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Abstract

This paper is devoted to studying the impact of human behavior on cholera infection. We start 

with a cholera ordinary differential equation (ODE) model that incorporates human behavior via 

modeling disease prevalence dependent contact rates for direct and indirect transmissions and 

infectious host shedding. Local and global dynamics of the model are analyzed with respect to the 

basic reproduction number. We then extend the ODE model to a reaction-convection-diffusion 

partial differential equation (PDE) model that accounts for the movement of both human hosts and 

bacteria. Particularly, we investigate the cholera spreading speed by analyzing the traveling wave 

solutions of the PDE model, and disease threshold dynamics by numerically evaluating the basic 

reproduction number of the PDE model. Our results show that human behavior can reduce (a) the 

endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection 

(characterized by the basic reproduction number).
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1 Introduction

Mathematical modeling, analysis and simulation for infectious diseases have long provided 

useful insight into disease dynamics that could guide public health administration for 

designing effective prevention and control measures against epidemics. Over the past few 

decades, compartmental models such as SIR (susceptible-infected-recovered) and SEIR 

(susceptible-exposed-infected-recovered) and their threshold dynamics have been 

established as the standard framework in mathematical epidemiology (see review [33] and 

references therein). Meanwhile, numerous extensions of these basic mathematical models 

have been proposed that incorporate more detailed biological, ecological, demographic, and 
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geographical information, such as spatial heterogeneities, age-structures, seasonal variations, 

and others, with significant advances in almost all of these directions.

The mechanisms of disease transmission and spread are usually complex and possibly 

involve social, economic and psychological factors in addition to the intrinsic disease 

biology and ecology. In particular, human behavior could have significant influence on 

disease transmission and vice versa. For example, individuals avoid close contact with 

obviously sick persons to protect themselves and therefore the frequency and strength of 

contacts between uninfected and infected people generally are reduced. In case of severe 

disease outbreaks, people will attempt to change their routine schedules (including, but not 

limited to, work, recreation, and travel), wash hands often with soap and clean water, receive 

vaccines or preventive treatment if available, so as to minimize their risk of infection. 

Nowadays, the fast growth of information technology allows prompt and up-to-date reports 

on the details of disease outbreaks from internet (especially those popular social networking 

sites), newspaper, television and radio stations, and government announcements. 

Consequently, these media coverage and health education will, to a large extent, affect 

human behavior which can lead to a significant reduction in outbreak morbidity and 

mortality.

It is clear that human behavior could play an important role in shaping the complex 

epidemic and endemic pattern of a disease [3, 26]. There are an increasing number of studies 

on the mathematical epidemiological modeling of human behavior [13]. Funk et al. [14] 

classified epidemic models under the impact of behavioral changes into belief-based and 

prevalence-based. Cui et al. [11] proposed a simple SIS model that incorporated the effects 

of media coverage. Gao and Ruan [16] extended the work in [11] to a patch model with 

nonconstant transmission coefficients. Liu et al. [25] investigated psychological impact on 

disease dynamics that involve multiple outbreaks and sustained infections. Collinson and 

Heffernan [10] found that the outcome of an epidemic model with the effects of mass media 

is strongly affected by the choice of media function. Recently, Chowell et al. [9] fitted 

logistic growth models to the cumulative reported number of Ebola cases to reflect changes 

in population behavior and interventions. In addition, Mummert and Weiss [27] modeled 

and analyzed the social distancing strategies in limiting disease transmission and spread, 

particularly for short-term outbreaks.

A goal of this paper is to improve our quantitative understanding of the impact of human 

behavior on disease dynamics. Particularly, we will incorporate human behavior into 

mathematical modeling of cholera, a severe water-borne disease caused by the bacterium 

Vibrio cholerae. There have been many studies published in recent years on cholera 

modeling and analysis (see, e.g., [5, 6, 7, 17, 28, 29, 34, 37, 38, 41, 42, 43, 44]), yet, to our 

knowledge, few of these have specifically taken human behavior into consideration (see 

Capasso [6, 5], Al-Arydah et al. [1], and Carpenter [7]). In the present paper, we will modify 

the cholera model proposed by Mukandavire et al. [28] to explicitly include disease 

prevalence dependent contact rates (for both the direct and indirect transmissions) and host 

shedding rate, and analyze the resulting dynamics. Particularly, we will show that the 

reduction of contact rates due to human behavior leads to reduced epidemic and endemic 

sizes. We will then extend the ODE system to a reaction-convection-diffusion PDE system 
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to investigate the interaction among human behavior, host and pathogen movement, and the 

disease intrinsic transmission dynamics. We will pay special attention to the traveling wave 

solutions and threshold dynamics of the PDE model. Our study regarding cholera spatial 

dynamics is different from the work of Bertuzzo et al. [4, 31]. Our PDE model formulation 

is more general in terms of inclusion of multiple transmission pathways. Specifically, our 

model incorporates both direct (or, human-to-human) and indirect (or, environment-to-

human) transmission pathways whereas their model has considered only indirect 

transmission route. The scope of our work is also different from that in [4, 31] as our focus 

is on the impact of human behavior on cholera transmission.

We organize the remainder of the paper as follows. In Section 2 we introduce the ODE 

cholera model that incorporates human behavior, with relevant notations and assumptions. 

We then conduct a thorough epidemic and endemic analysis of the model in Section 3, for 

both local and global dynamics. In Section 4 we present the PDE model and investigate its 

traveling wave solutions under the impact of human behavior, followed by a threshold 

dynamics analysis in Section 5. We conclude the paper in Section 6 with discussion.

2 Model formulation

The cholera model proposed in [28] incorporates both the environment-to-human (or, 

indirect) and human-to-human (or, direct) infection routes, and all the model parameters 

take constant values. The model has standard SIR (susceptible-infected-recovered) 

compartments, with an additional compartment B that denotes the concentration of the 

bacteria Vibrio cholerae in the contaminated water. We now extend this model by assuming 

that the direct and indirect transmission rates and the bacterial shedding rate are all 

dependent on the number of infectives, representing the influence of human behavior change 

due to health education, hygiene and sanitation practices. In addition, we assume that 

recovered individuals become susceptible to cholera again after a certain period of time, 

taking into account the immunity loss in the real life. The new model takes the form

(2.1)

The total population, N = S + I + R, is fixed. The definition and base values of the model 

parameters are provided in Appendix A, Table 1.
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The most important feature of our model is the incorporation of disease prevalence 

dependent contact rates and host shedding rate. For i = 1, 2, 3, we formulate that

where ai is the usual contact rate (or shedding rate) without considering the influence of 

human behavior, bi is the maximum reduced contact rate due to behavior change, and mi(I) 

is a saturation function. These functions satisfy

where Iu ∈ (0, N] is an upper bound of the solution {I(t) : t ≥ 0}. Some typical examples of 

m(I) with such properties are 1 − k/(k + In) with k > 0 and n > 0, 1 − e−kI with k > 0, and I/Iu 

[16].

One can easily verify that the disease-free equilibrium is given by (N, 0, 0, 0). Let F denote 

the matrix characterizing the generation of secondary infection, and V denote the matrix 

depicting transition rates between compartments. Based on the standard next-generation 

matrix technique [40, 12] and our assumptions, matrices F and V can be written as:

The next generation matrix is

Hence, the basic reproduction number ℛ0 of model (2.1) is given by

Here ρ denotes the spectral radius. Note that the basic reproduction number ℛ0 is 

independent of bi for i = 1, 2, 3. This is due to our model assumption that behavior change 

only starts when the disease has already started and ℛ0 is calculated at the disease-free state. 

An implication is that behavior change alone is usually not sufficient to terminate an 

outbreak. Nevertheless, previous studies have shown that it can significantly reduce the 

burden of an endemic disease [16]. We will demonstrate this for our cholera model in the 

next section.

Meanwhile, if disease control is targeted at a particular host type, a useful threshold is 

known as the type reproduction number, T. The type reproduction number defines the 
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expected number of secondary infective cases of a particular population type caused by a 

typical primary case in a completely susceptible population [32, 18]. It is an extension of the 

basic reproduction number ℛ0. Particularly, the type reproduction number T1 for control of 

infection among humans is defined in references [32, 18] as

provided the spectral radius of matrix (I − P1)M is less than one, i.e., ρ((I − P1)M) < 1. Here 

I is the 2 × 2 identity matrix, vectors e1 = (1, 0)T, M is the next generation matrix, and P1 is 

the 2 × 2 projection matrix with all zero entries except that the (1,1) entry is 1. Write M = 

(mij). The type reproduction T1 can be easily defined in terms of the elements mij :

(2.2)

T1 exists provided m22 < 1. In view of m22 = 0, by (2.2), the type reproduction number 

associated with the infectious humans is given by

Moreover, it has been shown in [32] that

When βi(I) = ai (i = 1, 2, 3), it has been shown that the disease dynamics of (2.1) are 

completely determined by its basic reproduction number ℛ0 [44].

In what follows, we will use both ℛ0 and T1 in our analysis, with the understanding that the 

two are equivalent in characterizing disease threshold dynamics.

3 Equilibrium Analysis

By direct calculation, we find that (2.1) always has a disease-free equilibrium (DFE), and its 

endemic equilibrium (EE) satisfies

(3.1)

(3.2)

(3.3)
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(3.4)

Substituting (3.2) into (3.1) yields

Likewise, by plugging (3.3) into (3.4), we find

where

Thus, the intersections of the curves S = ϕ(I) and S = ψ(I) in [0, N]2 determine the nontrivial 

equilibria. Notice that

It then follows directly from assumptions on βi(I) (for i = 1, 2, 3) that g′(I) < 0. This implies 

that ψ(I) is a strictly increasing function. Meanwhile, it is clear that ϕ(I) is a strictly 

decreasing function. Together with ϕ(0) = N, ψ(0) = N/T1, ϕ(N) < 0, and ψ(N) > 0, we see 

that: (1) if T1 > 1, then ϕ(0) > ψ(0), which implies that there is a unique intersection in 

between ϕ(I) and ψ(I); (2) if T1 ≤ 1, then ϕ(0) ≤ ψ(0), which indicates that there is no 

intersection between these curves in the interior of . Moreover, we have the following 

existence, uniqueness and local stability theorem on DFE and EE of (2.1). The proof is 

postponed to Appendix B.

Theorem 3.1

1. If T1 ≤ 1, then system (2.1) has a unique equilibrium, and it is the DFE. 

Furthermore, the DFE is locally asymptotically stable when T1 < 1, and it is 

Lyapunov stable when T1 = 1.

2. If T1 > 1, then system (2.1) has two equilibria: the DFE and the EE. Moreover, the 

DFE is unstable, whereas the EE is locally asymptotically stable.

In view of the equivalent relationship between ℛ0 and T1 (2), we obtain the following result 

for the local disease threshold dynamics of model (2.1).
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Corollary 3.2

1. If ℛ0 ≤ 1, the system (2.1) has a unique equilibrium, and it is the DFE. 

Furthermore, the DFE is locally asymptotically stable when ℛ0 < 1, and it is 

Lyapunov stable when ℛ0 = 1.

2. If ℛ0 > 1, the system (2.1) has two equilibria: the DFE and the EE. Moreover, the 

DFE is unstable, whereas the EE is locally asymptotically stable.

In the remainder of this section, we focus on the global stability of the equilibrium solutions 

of (2.1). By a simple comparison theorem, we find that 0 ≤ B(t) ≤ Bu provided that 0 ≤ B(0) 

≤ Bu := a3N/δ. Consider the domain

It is clear that if any solution of system (2.1) starting in Ω will remain in Ω; that is, the 

domain Ω is positively invariant for (2.1). The following results (i.e., Theorems 3.3–3.4) 

establish the global disease threshold dynamics of model (2.1).

Theorem 3.3

If ℛ0 ≤ 1, the system (2.1) has a unique disease-free equilibrium that is globally 

asymptotically stable in the region Ω.

Proof—Let

Write  = (I, B)T. By assumptions βi(I) ≤ ai for i = 1, 2, 3, the system (2.1) satisfies

Let w = (a1N, a2N/K). In view of , one can verify that 

 Motivated by [35], we define a Lyapunov function as follows:

Differentiating ℒ along solutions of (2.1), we have
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If T1 < 1, ℒ′ ≤ 0. Then ℒ′ = 0 implies that w  = 0 and hence I = B = 0. It follows from the 

first and third equations of (2.1) that S = N and R = 0. Hence, the only invariant set where ℒ′ 

= 0 is the singleton {(N, 0, 0, 0)}.

In the case T1 = 1, ℒ′ = 0 implies that β1(I)SI = a1NI and β2(I)SB/(B + K) = a2NB/K. By the 

assumption on βi (i = 1, 2), this can only happen when S = N or I = B = 0. Then, by a similar 

argument as that in the case where T1 < 1, we find that the largest invariant set where ℒ′ = 0 

is the singleton {(N, 0, 0, 0)}.

Since ℛ0 < 1 iff T1 < 1, by LaSalle’s Invariant Principle [22], the DFE is globally 

asymptotically stable in Ω if ℛ0 ≤ 1.

Theorem 3.4

If ℛ0 > 1, the EE is globally asymptotically stable in Ω0, the interior of Ω, provided that sup 

{S(β1(I)I)′: S ≥ 0, I ≥ 0, S + I ≤ N} ≤ (γ − σ)/2.

The detailed proof for Theorems 3.4 is provided in Appendix C.

A mathematically simple but biologically important conclusion can be made from the above 

analysis on the endemic equilibrium. Namely, when βi (1 ≤ i ≤ 3) is decreased as a result of 

incorporating human behavior, the endemic level is reduced as well.

Proposition 3.5

If ℛ0 > 1, then the I-coordinate of the unique endemic equilibrium of model (2.1), Ie, is 

strictly decreasing in the maximum reduced transmission coefficient (or shedding rate) due 

to behavior change, bi, for i = 1, 2, 3.

Proof—Since ℛ0 > 1 iff T1 > 1, there exists a unique endemic equilibrium (Se, Ie, Re, Be) of 

the system (2.1), when ℛ0 > 1. By equations (3.5) and (3.6), we have

(3.5)

where  and β1(Ie) = a1 − b1m1(Ie). Differentiating both sides of 

equation (3.5) with respect to b1 yields

where
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Thus . We can similarly show that  and .

We numerically verify Proposition 3.5 as follows. The values of parameters and initial 

condition are: K = 2 × 106, γ = 1/5, δ = 1/30, μ = 1/(43.5 × 365), a1 = 3 × 10−5, a2 = 0.02, a3 

= 15, σ = 1/(3 × 365), and (S(0), I(0), R(0), B(0)) = (12346, 1, 0, 0). The corresponding basic 

reproduction number is ℛ0 = 1.99. Consider the saturation functions  for i = 

1, 2, 3. The blue dotted line, black dashed line, and red solid line in Figure 1 show the 

number of infectious individuals for the model (2.1) with no behavior change (bi = 0 for i = 

1, 2, 3), small behavior change (bi = 0.8ai and Ki = 500 for i = 1, 2, 3), and large behavior 

change (bi = 0.8ai and Ki = 100 for i = 1, 2, 3), respectively. Clearly, behavior change alone 

cannot eliminate the disease, but can significantly reduce the epidemic/endemic level and 

larger behavior change leads to less infections. In addition, the infection curve of the cholera 

model with large behavior change does not experience damped oscillations over time.

4 Cholera Traveling Waves

In order to further understand the effects of human behavior on cholera transmission 

dynamics, we extend the ODE model (2.1) to a PDE system taking into account the 

diffusion of human hosts and bacteria and the convection of vibrios. Consequently, we will 

investigate the propagation of epidemic waves and related threshold dynamics, under the 

impact of human behavior.

Consider cholera dynamics along a one-dimensional theoretical river. Incorporating into 

(2.1) the bacterial and human diffusion, and bacterial convection due to river flow, we 

obtain the following cholera epidemic PDE model

(4.1)
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where x ∈ [0, 1] and t ≥ 0 are the location and time variable, respectively. S(x, t), I(x, t), and 

R(x, t) measure the number of susceptible, infectious, and recovered human hosts at location 

x and time t, respectively. B = B(x, t) denotes the cholera concentration in the water 

environment. Di > 0 (1 ≤ i ≤ 4) is the diffusion coefficient of S, I, R and B, respectively, and 

υ ≥ 0 represents the convection coefficient that describes the effect of the river flow on the 

bacterial movement. The definition of model parameters can be found in Table 1.

A useful approach to study the spatial spread of cholera is to investigate the travel wave 

solution of model (4.1) and to determine the critical speeds of the traveling fronts. Introduce 

a variable u = x − ct where c is the speed of the disease traveling front. Assume that N = S + 

I + R is a constant. Then (4.1) can be rewritten as

(4.2)

where .

We will now focus on the case where  since our interest is the spatial spread of the 

disease. Notice that model (4.2) has two spatially homogeneous stationary solutions, 0 = 

(0, 0, 0, 0, 0, 0) and 1 = (Ie, Re, Be, 0, 0, 0); these equilibria correspond to the disease-free 

and endemic equilibrium points of the ODE model, respectively. Thus, any traveling wave 

solution of (4.2) can be regarded as a heteroclinic orbit connecting 0 and 1. More 

specifically, (1) in the case of a progressive wave front, 0 is a saddle and the heteroclinic 

orbit goes from 1 to 0. This depicts downstream propagation of the disease, for instance, 

from inland areas to coasts; (2) in the case of a regressive wave front, 0 is an unstable node 

and the heteroclinic orbit connects 0 to 1. It captures the upstream propagation of the 

disease, for example, from coasts to inland regions. Meanwhile, we notice that an orbit with 
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oscillatory dynamics around V0 will destroy the non-negative property of the state variables 

I, R and B. Therefore, in either case, all the eigenvalues of the Jacobian matrix  associated 

with the linearized system of (4.2) evaluated at 0 must be real for a wave font to exist. 

Direct computation yields

where 03 is the 3 × 3 zero matrix, I3 denotes the 3 × 3 identity matrix,

and

The characteristic equation of matrix  is

(4.3)

where

The critical value of c occurs only if the characteristic equation (4.3) has repeated real roots. 

We only need to focus on its second term p(λ) = λ4 + b1λ3 + b2λ2 + b3λ + b4, since the first 

term of this equation has two distinct real roots, and none of these roots satisfies p(λ) = 0. It 

follows from  that b4 < 0 and hence p(λ) has at least one positive and one negative 

zeros. We now proceed to find the condition for the existence of repeated roots. The work of 

Jury and Mansour [21] shows that double zeros of this quartic polynomial p(λ) occurs if
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(4.4)

where  and . If υ = 0, 

equation (4.4) becomes

(4.5)

whose coefficients depend on the model parameters. Particularly,

and e1 > 0 when D2 ≠ D4. Meanwhile, if , then

Thus, equation (4.5) has at least one positive zero with respect to c2; namely, this equation 

has at least a pair of real roots in terms of c which have the same magnitude but opposite 

signs.

There are typically two critical speeds, denoted c+ and c−, such that the wave front with 

speed c ∈ (c−, c+) cannot exist. Furthermore, it has been established [2, 24] that for large t, 

the progressive disease spreading velocity is exactly c = c+ and the regressive spreading 

velocity is exactly c = c−, among the infinitely many waves propagating at c ≥ c+ 

(progressive waves) or c ≤ c− (regressive waves).

We have numerically calculated the critical wave speeds c+ and c− under a variety of 

settings. Our particular emphasis here is the impact of human behavior on the spatial spread 

of cholera. We note that the variation of βi(I) can, alternatively, be reflected by the change of 

values of ai, i = 1, 2, 3. Thus, it is convenient to treat c+ and c− as functions of ai (1 ≤ i ≤ 3), 

and study the variation of wave speeds in terms of ai.

In Figure 2, we plot c± vs. ai with two choices of convection coefficients: υ = 0 and υ = 1, 

while the diffusion coefficients are fixed at D2 = D4 = 1. We pick the base values of ai (i = 

1, 2, 3) from [28]. In Figure 2-a, we plot c± vs. a1, with fixed a2 and a3 at their base values; 

in Figure 2-b, we plot c± vs. a2 while fixing a1 and a3; and so on. For each plot, we clearly 

observe that when υ = 0, the progressive speed c+ and regressive speed c− are symmetric 

with respect to the horizontal axis, as predicted by equation (4.5). When υ = 1, however, the 

curves lose symmetry and show that incorporation of a downstream convection process for 

bacteria tends to strengthen the wave propagation in the positive (or, downstream) direction, 

while weakening the wave propagation in the negative (or, upstream) direction.

The most important pattern in these figures, however, is that the wave speeds in both 

directions are increasing when ai (i = 1, 2, 3) increases. It indicates that a reduction for the 

value of ai (say, due to human behavior) would weaken the epidemic wave propagation and 
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reduce the spread of the disease. For the case υ = 1, a more careful examination of the 

regressive wave speeds reveals that c− becomes positive, and close to 0, when ai (i = 1, 2, 3) 

is much smaller than its base value, implying that there is no upstream wave propagation. 

An explanation is that the random diffusion process, particularly from the coast to the inland 

regions, contributes to the upstream propagation of the disease (represented by the 

regressive waves with negative speeds). When one of those contact rates is sufficiently low, 

the diffusion of infected human hosts and/or bacteria cannot compete with the effects of the 

downstream convection of bacteria, resulting in no upstream propagation of the disease. 

This result indicates that reduction of ai can not only reduce the wave speeds, but also 

impact the direction of wave propagation. Further, as can be clearly seen from each figure, if 

each ai can be made sufficiently close to 0, then no traveling wave will be generated.

In Figure 3, under similar settings for ai (i = 1, 2, 3), we plot c± vs. ai with two different 

choices of diffusion coefficients, while fixing the convection speed at υ = 1. We again 

observe that, in each case, the increase of ai leads to faster wave propagation in both 

directions. Meanwhile, as the diffusion becomes stronger, the traveling wave speeds also 

increase for both upstream and downstream propagation.

5 PDE Model Threshold Dynamics

We now study the spatial threshold dynamics of cholera by analyzing the basic reproduction 

number associated with the PDE model (4.1). Though originally proposed for ODE 

epidemic models, the concept of the basic reproduction number has been extended to 

reaction-diffusion and reaction-convection-diffusion epidemic systems with homogeneous 

Neumann boundary conditions in recent years (e.g., Thieme [39], Wang and Zhao [45], and 

Hsu et al. [20]). Based on these studies, the basic reproduction number ℛ0 for a PDE 

epidemic system is defined as the spectral radius of the operator

where F is the matrix characterizing the generation of new infection, in the corresponding 

ODE system (i.e., without diffusion terms); T(t) denotes the solution semigroup associated 

with the linearized reaction-convection-diffusion system for disease compartments; ϕ 

describes the distribution of the initial infection. In [45], it is shown that

and

for which ℬ ≔ ∇· (dI∇) − υI∇ − V where the matrix V denotes the transition between 

compartments. Here dI and υI are the diffusion and convection coefficient vectors, 

respectively.
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In the case of our cholera epidemic model (4.1), we have:

and

To analyze the basic reproduction number of the PDE system (4.1),

we consider the eigenvalue problem L[ϕ] = λϕ ; that is,

(5.1)

where ϕ = (ϕ1, ϕ2)T ∈ C([0, 1], ℝ2). With some algebraic manipulation (see details in 

Appendix E), the eigenvalue problem (5.1) can be put into the form
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(5.2)

where

and k23 = k24 = 0.
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The disease threshold  can then be numerically evaluated by reducing the operator 

eigenvalue problem (5.2) into a matrix eigenvalue problem, an approach originated from the 

work in [44]. We have investigated the impact of human behavior on the disease threshold 

in three scenarios: (1) human and bacterial diffusions and bacterial convection equally 

important; i.e., D2, D4 = O(υ); (2) diffusions dominant; i.e., D2, D4 ≫ υ; and (3) convection 

dominant; i.e., D2, D4 ≪ υ. The results are displayed in Figure 4. It shows that in each 

scenario  is decreasing as ai (i = 1, 2, 3) decays, indicating that as human surveillance 

tends to decrease direct and indirect transmission rates and bacterial shedding rate, this will 

lead to a lower infection risk. One can see from Figure 4 (a)–(c) that, in scenario (1), if the 

surveillance (through human behavior) is strong enough,  can be reduced below the 

critical threshold value 1, which indicates that human behavior can significantly reduce the 

infection risk and control the disease. Moreover, in our PDE cholera model, we have 

numerically found that the difference between  and  is small when D2 = D4 = 

υ, and almost invisible when D2, D4 ≫ υ. For instance, if D2 = D4 = υ = 1, the difference is 

about 10−4; if D2 = D4 = 106 and υ = 1, the difference is about 10−9. Moreover, when 

bacterial convection is dominant,  tends to be elevated; that is, the associated 

infection risk is prone to be higher as shown in Figure 4 (d)–(f). In such cases, although the 

human behavior can still reduce , it may not bring down  back to 1. In other 

words, when bacterial convection is dominant, human surveillance focused on reducing 

transmission rates and bacterial shedding rate may not be sufficient in controlling cholera 

epidemics.

6 Discussion

We have presented a modeling framework for the impact of human behavior on cholera 

dynamics. Fundamental in our assumption is that people are well informed of the 

development and severity of the disease outbreak, made possible by the media coverage and 

reports from various resources, thus will take action to reduce contact with other individuals 

and/or the contaminated environment, to eat well-cooked food, and to introduce safe 

disposal of excreta. Our models involve transmission rates and host shedding rates 

represented as decreasing functions of the infection size, applicable to a variety of effects 

resulting from changes in human behavior. Our analysis is centered on the impact of human 

behavior on cholera dynamics, for both a homogeneous environment (represented by an 

ODE model) and a more heterogeneous environment where spatial movement of the hosts 

and bacteria becomes important (represented by a reaction-convection-diffusion PDE 

model). For the ODE model, we have rigorously proved that the basic reproduction number 

ℛ0 (or, equivalently, the type reproduction number T1) remains a sharp threshold for disease 

dynamics despite the incorporation of human behavior. In particular, when ℛ0 > 1 the 

disease will persist and the endemic equilibrium will be globally asymptotically stable. For 

the PDE model, a sharp threshold reproduction number is also defined and analyzed, and we 

have numerically computed the value of the PDE ℛ0 with various contact rates and 

compared the results with the ODE ℛ0. Their values reflect the (possibly different) 

predictions of disease risks based on the homogeneous and heterogeneous settings. These 
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results could provide useful insight to help public heath administrations for disease 

prevention and intervention.

Cholera transmission occurs through direct (i.e., human-to-human) or indirect (i.e., 

environment-to-human) routes. The multiple transmission pathways and related bacterial 

dynamics in the aquatic environments, together with human behavior, and spatial 

heterogeneity characterized by movements (diffusion and/or convection) of hosts and 

pathogen, complicate the pattern of disease dynamics. Our models aim to investigate the 

interplay of these different biological, ecological, environmental, and sociological factors. 

Our results quantify the natural expectation of human behavior in reducing the severity of an 

epidemic, particularly for a cholera outbreak. Specifically, the results in this paper provide 

mathematical justification of several consequences of human behavior: (1) reducing the 

epidemic and endemic levels; (2) reducing the spread speeds (i.e., traveling wave speeds) of 

the disease; (3) reducing the infection risks (characterized by the basic reproduction 

numbers) in both homogeneous and heterogeneous environments.

We have assumed that human behavior is “rational" in responding to an epidemic. 

Practically, however, media coverage and news broadcasting could contain false information 

on the outbreak details which may lead to inappropriate behavioral response. In such cases, 

the contact rates βi(I) in our models will not be monotonic functions of the infection size. 

During the outbreak of a fatal or novel pathogen, human behavior is more likely to be 

affected by the cumulative total numbers of cases and deaths than by the real-time number 

of infectious individuals [19, 9]. In practice, the movement of humans is not random but 

strongly affected by socioeconomic factors. The current paper did not include such factors, 

though these might be as well worthwhile to model and analyze mathematically. Meanwhile, 

there are several other limitations in our work. For instance, the contact rates and the 

dynamics of Vibrio cholerae in the environment may change subject to seasonality [8]. It 

would be more practical to study a non-autonomous system to better reflect seasonality [30]. 

The work is true under the assumption: bacteria population is decreasing in the absence of 

human contribution (e.g. shedding from infected individuals). Furthermore, rather than using 

a simplistic 1D space dimension, constructing the system on a 2D spatial domain would be 

more realistic for cholera modeling. The diffusion and convection coefficients as well as 

several parameters of disease transmission rates can be taken as space dependent, instead of 

constants, to adequately capture the details of spatial heterogeneity. Collection of data on 

disease epidemiology, behavior change in response to an epidemic, hosts, pathogen, and 

their diffusion is challenging, but vital to test the validity and reliability of our models [15].
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A Model Parameters and Functions

The definition and base values of parameters in our ODE and PDE cholera models are 

provided in Table 1. Here p (resp. y and d) represents a person (resp. year and day)
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Table 1

Definition of cholera model parameters

Parameter Definition Value References

N Total population size of humans 12, 347 p [28]

μ Natural death rate of humans (43.5 y)−1 [46]

a1 Direct transmission rate 1.57 × 10−5 d−1 [28]

a2 Indirect transmission rate 0.011 p−1d−1 [28]

K Half saturation rate 106 cells · ml−1 [17]

γ Recovery rate (5 d)−1 [17]

σ Rate of host immunity loss (3 y)−1 [29]

δ Bacterial net death rate (30 d)−1 [17]

a3 Shedding rate 10 [cells · ml−1d−1] [17]

D1 Diffusion coefficient of susceptible hosts Varied [km2 d−1]

D2 Diffusion coefficient of infectious hosts Varied [km2 d−1]

D3 Diffusion coefficient of recovered hosts Varied [km2 d−1]

D4 Diffusion coefficient of bacteria in the water environment Varied [km2 d−1]

υ Convection coefficient of bacteria Varied [km · d−1]

B Proof of Theorem 3.1

Proof

1. Since S = N − I − R, we consider an equivalent system of (2.1)

(B.1)

The Jacobian matrix of the vector field described by (B.1) is

(B.2)

where
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and S = N − I − R. Evaluating the Jacobian matrix (B.2) at the DFE, (N, 0, 0, 0), 

gives

Let λ1, λ2 and λ3 denote the eigenvalues of J|DFE. Without loss of generality, we 

write λ3 = −(μ + σ), which is clearly negative. It is easy to verify that τ2 ≔ λ1 + λ2 

= a1N − (μ + γ) − δ and 2 ≔ λ1λ2 = (a1N − (μ + γ))(−δ) − a2a3N/K. Hence the 

local stability of the DFE is determined by the sign of τ2 and 2. Notice that one 

can rewrite τ2 and 2 in terms of the type reproduction number T1 as follows: 

 and . It then follows 

from T1 ≤ 1 that we have 2 ≥ 0 and τ2 < 0; meanwhile 2 = 0 holds only if T1 = 1. 

This implies that both λ1 and λ2 are non-positive and at least one of them is strictly 

negative. Therefore, we show that the DFE is locally asymptotically stable (resp. 

Lyapunov stable) when T1 < 1 (resp. T1 = 1).

2. By a similar approach as that in the first case, we can show that the DFE is unstable 

when T1 > 1. Our focus now is the local stability of the EE. We want to prove that 

the EE is locally asymptotically stable. Evaluating the Jacobian matrix (B.2) at the 

EE, we find that the characteristic equation of J|EE is given by

where

According to the Routh-Hurwitz criterion, it remains to show that

(B.3)
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In the following, we assume that  is the EE of (2.1) and the rest of 

arguments is all restricted to the EE. By the equilibrium equation (3.4), we can 

rewrite J11 as follows:

It follows from βi(I) > 0 and  for i = 1, 2 that J11 < 0. Moreover, it is clear 

that J12 < 0, J13 > 0, J21 > 0, J22 < 0, and J33 < 0. Meanwhile, we notice that

Thus, (B.3) is valid by the fact that

The proof is complete.

C Proof of Theorem 3.4

Proof

Suppose that ℛ0 > 1. Hence, by Theorem 3.1, the system (2.1) has two equilibria: the DFE 

and the EE. We now proceed to prove the global stability of the endemic equilibrium of 

(2.1) by using the geometric approach based on the second additive compound matrix [23]. 

The details on the geometric approach can be found in Appendix D. By Theorem 3.1, the 

DFE is unstable, and it is on the boundary of the domain Ω. This implies that the disease is 

uniformly persistent in Ω0, namely,

for some c > 0. It then follows from the compactness of Ω and the uniform persistence of 

system (2.1) that there exists a compact absorbing set in Ω. Meanwhile, the EE is the unique 

equilibrium in Ω0. By the geometric method [23], it remains to prove that the generalized 

Bendixson criterion q̄2 < 0 (see an outline of the geometric method and definition of q̄2 in 
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the Appendix D). The idea of the proof is to choose a norm in ℝ3 and to construct a matrix-

valued function P(S, I, B) such that q̄2 < 0.

First, dropping the equation for R in system (2.1) and using the constant host population, i.e., 

R = N − S − I, we obtain

(C.1)

For simplicity,

The Jacobian matrix associated with the linearized system of (C.1) is

and its second additive compound matrix is

We now take

Then P is nonsingular and C1 in Ω0. Let f denote the vector field of (2.1). Thus,
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and

Thus, the matrix Q = PfP−1 + PJ̃[2]P−1 can be written in the following block form:

where

with
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The vector norm |·| in ℝ3 is chosen as

One can verify that the Lozinskiĭ measure ℳ(Q) with respect to this norm can be estimated 

as

where

Here |Q12| and |Q21| are matrix norms induced by the l1 vector norm, ℳ1 denotes the 

Lozinskiĭ measure with respect to the l1 norm. More specifically,

Since , we have

This leads to
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(C.2)

The last inequality follows from the assumptions on βi(I), i.e., βi(I) ≥ 0 and  for i = 

1, 2. Applying the similar argument together with assumption on β2(I), β3(I) and B′/B = 

β3(I)I/B − δ, we have

(C.3)

Thus, (C.2) and (C.3) yield

It follows from 0 ≤ I(t) ≤ N that

for t sufficiently large. We then obtain

if t is large enough. This in turn implies that q̄2 ≤ −μ/2 < 0 and it completes the proof.

D The Geometric Approach

Here we present the main result of the geometric approach for global stability, originally 

developed by Li and and Muldowney [23].
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We consider a dynamical system

(D.1)

where f : D ↦ ℝn is a C1 function and D ⊂ ℝn is a simply connected open set. Let P(X) be a 

 matrix-valued C1 function in D, and set

where Pf is the derivative of P (entry-wise) along the direction of f, and J[2] is the second 

additive compound matrix of the Jacobian J(X) = Df(X). Let m(Q) be the Lozinskiĭ measure 

of Q with respect to a matrix norm; i.e.,

where represent the identity matrix. Define a quantity  as

where K is a compact absorbing subset of D. Then the condition  provides a Bendixson 

criterion in D. As a result, the following theorem holds:

Theorem D.1

Assume that there exists a compact absorbing set K ⊂ D and the system (D.1) has a unique 

equilibrium point X* in D. Then X* is globally asymptotically stable in D if .

E Derivation of Eigenvalue Problem (5.2)

To analyze the basic reproduction number of the PDE system (4.1), , we 

proceed to calculate ℬ−1 by solving ℬ(ϕ1, ϕ2)T = (y1, y2)T. First, let us consider the 

boundary value problem

(E.1)

The explicit representation of the solution to (E.1) can be found (e.g., using Laplace 

transform) as
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(E.2)

Similarly, solving the equation

we find that

(E.

3)

Since

(E.4)

substituting (E.2) and (E.3) into (E.4) leads to the eigenvalue problem (5.2).
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Highlights

• Both ODE and PDE cholera models with the influence of human behavior are 

proposed.

• Contact rates and shedding rate are decreasing functions of the number of 

infectives.

• Threshold dynamics of the ODE model are established with respect to its R0.

• The traveling wave speed and threshold dynamics of the PDE model are 

analyzed.

• Health education campaign can help to improve cholera control programs.
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Figure 1. 
Infection curves of the ODE model without behavior change, with small behavior change, 

and with large behavior change. The values of parameters and initial condition are: K = 2 × 

106, γ = 1/5, δ = 1/30, μ = 1/(43.5 × 365), a1 = 3 × 10−5, a2 = 0.02, a3 = 15, σ = 1/(3 × 365), 

and (S(0), I(0), R(0), B(0)) = (12346, 1, 0, 0).
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Figure 2. 
Cholera traveling wave speeds vs ai (i = 1, 2, 3) when D2 = D4 = 1. The base values of a1, a2 

and a3 are set as a1 = 1.57 × 10−5 (day−1), a2 = 0.011 (person−1·day−1), and a3 = 10 (cells · 

ml−1·day−1). In each figure, one parameter is varied while the other two are fixed at their 

base values. For each plot, the upper solid curve refers to the progressive velocity c+ and the 

lower dashed curve refers to the regressive velocity c−. The curves in black (resp. red) show 

the critical cholera spreading speeds when υ = 0 (resp. υ = 1).
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Figure 3. 
Influence of D2 and D4 on cholera traveling wave speeds when υ = 1, which is illustrated by 

plotting cholera traveling wave speeds as a function of ai (i = 1, 2, 3). The base values of a1, 

a2 and a3 are a1 = 1.57 × 10−5 (day−1), a2 = 0.011 (person−1·day−1), and a3 = 10 (cells · 

ml−1·day−1). For each plot, the upper solid curve refers to the progressive velocity c+ and the 

lower dashed curve refers to the regressive velocity c−. The curves in black (resp. red) show 

the critical cholera spreading speeds when D2 = D4 = 1 (resp. D2 = D4 = 10).
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Figure 4. 
Influence of human behavior on the cholera infection risk on a spatial domain, illustrated by 

displaying  as a function ai (i = 1, 2, 3). (a)–(c): the solid curve refers to the case 

where D2, D4 = O(υ), and the dashed line indicates where y = 1; (d)–(f): for each plot, the 

black curve refers to the case where D2, D4 ≫ υ, and the red curve refers to the case where 

D2, D4 ≪ υ.
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