directly compare models predictions to measured single-cell distributions [9, 12, 13, 22]. 

These studies have been applied to natural and synthetic gene regulatory circuits in bacteria 

[12, 13, 16, 22], yeast [9, 19, 33, 25], and mammalian cells [17, 18, 26, 27, 37].

In this article, we will review our approach to fit the full time-varying distributions of a gene 

regulatory model to single-molecule measurements of RNA at different times and 

experimental conditions. In the following sections, we will introduce the technique of 

single-molecule RNA Fluorescence In Situ Hybridization (smRNA-FISH [38, 39]), which 

we have used to measure the number and location of RNA molecules in single cells. We will 

also introduce the computational technique known as the Finite State Projection (FSP, [40]) 

algorithm, which can be used to predict the probability distributions of transient gene 

regulation responses. We will illustrate the use of the smRNA-FISH and FSP approaches to 

fit models and eventually predict the distributions of RNA in single cells. Finally, we will 

explore three cases where different models, different FSP analyses and different versions of 

smRNA-FISH have been combined to explore the temporally changing regulatory 

characteristics of (i) small RNA in bacteria [22], (ii) serum-activated transcriptional 

responses in human cells [27], and (iii) osmotic shock response genes in yeast [9].

2. Experimental Methods

In order to take advantage of the information contained in single-cell fluctuations, one must 

measure those fluctuations as precisely as possible. Many recent studies have utilized single-
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cell measurements of fluorescent protein (FP) markers of gene expression to establish and fit 

probability distributions at the protein level [12, 13, 16, 19]. One advantage of the FP-based 

approach is that it allows for the tracking of individual cells over time using time lapse 

fluorescence microscopy. Alternatively, one can use flow cytometry to measure the FP 

distributions at specific snapshots in time, which trades the ability to measure temporal 

correlations within individual cells for an ability to collect statistics of thousands of cells at 

point in time. Moreover, the use of FP has a few disadvantages for the analysis of 

transcriptional responses. First, the use of FP markers requires the genetic manipulation of 

cells to express a FP maker for each gene of interest. Such modifications could potentially 

disrupt the natural behavior of gene regulation or the resulting mRNA dynamics. Second, 

measurement of FP markers in a given cell yields an average fluorescence intensity for each 

cell, which one must deconvolve from background fluorescence and calibrate against known 

standards in order to estimate absolute numbers of proteins. Third, the use of FP markers 

introduces additional dynamics into the process, including processes of translation and 

fluorescent protein folding and maturation. These processes can add significant delays 

between the process of transcriptional regulation and the downstream measurable FP signal 

[31, 41]. For fast transcriptional processes, such as stress responses that have time scales on 

the order of a few minutes, a much faster assay is highly beneficial [9, 37].

One such assay that allows for absolute quantification of fast endogenous transcriptional 

responses is the relatively recent technique of single-molecule Fluorescent in-situ 

Hybridization (smRNA-FISH, [38, 39]). Figure 1A illustrates the basic concept of smRNA-

FISH and Figures 1B–D show three different variants of the approach and images of the 

approach applied to human, yeast and bacterial cells. The smRNA-FISH technique was 

pioneered many years ago using multi-labeled 50 nucleotide long single strand DNA 

molecules [39] as shown in Figure 1B (top). About a decade later, this technique was 

modified to use many single labeled 20 nucleotide long single strand DNA probes [38] as 

illustrated in Figure 1C (top). The advantage of the larger number of smaller probes is to 

increase the total number of probes on a target RNA while reducing the background 

fluorescence emitted by unbound probes. To build further on these advances in smRNA-

FISH technology, quencher probes as illustrated in Figure 1D (top) were recently proposed 

to reduce further the fluorescent signals from unbound probes, reduce background 

fluorescence and improve single-to-noise ratio [22]. As the background is reduced, smaller 

“true” signals can be detected, which is particular helpful for the detection of short RNA 

transcripts. Each of these techniques have been successfully applied to numerous organisms 

including human-derived cells (Figure 1B, bottom), yeast (Figure 1C, bottom) and bacteria 

(Figure 1D, bottom). By examining, hundreds or thousands of cells and counting the number 

of RNA molecules in each, one can obtain presides repeatable probability distributions for 

single-cell RNA content at different times or experimental conditions (see Figures 3–5). In 

the next section we introduce some computational methods that can be used to reproduce 

and predict smRNA-FISH data, and a few specific studies are described in Section 4.

3. Computational Methods

In order to adapt to fluctuating environmental and biological demands, gene expression is 

dynamically controlled by the presence and abundance of transcription factors in various 
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forms. As transcription factors bind to activate or repress promoters or as chromatin 

modifiers affect DNA conformational shapes, genes reach different configurations at 

different times or in different cells. These different gene states gives rise to different rates of 

transcript production, which can cause the numbers of RNA and protein to fluctuate in time 

or from one cell to another. Using discrete stochastic computational tools, such as the Finite 

State Projection (FSP) approach [40], we can explore how different biological mechanisms 

or parameters may affect these fluctuations. By proposing and testing different parameter 

combinations, we can test a variety of stochastic models with full probability distributions 

and choose models that accurately reproduce and potentially predict the results of smRNA-

FISH experiments. In the following subsections, we illustrate one approach to set up an 

extendable class of discrete stochastic multi-state models for the temporal single-cell 

regulation of gene transcription. We will then use the FSP approach to generate distributions 

for those models and show how one can fit these models to experimental smRNA-FISH 

data.

3.1. Gene regulation as a discrete state Markov process

Because all models are abstractions of a more complicated reality, and because different 

experimental data sets can support different types of models, it is valuable to consider many 

models and select that which best captures the behavior of the data and is most likely to 

accurately predict responses at other relevant experimental conditions. Gene expression 

regulation has often been modeled as a dynamic process where genes transition between 

different activation states in a probabilistic manner. For example, the simple two-state 

bursting gene expression model [30, 31, 43, 44] consists of an “off state”, where no 

transcription occurs, and an “on state”, where mRNA is able to be transcribed (see Figure 

2A). Furthermore, the transitions between these states can be influenced by biological 

inputs, such as kinase signals, chromatin modifiers or transcription factors [30]. By 

increasing the number of gene states, one can add biological complexity to this model to 

capture more subtle features of the experimental data [9, 27, 37]. As we will see in Section 

4, different biological systems will necessitate different numbers of states and different 

regulatory mechanisms.

To analyze the dynamics of different gene activity states and the resulting fluctuations in 

transcriptional responses, we use the formalism of the chemical master equation (CME, 

[45]), which we solve using the Finite State Projection approach [40]. This analysis starts by 

describing the stochastically transitioning gene-states and subsequent transcript or protein 

production and degradation reactions using a continuous time Markov chain consisting of an 

infinite number of discrete cellular states. For example, Figure 2B illustrates a Markov chain 

that describes switching between three possible gene states (horizontal direction) as well as 

RNA transcription and degradation events (vertical direction). According to this description, 

each cellular state is an integer vector, xi = [gi, mi], defined by the specific gene state, gi, and 

the number of RNA transcripts, mi. Reactions correspond to jumps from one cellular state to 

another, xi → xj = xi + sμ, where the stoichiometry vector, sμ, defines the effect that the μth 

reaction has on the cellular state. For example, if a transcription or degradation reaction 

occurs, the number of RNA increases or decreases by one, yet the gene state remains 

unchanged: s1 = [0, 1] for production, and s2 = [0, −1] for degradation. Similarly, if a gene-
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state transition reaction occurs (horizontal arrows in Figure 2B), the RNA level remains the 

same, but the gene-state will change: s3 = [1, 0], and s4 = [−1, 0]. In the work described 

below, gene state transitions are to nearest neighbors only, but longer range transitions are 

easily captured using the same analytical framework. In addition to the reaction directions, 

one must define the propensity functions, wμ(xi)dt, which describe the probability that each 

μth reaction will occur during the next infinitesimal time step of length dt, given the current 

state xi. We denote transcription rates from a single copy of the gene in the gth gene state as 

w1(xi) = krgi for each gi. Degradation is a first order process with rate γ multiplied by the 

number of molecules available to degrade, w2(xi) = γmi. Finally, transitions from gi → gi + 1 

or gi → gi −1 are defined by the reaction rates, w3(x) = kgi,gi+1 and w4(x) = kgi, gi−1 for each 

gi.

By describing the lattice of possible gene states and RNA counts as a Markov chain, we can 

write the probability of being in the  gene state and containing mi RNA as Pi(t) = P(xi, t) 

= Pgi,mi(i)(t). Each reaction represents a path by which probability can flow out of or into any 

particular cellular state, xi, and these collectively define the set of equations known as the 

chemical master equation [45]:

(1)

The probability mass functions for all possible states can be collected into vector form as:

(2)

which allows one to write the CME in a simplified matrix form as

(3)

In this expression, the infinitesimal generator, A, has elements:

(4)

For the example illustrated in Figure 2B, full CME can be written as:

(5)
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where H, T and D denote the contributions to the infinitesimal generator for the gene state 

transitions, transcription events, and degradation events, respectively. For the three-gene 

state problem, these matrices are explicitly written as:

(6)

Similar notation has also been used to describe multi-state gene regulation in several other 

studies [40, 44, 46].

The CME is often infinite dimensional due to the potential for certain chemical species to 

reach any countable integer number. For this reason, the CME can only be solved exactly for 

a few special cases. However, for most gene regulatory processes, one can use stochastic 

simulations to generate unbiased sample trajectories for the process [36]. Unfortunately, to 

compare such analyses to data requires very large numbers of simulations. For certain 

processes, including those described in Figure 2A, one can develop exact simplified 

analyses to compute the evolution of statistical moments (i.e., means, variances and co-

variances) over time. Such approaches are ideal when a large amount of data is available 

(e.g., when data results from flow cytometry analyses), such that one can obtain precise 

measurement of the means, variances and higher moments of the probability distributions 

[12, 32, 26]. However, when data is limited to a few hundred or thousand cells per sample, 

as is often the case in smRNA-FISH imaging experiments [9, 23, 24, 25, 27], measurement 

of these statistical moments may be imprecise due to the influence of long distribution tails. 

For such situations, solving for the full probability distributions is especially valuable. In the 

next section, we turn to the finite state projection approach (FSP), which allows us to obtain 

direct and efficient solutions to the CME, at least for the class of gene regulatory processes 

described above.

3.2. The finite state projection algorithm

The finite state projection approach (FSP, [40]) provides an approximation to the solution of 

the CME. Rather than try to analyze the infinite set of all states, we instead select a finite 

subset of states that retains most of the probability for a pre-specified finite time interval. In 

particular for the bursting gene expression models of the form described in Figure 2, we 

include all of the states where the number of RNA is less than some integer Nm. The rest of 

the states are reduced into a single absorbing state. The result is a reduced master equation 

of the form

(7)

Or, in terms of the transition, transcription and degradation reactions, the truncated analysis 

becomes

Munsky et al. Page 7

Methods. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(8)

The FSP solution, , is an approximate solution to the CME and g(t) is the 

computable error in the approximation. The FSP theorems guarantee that the FSP is a lower 

bound on the true solution , and the total error in the approximation is

(9)

We note than the original description of the FSP [40], showed only that 

. For a simple proof of the stronger result in Eq. (9), we refer the 

interested reader to Ref. [47].

In practice, the matrix in Eq. (8) can be extended until the solution is within some error 

tolerance (g(t) < ε). However, when typical maximum numbers of RNA are known from 

experimental observations, this truncation can be applied directly. The matrix in Eq. (8) is a 

finite set of linear of ordinary differential equations, which can be solved numerically. For 

systems where the reaction rates in A are not explicitly dependent on time, this can be 

solved using matrix exponentiation [40] or using Krylov subspace methods [48]. For 

systems with explicit time dependence, one can solve the truncated master equation using 

more general linear ODE solvers. We note that the infinitesimal generator in the CME is 

sparse and often numerically stiff, and its solution is much more tractable using implicit 

ODE solvers that make use of system sparsity. For the analyses discussed below, we have 

conducted this integration using Mathworks Matlab’s built-in exponentiation routine “expm” 

or the stiff ODE integration algorithm “ode15s.”

3.3. Analysis of mRNA accumulation at transcriptional sites

The FSP approach can also be used to compute the probability distribution for the number of 

nascent transcripts at transcription sites [27]. For a model with n gene states, the probability 

distribution for the gene states evolves according to the simple n-dimensional ODE given 

by:

(10)

where H(t) is as defined above in Eq. (6). Each of the n different gene states has its own 

characteristic transcription initiation rate. We now assume that the transcription process 

takes less than a fixed finite amount of time, τ to complete. Under this assumption, the 

number of nascent transcripts at time t is exactly the number of transcripts that have initiated 
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transcription, but have not yet completed (or been interrupted) in the time interval from t − τ 

to t. Since all RNA initiated prior to or at time t − τ are no longer at the transcription site, 

their actual number at that time is irrelevant to the number at time t. For simplicity in 

computation, we can assume that there are no nascent RNA at time t − τ. As a result, solving 

for the number of nascent RNA at time ti becomes equivalent to solving Eq. (8), with an 

initial probability distribution specified as: P0(ti − τ) = Pgene(ti − τ) and Pm(ti − τ) = 0 for m 

≥ 1. If one assumes that RNA cannot degrade or otherwise be disrupted during their 

elongation process [27], then the degradation matrix D in Eq. (8) should be adjusted 

accordingly.

3.4. Computing and maximizing the likelihood of smRNA-FISH data

smRNA-FISH data is collected by counting fluorescently tagged RNA of interest in many 

single cells as discussed in Section 2. By counting the RNA in each of a set of C fixed cells 

at a given time t, one can quantify a probability distribution for the number of observed 

RNA at that time. With a model parameterized by θ that can generate a probability 

distribution of observing a cell with m RNA under that specific condition and time, one can 

compute the logarithm of the likelihood of the data as:

(11)

where mc is the number of mRNA in the cth cell. Equivalently, this sum can be rewritten as

(12)

where qi is the number of cells with exactly i RNA, M is the maximum number of RNA 

experimentally observed in a single cell, and θ is a vector of model parameters.

A good model choice of model parameters, θfit, should be expected to maximize this log-

likelihood,

(13)

We note that the parameter value that minimizes Eq. (13) is the same as the minimum of the 

Kullback-Leibler divergence between the experimentally measured distribution qi/Σqi and 

the model distributions, and the model distribution, p(i):

(14)

However, in the case of multiple time points, the log-likelihoods are summed over each 

time. When this value is constant over time (i.e., when all cell populations have equal sizes) 
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both the KLD and maximum likelihood yield the same parameter values. To maximize the 

likelihood function, we use a hybridization of local and global optimization schemes. For 

local searches, we utilize the simplex search method implemented in the built-in Matlab 

routine, ‘fminsearch’. For global searches, we use Matlab’s built-in genetic algorithm search 

method, ‘ga’. In practice, these global and local algorithms are iterated and run many times 

from different initial parameter guesses.

We note that other approaches approximate likelihoods through comparisons of summary 

statistics, such as means and variances [32, 49]. Although current implementations of the 

FSP approach are limited to simpler models, direct comparison of distributions is highly 

beneficial when restricted to a finite number of cells, such as is the case for mRNA-FISH 

investigations. In these circumstances, it may be difficult to measure or estimate the 

uncertainties in more than the first one or two moments, whereas comparison of full 

distributions remains a straightforward task, even when the moments are not well estimated.

4. Example Studies

To illustrate the combined use of smRNA-FISH analyses and finite state projection analyses, 

we next show how these tools have been applied to measure and model the single-cell 

distributions of RNA in bacteria, yeast and human cells. For these different systems, we 

examine different types of RNA: small non-coding RNA (sRNA) in bacteria, nascent 

mRNA at transcription sites in human-derived cells, and fully mature mRNA in yeast cells. 

These RNA have been measured using the three different smRNA-FISH approaches 

described above in Figure 1B–D, and for each we identify different n-state regulatory 

models. Although the specifics are different from one case to the next, in all cases the 

smRNA-FISH data can be captured and in some cases predicted with strong quantitative 

accuracy using the FSP approach.

4.1. smFISH and FSP in bacteria

We begin by looking at recent measurements of small RNA in bacteria made in reference 

[22]. Because sRNA are much shorter than most mRNA molecules to which smRNA-FISH 

has been applied, the authors of this work developed quencher probes that silenced the 

fluorescence of non-specifically bound probes (see Figure 1D). This allowed them to get 

accurate measurements of the number of sRNA at the level of individual cells (see Figure 

1D for a representative image). The authors specifically explored two different sRNA in two 

different bacteria: Yersinia-specific sRNA-35 (YSR35), which is a 339-nucleotide long 

sRNA in Y. pseudotuberculosis and YSP8, which is a 312-nucleotide long sRNA in Y. 

pestis. These sRNA were labeled with 15 (YSR35) or 12 (YSP8) probes per sRNA as 

described in reference [22]. Both of these two sRNA were previously known to be up-

regulated due to a shift from room temperature (25°C) to human body temperature (37°C). 

To get sufficient statistics of the system’s regulatory response, measurements were taken in 

approximately 10,000 bacteria per experimental condition. In both cases, the majority of 

cells expressed no sRNA, and the distributions of sRNA per cell appeared to be strongly 

similar to a geometric distribution (see Figure 3B, blue bars).
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A two-state model (see Figure 3A) was proposed to match the regulated distributions of 

sRNA for the system. The authors explored two different possibilities for this model: one 

where temperature changed with the rate of activation (k12) and one where temperature 

regulation changed the rate of deactivation (k21). For each model, the FSP implementation 

was defined as given in Eqs. (6) and (8), where either k12 or k21 was assumed to be 

condition dependent. Parameter estimation was carried out as described above, and all 

parameters were fit to reproduce the measured distributions. It was determined that the 

model where k12 fluctuated from one condition to the next provided the best reproduction of 

the measured results. Figure 3B shows the resulting two-state k12-modulated model fit to the 

distributions of YSP8 in Y. Pestis at the initial steady state of 25°C as well as at two and 

three hours post transition to 37°C. Similar analysis was also applied to measurement of the 

YSR35 in Y. pseudotuberculosis, for which the same mechanism (k12-modulated regulation) 

also fit best to the measured distributions (see Reference [22], Figure 5). Using the FSP 

algorithm, solving for the YSR8 transcript distributions takes an average of 0.0015 seconds 

to complete per parameter combination (on a 2.6 GHz Intel Core i7 Macbook Pro using 

Matlab’s built in matrix exponentiation command “expm”).

Parameters for these results are shown in Table 1. In this case, there is insufficient temporal 

data to fully constrain all parameter values, such that the identified parameter set is not 

unique. To reduce the dimensionality of the parameter space, the degradation rate was 

assumed to be 1 min−1. Furthermore, it was found that k21 and the transcript production 

rates, kr2 were large compared to the degradation and activation rates, such that k21 and kr2 

could not be determined separately. However, the ratio of these two variable defines an 

identifiable average burst size μburst = kr2/k21. Although this analysis sufficed to reveal the 

general mechanism of temperature-sensitive frequency modulation of sRNA expression, 

additional experimental evidence would be necessary to fully identify the parameters of the 

dynamical system. In particular, since the RNA dynamics occur on a time scale of a few 

minutes, it would be necessary to quantify biological responses along the same or similar 

time scale. To illustrate the importance of dynamics, the next two examples examine mRNA 

regulation in eukaryotes with more complicated input functions and at faster time scales.

4.2. smFISH and FSP in human cells

A second study in which single-cell measurements were integrated with discrete stochastic 

analyses and the FSP approach was examined in Reference [27]. In this case, the authors 

explored the effects that spatiotemporal dynamics of the ERK1/2 kinase signal had on the 

activation of c-Fos transcription in human derived osteosarcoma cells (U2OS). Upon 

induction via the addition of fetal calf serum, the ERK1/2 kinase is phosphorylated to its 

active form, and immunofluorescence staining was used to quantify the nuclear translocation 

of the phosphorylated kinase (p-ERK) over time in individual cells. As shown in Figure 4A, 

this provided a quantitative measurement of the time-varying input component, which could 

then affect the rates of transitions between different gene states as illustrated in Figure 4B. 

The downstream activation of c-Fos mRNA was then quantified using single molecule 

fluorescence in situ hybridization using multiple-label smRNA-FISH probes (see Figure 1B 

for a representative image). These experimental measurements can only observe and 

distinguish an active transcription site (TS) from a mature mRNA if it has more two or more 
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nascent mRNA. As such, active TS’s are defined in the model as those that contain at least 

two mRNA, and as a result an active TS could correspond to any actual gene state. In this 

case, the authors quantified the probability that a TS would be active (see Figure 4C), the 

number of nascent mRNA per active TS (see Figure 4D), and the total number of mature 

mRNA in each cell. Using these experiments, it was observed that non-induced cells 

contained no detectable active transcription sites and expressed an average of only 4 mature 

mRNA per cell. After 30 min of serum induction, cells contained an average of 90 mature 

mRNA with a large variability (some have only a few mRNA, while others contain 

hundreds). The number of active transcript sites (TS’s) and mature mRNA had correlated 

temporal dynamics, but the distribution of nascent mRNA on activated alleles was found to 

be largely independent of condition [27].

The authors then examined different bursting gene expression models of the form illustrated 

in Figure 2A to determine if these could capture the measured distributions of active 

transcription sites, nascent mRNA levels and mature mRNA levels [27]. In this case, it was 

found that a 2-state model could capture most of the full distributions of nascent mRNA at 

individual transcription sites. However, at maximal activation, which occurred twenty 

minutes following activation, the data revealed an additional transcriptional mode, which 

could not be explained with the 2-state model. This high-activity mode, which is well 

captured by the 3-state model (see Figure 4B), leads to a temporary increase in the number 

of nascent mRNA per TS in the more activated cells (see 20 minute time point in Figure 

4D). In order to reproduce the probabilities of transcription site activation and the 

distributions for the number of nascent mRNA per transcription site, the parameters were 

identified as given in Table 2.

Parameters in the final identified 3-state model were such that the rates of transcript 

elongation were fast relative to the amount of time a given cell would spend in active 

transcriptional states (k21 and k32 ≪ τ−1). These parameters lead to an effective saturation of 

bursts at the transcription sites, which explains why the nascent mRNA distributions are 

uncorrelated with the number of transcription sites or the mature mRNA levels in most 

conditions [27]. Applying the modified FSP algorithm, setting up the analysis and solving 

for the nascent c-Fos transcript distributions at all time points takes approximately 0.17 

seconds to complete per parameter combination (on a 2.6 GHz Intel Core i7 Macbook Pro 

using Matlab’s built in ODE integrator “ode15s”).

4.3. smFISH and FSP in yeast cells

In Reference [9], the authors used smRNA-FISH and FSP analyses to quantify dynamic 

distributions of several mRNA in Saccharomyces cerevisiae cells in response to osmotic 

shock. Exposure to a high salt environment activates the well characterized high-osmolarity 

glycerol (HOG) MAPK pathway in yeast [50]. Upon phosphorylation, the kinase signaling 

molecule, Hog1-p rapidly migrates to the nucleus [9, 51]. To quantify this translocation, 

Hog1 was fused to yellow fluorescent protein, and the migration of construct Hog1p-YFP 

into the nucleus was experimentally measured using fluorescence time lapse microscopy. 

Figure 5A shows the resulting quantification of this time-varying input signal at step inputs 

of 0.4M and 0.2M NaCl [9]. Once in the nucleus, Hog1-p activates mRNA expression for 
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several genes, including STL1, CTT1, and HSP12. The authors designed smRNA-FISH 

probes to quantify expression of the different mRNA, and Figure 5C shows representative 

examples of the resulting distributions over time. Unlike the nuclear enrichment signal 

which shows little cell-to-cell variability, the transcript expression varies considerably from 

cell to cell.

The authors then proposed a large class of models, including two-, three-, four- and five-

state models with different mechanisms by which Hog1-p could affect transitions between 

gene states [9]. Each model was then fit to maximize the likelihood of the experimental data 

using the FSP approach outlined above. In this case, solving for the mRNA distributions at 

all time points takes under 0.4 seconds to complete per parameter combination (on a 2.6 

GHz Intel Core i7 Macbook Pro using Matlab’s built in ODE integration routine “ode15s”). 

As expected, model fits improve with increased complexity, but this could also lead to 

overfitting and a loss of predictive power. To analyze the level of overfitting for a particular 

model, each model was cross-validated using different independent experimental replicas. 

After a certain level of model complexity, the fits continue to improve, but cross-validation 

shows that parameter uncertainty also increases, and predictions are expected to worsen. 

This suggests a “Goldilock’s model,” which is neither too complex nor too simple, that 

yields optimally accurate predictions. In this case, this optimal model consists of four gene 

states, where the stochastic transitions from the second state to the first state (i.e., reaction 

rate k21) is repressed by the time-varying Hog1-p signal as shown in Figure 5B.

This model structure (shown in Figure 5B) and parameters (provided in Table 3) suggest the 

mechanisms by which STL1 and CTT1 gene expression are controlled by Hog1-p in 

response to osmotic shock. In the absence of Hog1-p, cells are primarily in the ‘OFF’ state, 

but occasionally sample the S2 state. While Hog1-p is below the cyan line in Figure 5A, the 

S2 state is highly unstable, and most cells quickly transition back to the OFF state without 

significant mRNA accumulation. Addition of Hog1-p near to or above this value stabilizes 

the S2 state and allows cells to continue to the fully active S3 and S4 states. Although both 

STL1 and CTT1 have the same activation dynamics, their deactivation processes are slight 

different. In particular, the rates leading to deactivation (k32, k43 and γ) are all much lower 

for CTT1 than for STL1. To investigate the generality of the chosen four-state model, the 

authors used established S. cerevisiae strains with chromatin modifiers Arp8p or Gcn5p 

knockouts, or with a five-fold over-expression of the transcription factor Hot1p. In each 

strain, transcript expression dynamics of STL1, CTT1, and HSP12 were observed. The 

interplay between relatively uniform activation and modulated deactivation rates in the 

chosen four-state model was sufficient to capture and predict the full, time-varying mRNA 

distributions for each gene and mutant strain [9].

5. Conclusions

In this article, we reviewed current experimental approaches to study biological noise in 

gene expression such as time-lapse fluorescence microscopy and Single-Molecule RNA 

fluorescence In Situ Hybridization (smRNA-FISH) and flow cytometry. We explored how 

these techniques could allow for quantification of gene regulatory responses. In particular, 

we focussed on smRNA-FISH measurements of RNA in fixed biological samples, which 
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provides a direct and fast readout for how transcriptional responses change from cell to cell 

or over time as a population adapts to fluctuations in the surrounding environment. These 

experimental techniques are essential to quantify biological noise in RNA and protein 

expression at the individual cell level, and they have been applied to probe transcriptional 

regulation dynamics in organisms ranging from bacteria and yeast to human cells. We also 

discussed current theoretical approaches to integrate dynamic single-cell data sets with 

discrete stochastic computational analyses. Here, our focus has been to identify model 

parameters given experimentally measured distributions of RNA at the single-molecule and 

single-cell levels, especially during transient environmental changes. Although numerous 

theoretical techniques, including moment closure techniques [16, 26, 32, 33, 34, 35, 49] and 

kinetic Monte Carlo simulations [14, 15], have been used successfully to perform such 

analyses, we focussed here on the application of Finite State Projection (FSP) approach [40]. 

The FSP approach provides an precise approximate solution to the Chemical Master 

Equation with known error [40], which enables direct comparison of models to measured 

experimental data. For many important signal-activated gene transcriptional processes in 

bacteria [12, 13, 22], yeast [9] and mammalian cells [27], the FSP approach is ideal because 

it can solve for the full time-varying single-cell mRNA probability distributions in a fraction 

of a second.

The goal of our approach to integrate experiments with computational approaches, is to 

build a cohesive framework that reaches a balance between what is biologically important 

and what kind of predictive models can be supported with specific data sets. Given the 

complexity of biological models and the limited number of high quality data sets, this is a 

challenging task. However, it is a task that has been proven to be resolvable in a small set of 

studies. Here, we have presented three cases to demonstrate the generality of this approach 

in bacteria [22], yeast [9] and human cells [27]. The data-centered approach presented here 

differs from many past mechanistic modeling endeavors in that our goal is to fit and predict 

all observed biological fluctuations, but our models are not restricted to previously known 

biophysical mechanisms. As such, the identified models simultaneously capture those 

fluctuations inherent to the measured RNA species as well as those due to upstream 

influences. If available, mechanistic understanding based upon prior biochemical 

understanding can then be used to separate these different aspects of biological fluctuations 

into intrinsic and extrinsic noise. Although this data-centered approach can provide detailed 

quantitative predictions for cell population behaviors, its direct insight into the underlying 

biochemical nature of gene expression variability is more limited. In the future, we expect 

that such abstract models need to be combined with genetic knockout studies to attach 

biochemical and mechanistic meaning to specific rates and gene states in the models. If 

successful, this next step would enable computational models to enable a greater range of 

biologically meaningful predictions. For example, in Reference [9], we found that linking 

parameters to different chromatin modifiers and transcription factors enabled the precise 

quantitative predictions for the responses of novel combinations of genetic mutations and 

transcriptional outputs. In the long term, such combined experimental and computational 

approaches are needed to better understand biological networks that must be studied at 

greater complexities than one gene at a time. Furthermore, applying systematic approaches 

to identify models that accurately predict gene responses (such as transitions between 
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healthy and diseased phenotypes) in different environments may eventually help guide 

decisions in future personalized medicine applications.
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1. We review experimental tools to quantify single-cell transcription fluctuations.

2. The finite state projection accurately reproduces these single-cell measurements.

3. Integrating computation and experiments helps to understand cellular variation.

4. Cellular heterogeneities or noise reveal hidden gene regulatory mechanisms.

5. We review results for three different RNA types in three different organisms.
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Figure 1. Single-molecule RNA Fluorescence in situ Hybridization (smRNA-FISH)
A) smRNA-FISH provides a method to image individual molecules of endogenous RNA. 

The process starts by designing many short DNA probes which bind complementary to the 

known RNA strand. The co-localization of many probes on a single RNA molecule leads to 

a bright diffraction-limited spot, whereas dilute individual probes have much weaker signals. 

Imaging at many different planes of view provides a three dimensional quantification of how 

many probes are in each cell and where they are within each cell. Nuclear stain allows 

determination of which RNA are in the nucleus or cytoplasm. Genes undergoing active 

transcription often have multiple partially-formed nascent RNA molecules, which leads to 

extra bright spots in the nuclei of some cells. B) Top: The smRNA-FISH approach first 

developed in reference [42] consists of 15–20 probes each of about 50 nucleotides. Bottom: 

This approach has been applied to quantify the distributions of c-Fos mRNA at transcription 

sites in the human-derived U2OS cell line at different points in time following activation 

with fetal calf serum (see reference [27] and Section 4.2 below). C) Top: The smRNA-FISH 

approach developed in reference [38] uses a larger number (40 to 50) of shorter DNA probes 

(20 nucleotides long). Bottom: this approach has been used to measure the mRNA 

distributions for STL1 and several other genes in the yeast Saccharomyces cerevisiae during 

the adaptive response to osmotic shock (see reference [9] and Section 4.3). D) To image 

shorter RNA molecules, one must use a smaller number of probes per RNA, which leads to 

a smaller signal-to-noise ratio between the bound and free probes. To mitigate this, one can 

introduce quencher probes, which bind with partial complementarity to free probes and 

reduce background fluorescence. Bottom: this approach has been used to quantify 

distributions of small RNA molecules in the bacterium Yersinia pseudotuberculosis (see 

reference [22] and Section 4.1).
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Figure 2. 
Formulating and solving discrete stochastic models to capture single-cell transcriptional 

heterogeneities. (A) Effects of chromatin modifications or transcription factor binding/

unbinding are described using multiple gene states, each with it own characteristic rate of 

RNA transcription. Adding more gene states in the model can account for increasingly 

complex biological behaviors. (B) A lattice describing all possible cellular states for a three 

state model, as determined by the gene state (x-axis, changes by horizontal arrows) and the 

number of RNA (y-axis, changes by vertical arrows). In general, the RNA number can 

exceed any finite bound. Thus, the lattice an infinite number of states and the Chemical 

Master Equation is infinite in dimension. (C) To overcome this infinite dimensionality, the 

FSP approach truncated the lattice at N RNA. Reaction that leave the truncated states are 

absorbed into an absorbing state, whose probability is defined as g(t). (D) The resulting 

finite, linear system can be used to estimate the probabilities of each state in the Markov 

chain at any finite time. Projecting the FSP solution onto the RNA axis produces the 

distribution of RNA at each time point.

Munsky et al. Page 20

Methods. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Experimental and computational analyses of small RNA (YSP8) Transcription in Yersinia 

Pestis bacteria. Figure is adapted from reference [22]. A) Model for the induction of YSP8 

in response to temperature elevation from room temperature to human body temperature. 

Elevation in temperature leads to an increased probability that the cells are in the activated 

state, ‘ON’. B) Probability distributions of the number of YSP8 sRNA per bacterium before 

and at two different times after serum induction. Experimental data are shown in blue, and 

the model fit is in red. The insets show the same data with greater resolution.
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Figure 4. 
Experimental and computational analyses of cFos transcription in human U20S cells. 

Experimental data are shown in blue and model results are illustrated in red. Figure is 

adapted from reference [27]. A) Immunofluorescence measurements of phosphorylated ERK 

kinase versus time following serum induction, in terms of normalized units. Magenta and 

cyan horizontal lines correspond to the p-ERK thresholds at which the k12 and k23 reaction 

rates become greater than zero (see Table 2). B) Model for the induction of c-Fos in 

response to p-ERK signaling. In the absence of p-ERK, all cells begin in the ‘OFF’ state. 

Addition of moderate p-ERK levels quickly leads to a primary activation state, ‘on’. When 

p-ERK levels are very high, a secondary activation state, ‘ON,’ is reached. C) Probability 

that a given transcription site will be active as a function of time following serum induction. 

D) Probability distributions of the number of nascent RNA per transcription site at different 

times following serum induction. Rates for all reactions and the dependency on p-ERK 

signal are given in Table 2.

Munsky et al. Page 22

Methods. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Experimental and computational analyses of Hog1p-induced of transcription of CTT1 and 

STL1 in Saccharomyces cerevisiae. Figure is adapted from reference [9]. A) Time lapse 

fluorescence microscopy measurements of Hog1-YFP translocation into the nucleus versus 

time following step increase in osmotic stress. Two different levels of osmotic shock are 

considered: 0.4M NaCl (blue) and 0.2M NaCl (red). Symbols correspond to experimental 

data and lines correspond to a simple model of the kinase localization dynamics (see 

reference [9]). The horizontal cyan line corresponds to a Hog1-p value above which the k21 

reaction is eliminated. B) Model for the induction of mRNA (either CTT1 or STL1) in 

response to Hog1-p signaling. C,D) Probability distributions of the number of CTT1 mRNA 

(C) or STL1 mRNA (D) per cell at different times following osmotic shock. Combined data 

from two replicas are shown in black and the model is shown in red. The top row 

corresponds to model fits in response to a 0.4M NaCl step input, and the bottom row 

corresponds to model predictions and experimental data in response to an osmotic shock of 

0.2M NaCl.
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Table 1

Parameters found to fit a two-state k12-modulated model of YSP8 sRNA transcription activation in Y. pestis 

bacteria following temperature elevation.

Parameter Name Value Units

kr2/k21 1.19 molecules

γ 1.00 min−1

k12 at 25°C 0.138 min−1

k12 at 37°C, 2hr 0.161 min−1

k12 at 37°C, 3hr 0.286 min−1
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Table 2

Parameters found to fit a three-state model to the activation of transcription sites and the probability 

distributions for mRNA per transcription sites. The p-ERK input signal denoted as u(t) in the expressions for 

k12(t) and k23(t) is interpolated from the curve shown in Figure 4 and normalized to have a peak magnitude of 

one (arbitrary units).

Parameter Name Value Units

k12 max(0, −0.102 + 0.198 · u(t)) min−1

k21 0.329 min−1

k23 max(0, −12.7 + 12.9 · u(t)) min−1

k32 0.150 min−1

kr2 34.4 molecules/min

kr3 70.126 molecules/min

τ 0.126 min
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Table 3

Parameters found to fit a four-state k21-modulated model of Hog1-p induced transcription of STL1 and CTT1 

mRNA transcription activation in S. cerevisiae following application of osmotic shock (adapted from 

reference [9], Table S2). The Hog1-p input signal (see Figure 5A) is denoted as u(t) in the expressions for 

k21(t).

Parameter Name STL1 CTT1 Units

k12 1.29 1.29 s−1

k21 max(0, 3200 − 7710 · u(t)) max(0, 3200 − 7710 · u(t)) s−1

k23 0.0067 0.0191 s−1

k32 0.027 0.0175 s−1

k34 0.133 0.133 s−1

k43 0.0381 0.0083 s−1

kr2 0.0116 0.0098 molecules/s

kr3 0.987 1.01 molecules/s

kr4 0.0538 0.0016 molecules/s

γ 0.0049 0.0020 s−1
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