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Abstract: Purpose: To investigate the association between the N-acetyltransferase 1 (NAT1) slow and rapid acetyla-
tion phenotypes with cancer risk based on a meta-analysis. Methods: Previously published case-control studies 
were retrieved from PubMed, Embase, and Web of Science. Odds ratios (ORs) with 95% confidence intervals (CIs) 
were determined to assess the relationship between NAT1 polymorphisms and cancer risk. Results: A total of 73 
studies (24874 cases and 30226 controls) were included in this meta-analysis. No significant association was 
identified between NAT1 polymorphisms (slow acetylation versus rapid acetylation genotypes: OR = 0.978, 95% CI 
= 0.927-1.030, P < 0.001 for heterogeneity, I2 = 45.5%) and cancer risk, whereas a significantly reduced risk of 
pancreatic cancer was identified in individuals with NAT1 slow acetylation genotype (OR = 0.856, 95% CI = 0.733-
0.999, P =0.509 for heterogeneity, I2 = 0). When the NAT1 slow acetylation genotype was analysed on the basis 
of stratified analyses of ethnicity, a significantly reduced risk of head and neck cancers was found among Asian 
(OR=0.281, 95% CI = 0.127-0.622). When the NAT1 slow acetylation genotype was analysed on the basis of strati-
fied analyses of source of control, only significantly reduced risks of colorectal cancer (OR = 0.882, 95% CI = 0.798- 
0.974, P = 0.212 for heterogeneity, I2 = 22.9) and pancreatic cancer (OR=0.856, 95% CI = 0.733-0.999, P = 0.509 
for heterogeneity, I2 = 0) were found among hospital-based studies. Conclusions: No significant association between 
the NAT1 polymorphisms and the risk of cancer was found except for pancreatic cancer.
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Introduction

Cancer, also known as malignant neoplasm, is 
a major public health problem worldwide. 
Approximately 12.7 million cancer cases and 
7.6 million deaths caused by were reported by 
GLOBOCAN 2008 [1]. Carcinogenesis is a multi-
step process in which numerous genetic and 
environmental factors are involved [2]. It has 
been shown that host genetic factors contrib-
ute to carcinogenesis through modification of 
gene structure and protein expression [3, 4]. 
Recent studies suggest that variants of genes 
encoding metabolic enzymes are significantly 
associated with the development of a number 
of cancers.

The NAT gene on chromosome 8p21.3-23.1, 
which encodes N-acetyltransferases (NAT; 

E.C.2.3.1.5) isozymes NAT1 (N-acetyltrans- 
ferase 1) and NAT2 (N-acetyltransferase 2) [5] 
and phase II xenobiotic metabolizing enzyme, 
plays an essential role in detoxifying carcino-
gens, and their reactive intermediates are also 
involved in N-acetylation and O-acetylation of 
aromatic and heterocyclic amine carcinogens 
[6]. There are many systematic reviews on the 
association of NAT2 polymorphism and the risk 
of cancer. A meta-analysis conducted by Zhong 
[7] indicated that no association was found 
between NAT2 acetylation status and gastric 
cancer risk. No significant association was 
found in overall analysis between NAT2 acetyla-
tion status and lung cancer risk by Cui’s meta-
analysis [8], either. A meta-analysis conducted 
by Gong [9] found that a statistically significant 
association between NAT2 polymorphism and 
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prostate cancer appeared in Asians, but not in 
Caucasians. And a pooled analysis conducted 
by Liu [10] found that suggested that individuals 
with NAT2 genotype had an elevated risk of 
colorectal adenoma risk.

To date, 28 human NAT1 variants have be- 
en identified (http://louisville.edu/medschool/
pharmacology/consensushuman-arylamine- 
n-acetyltransferase-gene-nomenclature/). The 
NAT1*4 genotype has historically been desig-
nated as “wild type” and is commonly used a 
reference for studying NAT1 polymorphisms. In 
the past decade, numerous epidemiological 
studies investigating the association between 
NAT1 polymorphisms and cancer risk have 
been reported, however, the results of some 
studies are conflicting. For example, a case–
control study conducted in Norway by 
Zienolddiny et al. [11] found that the fast acety-
lator phenotype of NAT1 was significantly asso-
ciated with lung cancer. However, negative 
association between them has also been 
reported [12]. 

In the present study, we conducted a meta-
analysis to systematically study the association 
between NAT1 polymorphisms and cancer risk 
based on published studies.

Materials and methods

Selection of published studies 

A systematic search in the PubMed, Embase 
and Web of Science databases was conducted 
to retrieve studies published until July 1, 2014 
using the following MeSH terms and keywords: 
‘NAT1’ or ‘N-acetyltransferase 1’, ‘polymor-
phism’ or ‘variant’, and ‘cancer’ or ‘carcinoma’. 
The references of retrieved studies were also 
scanned to identify eligible studies. Studies 
included in the present meta-analysis have to 
meet the following criteria: (i) articles investi-
gating the association between NAT1 polymor-
phisms and cancer risk; (ii) case-control stud-
ies; (iii) available genotype frequency for com-
puting odds ratios (ORs) with 95% confidence 
intervals (CIs); (iv) studies with full-text article. 
Criteria for excluding studies were (i) only case 
population; (ii) outcome comparison not avail-
able or not able to be determined; (iii) duplicat-
ed publications; (iv) benign tumor or precancer-
ous lesions.

Data extraction 

Two investigators (Zhang KY and Gao LJ inde-
pendently screened the titles, abstracts and 
full texts using a standardized extraction form. 
Agreement was reached to resolve conflicting 
evaluation based on consensus and discus-
sion. For each study, the following results were 
collected: first author’s name, year of publica-
tion, country of origin, ethnicity, cancer type, 
genotyping method, source of controls (popula-
tion-based [PB] or hospital-based [HB] con-
trols), total number of cases and controls, and 
genotype distributions in cases and controls. 
No minimum number of patients was defined in 
the present meta-analysis. In accordance with 
most studies, individuals with at least one  
of the high-activity NAT1 alleles (NAT1*10, 
NAT1*21, NAT1*24, and NAT1*25) were 
defined as rapid acetylators, whereas individu-
als carrying two low-activity NAT1 alleles(others 
except the high-activity alleles ) were consid-
ered as slow acetylators.

Statistical analysis

Statistical analyses were performed using the 
STATA software (version 12.0; Stata Cor- 
poration, College Station, Texas). Statistical 
significance was evaluated using two-tailed 
test and a P value less than 0.05 was 
considered as statistical significance unless 
stated otherwise. Hardy-Weinberg equilibrium 
(HWE) in controls was assessed by chi-squared 
test and a P value less than 0.05 was 
considered as significant disequilibrium. If HWE 
disequilibrium was identified (P < 0.05), or 
equilibrium evaluation was not possible, 
sensitivity analysis was performed. The 
strength of the association between NAT1 
polymorphisms and cancer risk was evaluated 
on the basis of ORs with 95% confidence 
intervals (CIs). The chi-square-based Q statistic 
was used to test heterogeneities among the 
studies included in the present meta-analysis 
[13]. A fixed-effect model with Mantel–Haenszel 
method was used to calculate the pooled odds 
ratios if Q-test P value was ≥ 0.1 [14]. Otherwise, 
a random-effect model with inverse variance 
method was used. The risks (ORs) of cancer 
associated with the NAT1 slow/rapid acetylation 
polymorphisms were estimated for each study. 
One-way sensitivity analysis was performed to 
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Table 1. Characteristics of the studies included in the meta-analysis

First Author Year Country Ethnicity Cancer type Genotyping Method Source of 
control Case Control

lung cancer
    Abdel-Rahman 1998 USA Mixed lung cancer PCR-RFLP HB 45 47
    Bouchardy, C. 1998 France Caucasian lung cancer PCR-RFLP HB 150 172
    Ishibe 1998 USA Mixed lung cancer PCR-RFLP HB 174 319
    Wikman, H 2001 Germany Caucasian lung cancer PCR-RFLP HB 392 351
    Zienolddiny, S. 2008 Norway Caucasian lung cancer Sequecing PB 390 186
colorectal cancer

    Eichholzer 2012 Switzerland Caucasian colorectal cancer MassArray PB 399 776
    Cleary 2010 Canada Caucasian colorectal cancer TaqMan HB 1159 1284
    Yeh 2009 China Asian colorectal cancer PCR–RFLP HB 722 733
    Nothlings 2009 USA Mixed colorectal cancer TaqMan/Sequence Detection System PB 844 1345
    Sorensen 2008 Denmark Caucasian colorectal cancer TaqMan/Sequence Detection System HB 377 766
    Butler 2008 USA others colorectal cancer PCR–RFLP/(AS)-PCR HB 208 299
    Butler 2008 USA Caucasian colorectal cancer PCR–RFLP/(AS)-PCR HB 282 528
    Mahid 2007 USA Mixed colorectal cancer TaqMan HB 123 223
    Lilla 2006 Germany Caucasian colorectal cancer Fluorescence-based melting curve PB 605 604
    Landi 2005 Italy Caucasian colorectal cancer Sequence Detection System HB 359 321
    Chen 2006 China Asian colorectal cancer PCR–RFLP PB 138 343
    Kiss 2004 Hungary Caucasian colorectal cancer PCR–RFLP HB 500 500
    Van Der Hel 2003 Netherlands Caucasian colorectal cancer PCR–RFLP PB 218 804
    Zhang 2002 China Asian colorectal cancer PCR–RFLP HB 104 101
    Tiemersma 2002 Netherlands Caucasian colorectal cancer Allele-specific hybridization PB 102 536
    Le Marchand 2001 USA Mixed colorectal cancer PCR–RFLP PB 539 649
    Katoh 2000 Japan Asian colorectal cancer PCR–RFLP/(AS)-PCR HB 103 122
    Kampman 1999 USA Mixed colorectal cancer Oligonucleotide ligation assay PB 1624 1963
    Chen 1998 USA Mixed colorectal cancer PCR–RFLP PB 212 221
    Bell 1995 UK Caucasian colorectal cancer PCR–RFLP HB 202 112
    Moslehi 2006 USA Mixed colorectal cancer TaqMan PB 636 636
    Ishibe 2002 USA Mixed colorectal cancer PCR–RFLP HB 132 192
    Probst-Hensch 1996 USA Mixed colorectal cancer PCR–RFLP HB 441 484
head and neck cancer
    Demokan 2010 Turkey others head and neck cancer PCR–RFLP HB 95 93
    Fronhoffs 2001 Fronhoffs Caucasian head and neck cancer PCR HB 291 300
    Olshan 2000 USA Mixed head and neck cancer PCR–RFLP HB 171 193
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    Majumder 2012 India others head and neck cancer TaqMan HB 299 381
    Katoh 1998 Japan Asian head and neck cancer PCR–RFLP HB 62 122
pancreatic cancer
    Suzuki 2008 USA Mixed pancreatic cancer PCR–RFLP HB 649 585
    Li 2006 USA Mixed pancreatic cancer TaqMan HB 304 322
    Jiao 2007 USA Caucasian pancreatic cancer TaqMan HB 501 548
non-Hodgkin’s lymphoma
    Chiu 2005 USA Mixed non-Hodgkin’s lymphoma PCR–RFLP PB 267 543
    Kilfoy 2010 USA Mixed non-Hodgkin’s lymphoma TaqMan PB 453 522
    Morton 2006 USA Mixed non-Hodgkin’s lymphoma TaqMan PB 916 746
    Aschebrook-Kilfoy 2012 USA Mixed non-Hodgkin’s lymphoma PCR–RFLP PB 328 447
    Kerridge 2002 Australia Caucasian non-Hodgkin’s lymphoma PCR–RFLP HB 164 193
bladder cancer
    Koutros 2011 USA Caucasian bladder cancer TaqMan PB 247 324
    Covolo 2008 Italy Caucasian bladder cancer PCR–RFLP HB 197 211
    McGrath 2006 USA Caucasian bladder cancer TaqMan PB 193 479
    Gu 2005 USA Caucasian bladder cancer PCR–RFLP HB 490 491
    Garcia-Closas 2005 Spain Caucasian bladder cancer TaqMan HB 965 942
    Hung, R 2004 Italy Caucasian bladder cancer PCR–RFLP HB 201 214
    Schroeder 2003 USA Mixed bladder cancer PCR–RFLP HB 234 207
    Stern 2002 USA Mixed bladder cancer PCR–RFLP HB 225 200
    Cascorbi 2001 Germany Caucasian bladder cancer PCR–RFLP HB 425 343
    Hsieh 1999 China Asian bladder cancer PCR–RFLP HB 65 171
    Taylor 1998 USA Mixed bladder cancer PCR–RFLP HB 230 203
    Okkels 1997 Denmark Caucasian bladder cancer PCR–RFLP HB 248 223
prostate cancer
    Sharma 2010 Canada Mixed prostate cancer TaqMan PB 1685 1642
    Sharma 2010 Canada Caucasian prostate cancer TaqMan PB 421 421
    Kidd 2011 USA Caucasian prostate cancer mass spectrometry PB 200 184
    Iguchi 2009 USA Caucasian prostate cancer TaqMan PB 179 170
    Hein 2002 USA Caucasian prostate cancer PCR–RFLP HB 47 121
    Costa 2005 Portugal Caucasian prostate cancer PCR–RFLP PB 127 145
    Rovito 2005 USA Caucasian prostate cancer TaqMan PB 139 146
    Fukutome 1999 Japan Asian prostate cancer PCR–RFLP HB 101 97
gastri cancer
    Wideroff 2007 USA Caucasian gastri cancer TaqMan PB 116 211
    Katoh 2000 Japan Asian gastri cancer PCR–RFLP/(AS)-PCR HB 140 122
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    BOISSY 2000 USA Caucasian gastri cancer PCR-RFLP HB 94 112
    Lang 2003 Poland Caucasian gastri cancer PCR-RFLP HB 292 410
breast cancer
    Van Der Hel 2003 Netherlands Caucasian breast cancer PCR-RFLP PB 228 264
    Lee 2003 Korea Asian breast cancer TaqMan PB 245 275
    Krajinovic 2001 Canada Caucasian breast cancer PCR allele-specific-oligonucleotide (ASO) hybridization assays HB 125 182
    Millikan 2000 USA Mixed breast cancer PCR-RFLP HB 490 469
other cancers
    Muller 2008 Germany others acute myeloid leukemia TaqMan HB 132 208
    Krajinovic 2000 Canada Caucasian acute myeloid leukemia PCR-RFLP HB 155 306
    Wideroff 2007 USA Caucasian Esophageal adenocarcinoma TaqMan PB 67 211
    Zhang 2005 China Asian hepatocellular carcinoma PCR-RFLP HB 96 173
    Yu 2000 China Asian hepatocellular carcinoma PCR-RFLP HB 151 211
    Lincz 2004 Australia Caucasian multiple myeloma PCR-RFLP HB 90 198
PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism; PB: population-based case control study; HB: hospital-based case control.
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Table 2. Pooled ORs and 95% CIs of stratified meta-analysis

Variables N OR 95% CIs I2 (%) P for  
Heterogeneity

Total 76 0.978 0.927-1.030 45.5 < 0.001
Cancer type
    Lung cancer 5 0.867 0.592-1.269 73.3 0.005
    Colorectal cancer 23 0.961 0.880-1.050 54.8 0.001
    Head and neck cancer 5 0.826 0.595-1.146 63.5 0.027
    Pancreatic cancer 3 0.856 0.733-0.999 0 0.509
    Non-Hodgkin’s lymph 5 1.007 0.892-1.136 0 0.863
    Bladder cancer 12 1.068 0.929-1.227 47.2 0.035
    Prostate cancer 8 1.019 0.892-1.164 9.3 0.358
    Gastri cancer 4 0.913 0.532-1.567 81.0 0.001
    Breast cancer 5 0.967 0.826-1.132 0 0.791
    other cancers 6 1.102 0.906-1.339 0 0.641
Source of control
    PB 28 0.978 0.927-1.030 27.0 0.096
    HB 48 0.941 0.872-1.016 51.6 < 0.001
Ethnicity
    Caucasian 39 0.981 0.906-1.061 49.3 < 0.001
    Asian 11 0.887 0.730-1.076 44.6 0.054
    Mixed 22 0.996 0.918-1.080 46.6 0.009
    Others 4 1.028 0.843-1.253 0 0.532
N: involved studies’ number; OR, odds ratio; PB: population-based case control 
study; HB: hospital-based case control. Random model was chosen for data pooling 
when P-value < 0.10 and /or I2 > 50%; otherwise fixed model was used; The num-
bers in bold indicated statistically significant values.

assess the stability of the results. Specifically, 
each study was sequentially removed from the 
meta-analysis to evaluate its influence on 
pooled ORs. Begg and Mazumdar [15] adjusted 
rank correlation test and the Egger regression 
asymmetry test [16] were used to identify 
publication bias. 

Results

Characteristics of the studies

A total of 207 articles were retrieved from 
PubMed, Embase, and Web of Science. Among 
them, 76 case-control studies including 24874 
cases and 30226 controls in73 articles met the 
inclusion criteria. Three articles reported two 
independent studies that were considered sep-
arately. The characteristics of each study were 
listed in Table 1. In general, there were 5 lung 
cancer studies [17-20], 23 colorectal cancer 
studies [21-41], 5 head and neck cancer stud-
ies [42-46], 3 pancreatic cancer studies [47-
49], 5 non-Hodgkin’s lymphoma studies [50-

CI = 0.927-1.030, P < 0.001 for heterogeneity, 
I2 = 45.5%). Substantial heterogeneity was 
identified among these studies. 

In the subgroup analyses by ethnicity, no 
significant risks were found in Caucasian (OR = 
0.981, 95% CI = 0.906-1.061, P < 0.001 for 
heterogeneity, I2 = 49.3%), Asian (OR = 0.887, 
95% CI = 0.730-1.076, P < 0.001 for heteroge-
neity, I2 = 44.6%), Mixed population(OR = 
0.996, 95% CI = 0.918-1.080, P < 0.001 for 
heterogeneity, I2 = 46.6%) and Others (OR = 
1.028, 95% CI = 0.843-1.253, P = 0.532 for 
heterogeneity, I2 = 0). In addition, no significant-
ly increased risk was detected in different 
source of controls (for hospital-based studies: 
OR = 0.941, 95% CI = 0.872-1.016, P < 0.001 
for heterogeneity, I2 = 51.6%); for population-
based studies: OR = 0.978, 95% CI = 0.927-
1.030, P = 0.096 for heterogeneity, I2 = 27.0%). 
In stratified analyses by cancer types, signifi-
cant associations were found only for pancre-
atic cancer (OR = 0.856, 95% CI = 0.733-0.999, 
P = 0.509 for heterogeneity, I2 = 0) (Table 2). 

54], 12 bladder cancer studies 
[55-66], 8 prostate cancer 
studies [67-73], 4 gastric can-
cer studies [34, 74, 75], 5 
breast cancer studies [76-80] 
and 6 other cancers studies 
[74, 81-85]. Thirty-nine, 11, 22, 
and 4 studies were on 
Caucasian, Asian, and Mixed 
population, and other popula-
tion, respectively. There were 
48 hospital-based studies and 
28 population-based studies. 

Meta-analysis 

The strength of the association 
between NAT1 polymorphisms 
(slow acetylation versus rapid 
acetylation genotypes) and the 
susceptibility to cancers were 
shown in Table 2. Overall, the 
NAT1 acetylation phenotype 
was not significantly associat-
ed with cancer risk compared 
with the NAT1 rapid acetylation 
phenotype. The forest plot of 
overall comparison between 
slow and rapid acetylation gen-
otypes was shown in Figure 1. 
The pooled OR was 0.978 (95% 
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We also performed analyses based on different 
cancer types in different ethnicities. The results 
showed that significantly reduced risk of slow 
acetylation genotype of head and neck cancers 
was found in Asian (OR = 0.281, 95% CI = 
0.127-0.622). However, no significant associa-
tion between NAT1 polymorphisms and risks of 
other types of cancers was detected in both 

= 42.158, df = 9, P < 0.001) and ethnicity (χ2 = 
36.737, df = 3, P < 0.001), but not the source of 
controls (χ2 = 0.615, df = 1, P = 0.433) contrib-
uted substantially to heterogeneity. Sensitivity 
analysis through sequentially removal of indi-
vidual study demonstrated that no study signifi-
cantly affected the overall OR (the 95% CIs 
always overlap one unit).

Figure 1. Meta-analysis of the association between NAT1 polymorphisms (slow and rapid acetylation genotypes) 
and susceptibility to cancer. The sizes of the symbols are proportional to the study.

Table 3. Stratified analyses of NAT1 polymorphisms on cancer risk 
by ethnicity

Variables N OR 95% CIs I2 (%) P for  
Heterogeneity

Total 76 0.978 0.927-1.030 45.5 < 0.001
Caucasian
    Lung cancer 3 0.912 0.592-1.404 74.5 0.020
    Colorectal cancer 10 0.899 0.773-1.044 63.8 0.003
    Head and neck cancer 1 0.927 0.656-1.309 _ _
    Pancreatic cancer 1 0.905 0.700-1.169 _ _
    Non-Hodgkin’s lymph 1 0.874 0.575-1.328 _ _
    Bladder cancer 8 1.104 0.993-1.227 1.5 0.418
    Prostate cancer 6 1.003 0.834-1.207 30.8 0.204
    Gastric cancer 3 0.985 0.498-1.948 84.6 0.002
    Breast cancer 3 0.925 0.728-1.174 0 0.916
    other cancers 6 1.102 0.906-1.339 0 0.641
Asian
    Colorectal cancer 4 0.855 0.699-1.046 9.8 0.344
    Head and neck cancer 1 0.281 0.127-0.622 _ _
    Bladder cancer 1 1.156 0.641-2.086 _ _
    Prostate cancer 1 1.294 0.648-2.584 _ _
    Gastric cancer 1 0.708 0.423-1.184 _ _
    Breast cancer 1 0.836 0.575-1.216 _ _
Mixed
    Lung cancer 2 0.616 0.147-2.578 85.1 0.010
    Colorectal cancer 8 1.065 0.954-1.188 36.7 0.136
    Head and neck cancer 1 0.742 0.491-1.122 _ _
    Pancreatic cancer 2 0.829 0.683-1.006 6.6 0.301
    Non-Hodgkin’s lymph 4 1.020 0.899-1.157 0 0.846
    Bladder cancer 3 0.822 0.461-1.466 81.6 0.004
    Prostate cancer 1 1.019 0.884-1.176 _ _
    Breast cancer 1 1.086 0.843- 1.399 _ _
    others
    Colorectal cancer 1 1.183 0.803- 1.742 _ _
    Head and neck cancer 2 1.034 0.770- 1.388 9.2 0.294
N: involved studies’ number; OR, odds ratio; PB: population-based case control 
study; HB: hospital-based case control. Random model was chosen for data pooling 
when P-value < 0.10 and /or I2 > 50%; otherwise fixed model was used; The num-
bers in bold indicated statistically significant values.

Asian and Caucasian (Table 
3). In addition, we conducted 
analyses based on different 
cancer types among source 
of control and found signifi-
cantly reduced risks of both 
colorectal cancer (OR = 
0.882, 95% CI = 0.798- 
0.974, P = 0.212 for hetero-
geneity, I2 = 22.9) and pan-
creatic cancer (OR = 0.856, 
95% CI = 0.733-0.999, P = 
0.509 for heterogeneity, I2 = 
0) among hospital-based 
population. Similarly, no sig-
nificant association between 
NAT1 polymorphisms and 
the risks of other different 
types of cancers was found 
in both hospital-based stud-
ies and population-based 
studies (Table 4).

Heterogeneity and sensitivity 
analyses

Significant heterogeneities 
was detected between stud-
ies. Then the source of het-
erogeneity was evaluated by 
cancer types (lung cancer, 
colorectal cancer, head and 
neck cancer, pancreatic can-
cer, non-Hodgkin’s lympho-
ma, bladder cancer, prosta- 
te cancer, gastric cancer, 
breast cancer and other 
types of cancers), ethnicity 
(Caucasian, Asian, Mixed 
and Others) and source of 
controls (population-based 
and hospital-based case 
controls). The results sug-
gested that cancer types (χ2 
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Publication bias

As shown in Figures 2 and 3, the symmetrical 
funnel plots suggested no publication bias (P = 
0.260). The Egger’s test further supported no 
publication bias in the present meta-analysis (P 
= 0.150).

Discussion

To date, many epidemiological studies have 
evaluated the association of NAT1 polymor-
phism with the risk of cancer such as (lung can-
cer [11, 17-19], colorectal cancer [22-27], head 
and neck cancer [43, 45, 46], pancreatic can-
cer [47-49] non-Hodgkin’s lymphoma [50-52], 
bladder cancer [55-59], prostate cancer [67, 
69, 70], gastric cancer [34, 74, 75], breast can-
cer [76-79], but the results remain contradicto-
ry. Meta-analysis is a powerful method for the 
evaluation of effect size of numerous indepen-
dent epidemiological studies based on statisti-
cal analysis, providing more reliable results 
than single study. To the best of our knowledge, 
this study is the first meta-analysis to date 

including the largest and most comprehensive 
assessments of the relationship between the 
NAT1 polymorphisms and cancer risk. No sig-
nificant association between the NAT1 poly-
morphisms and cancer risk was identified in 
the present meta-analysis of 73 case-control 
studies including 24874 and 30226 control 
cases. In the stratified analysis by cancer types, 
no significant associations were found among 
studies on lung cancer, colorectal cancer, head 
and neck cancer, non-Hodgkin’s lymphoma, 
bladder cancer, prostate cancer, gastric cancer 
and breast cancer. However, we observed an 
increase risk in pancreatic cancer among the 
NAT1 rapid acetylator compared to the slow 
one. Our results are consistent with five previ-
ously pooled analysis on colorectal cancer [86, 
87], prostate cancer [88] and bladder cancer 
[89, 90], in which no significant association 
was found between NAT1 polymorphisms and 
cancer risk. Inconsistent results among differ-
ent studies on various cancers may be 
explained by the distinct role of NAT1 in differ-
ent cell types and tissues. However, no signifi-

Table 4. Stratified analyses of NAT1 polymorphisms on cancer risk by source of control
Variables N OR 95% CIs Tau-squared I2 (%) P for Heterogeneity
Total 76 0.978 0.927-1.030 0.0215 45.5 < 0.001
PB
    Lung cancer 1 0.695 0.474-1.020 0.1279 _ _
    Colorectal cancer 10 1.063 0.929-1.217 0.0225 65.0 0.002
    Non-Hodgkin’s lymph 4 1.020 0.899-1.157 0 0.846
    Bladder cancer 2 1.022 0.792-1.318 0.0265 0 0.587
    Prostate cancer 6 1.035 0.923-1.161 0 0 0.818
    Gastric cancer 1 1.385 0.853-2.249 0.2425 _ _
    Breast cancer 3 0.896 0.717-1.118 0 0 0.832
    other cancers 1 0.834 0.476-1.459 _ _ _
HB
    Lung cancer 4 0.911 0.564-1.471 0.0074 76.7 0.005
    Colorectal cancer 13 0.882 0.798- 0.974 0.0334 22.9 0.212
    Head and neck cancer 5 0.826 0.595-1.146 0.0836 63.5 0.027
    Pancreatic cancer 3 0.856 0.733-0.999 0 0 0.509
    Non-Hodgkin’s lymph 1 0.874 0.575-1.328 0 _ _
    Bladder cancer 10 1.075 0.911-1.269 0.0152 55.9 0.015
    Prostate cancer 2 0.784 0.483-1.272 0 76.4 0.040
    Gastric cancer 3 0.786 0.379-1.629 85.9 0.001
    Breast cancer 2 1.044 0.835-1.306 0 0.517
    other cancers 5 1.146 0.930-1.411 0 0.641
N: involved studies’ number; OR, odds ratio; PB: population-based case control study; HB: hospital-based case control. Ran-
dom model was chosen for data pooling when P-value < 0.10 and /or I2 > 50%; otherwise fixed model was used; The numbers 
in bold indicated statistically significant values.
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cant association between the NAT1 pheno-
types and cancer risk was detected in the pres-
ent meta-analysis even when stratifying for 
race and study design. 

Interestingly, analyses based on various cancer 
types in different ethnicities revealed that a sig-
nificantly reduced risk of a head and neck can-
cer study among Asian (OR = 0.281, 95% CI = 
0.127-0.622) was found. However, given the 
limited sample size, the result should be care-
fully interpreted and further validation in larger 

phisms and breast cancer risk was identified 
[92]. First, ethnic differences of NAT1 polymor-
phisms may contribute to the discrepancy of 
these results. In addition, the influence of 
genetic variants may be masked by other as-
yet-unidentified causal genes involved in carci-
nogenesis, because gene-to-gene and gene-to-
environment interactions have been of great 
interest to evaluate the exact roles of genetic 
polymorphisms in carcinogenesis. However, 
lack of the original data limited our further eval-
uation of potential gene-to-gene and gene-to-

Figure 2. No significant publication bias was found based on the Begg’s 
funnel plots. Each point represents an individual study for the indicated 
association. Log (OR), natural logarithm of OR. Horizontal line, mean ef-
fect size.

Figure 3. No significant publication bias was found on the basis of Egg-
er’s funnel plots. Each point represents an individual study for the in-
dicated association. Log (OR), natural logarithm of OR. Horizontal line, 
mean effect size. 

well-designed studies are high-
lighted. To date, numerous stud-
ies have been conducted to 
detect the overall effects of NAT1 
polymorphisms on cancer sus-
ceptibilities. However, many stud-
ies generated conflicting results. 
Although negative association 
between NAT1 polymorphisms 
and cancer risk [12] has been 
reported, two independent stud-
ies [18, 19] have observed a sig-
nificant association of the NAT1 
polymorphism with lung cancer 
risk. However these studies 
should be interpreted cautiously 
because these do not agree on 
the NAT1 risk genotype. Given 
that chemical compounds in 
tobacco are inactivated by phase 
II enzymes, it has been proposed 
that head and neck cancer risk 
could be modified by NAT geno-
types. Head and neck cancer are 
strongly associated with smoking, 
and a few studies have explored 
the role of NAT1 polymorphisms 
in the risk of developing head and 
neck cancer in smokers. However, 
these findings are inconsistent. 
Either a decreased risk in carriers 
with the variant NAT1*10 [91] or a 
lack of association between NAT1 
polymorphisms and the risk of 
head and neck cancer have been 
reported [43]. The NAT1*10 vari-
ant was associated with increased 
risk of breast cancer among 
women who consumed well-done 
meat [78]. The other study, how-
ever, reported that no significant 
association of NAT polymor-
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environment interactions and to validate the 
influence of ethnic differences on the effects of 
functional polymorphism on cancer risk. 

In addition, analysis based on cancer types 
stratified by the source of controls indicated 
only significantly reduced risk of colorectal can-
cer and pancreatic cancer in studies using hos-
pital-based controls. However, these hospital-
based studies may have biases because cer-
tain benign diseases that have different risk of 
developing malignancy can be included in such 
controls and they are not the best representa-
tive of general population. Thus, the use of a 
proper and representative cancer-free control 
subjects is critically important for reducing 
study biases in such case-control studies.

The present meta-analysis has some limita-
tions. First, lack of the original data of the 
reviewed studies limited our evaluation on the 
potential both gene-gene and gene-environ-
ment interactions. Second, the controls were 
not uniformly defined. Some studies employed 
a healthy population as the reference group, 
whereas others used hospital patients without 
gastric cancer as the reference group. Thus, 
the controls may not always truly represent the 
underlying source populations. In addition, our 
meta-analysis was based on unadjusted OR 
estimates because not all published studies 
were presented with adjusted ORs. ORs were 
provided in some other studies, however, the 
ORs were not adjusted by the same potential 
confounders. Fourth, we only considered the 
NAT1 metabolic enzyme. Because NAT2 
enzyme is involved in the bioactivation and 
detoxification of heterocyclic amine, it may also 
play a role in modifying cancer risk, this may 
increase the misclassification of measured 
variables. Therefore, these results should be 
interpreted cautiously.

In summary, the present meta-analysis sug-
gests no significant association between NAT1 
slow genotype and cancer risk except for pan-
creatic cancer. However, we observed a reduce 
risk in pancreatic cancer among the NAT1 slow 
acetylators. Further studies evaluating the 
effects of gene-gene and gene-environment 
interactions may eventually lead to a better and 
more comprehensive understanding of the 
association between NAT1 genotypes and can-
cer risk.
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