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ABSTRACT We describe an approach to analyzing pro-
tein sequence databases that, starting from a single uncharac-
terized sequence or group of related sequences, generates
blocks of conserved segments. The procedure involves iterative
database scans with an evolving position-dependent weight
matrix constructed from a coevolving set of aligned conserved
segments. For each iteration, the expected distribution of
matrix scores under a random model is used to set a cutoffscore
for the inclusion of a segment in the next iteration. This cutoff
may be calculated to allow the chance inclusion ofeither a fixed
number or a fixed proportion of false positive segments. With
sufficiently high cutoff scores, the procedure converged for all
alignment blocks studied, with varying numbers of iterations
required. Different methods for calculating weight matrices
from alignment blocks were compared. The most effective of
those tested was a logarithm-of-odds, Bayesian-based approach
that used prior residue probabilities calculated from a mixture
of Dirichlet distributions. The procedure described was used to
detect novel conserved motifs of potential biological impor-
tance.

With the rapid growth of genome sequence information and
the inability of current experimental techniques to generate
functional information at an equal pace, computer-assisted
analysis is becoming a focus of modem biology. While the
largest complete genome sequences now available are those
of organelles and large DNA viruses, within a few years we
will be able to analyze the complete genomes of such orga-
nisms as Escherichia coli and yeast (1). The extent to which
these sequences prove valuable will depend heavily upon the
power of computer analysis.
The study of a new sequence generally begins with a

database similarity search (reviewed in ref. 2), such as that
performed by the FASTA (3) or BLAST (4-6) algorithms. Once
a group of similar sequences has been found, local multiple
alignment methods may be used to extract common patterns
(e.g., refs. 7-10). These methods may uncover weak but
potentially functionally important conservation that was un-
detectable by simple database search.
The database may be scanned for sequence motifs that

have been extracted from multiple alignments and are gen-
erally associated with a particular function. Motifs may be
represented as specific patterns of required or permitted
amino acids (e.g., refs. 11-13). An alternative representation
is provided by position-dependent weight matrices or profiles
(e.g., refs. 8, 10, and 14-21). These may be generated either
from gapped multiple alignments (17) or from aligned blocks
of relatively short protein segments (typically between 12 and
35 residues) containing no gaps (10, 20). Local multiple
alignments reveal the boundaries of conserved sequence
regions and the relative importance ofvarious residues within
them. By taking advantage of this information, motif search
methods are capable of detecting subtle sequence similari-

ties. They appear to be the tools of choice for identifying
members of protein families and for classifying protein se-
quences (e.g., ref. 22).
We describe here a statistically based approach to the

identification within a sequence database ofprotein segments
related to an ungapped alignment block. We then apply this
method in a semiautomatic strategy for delineating protein
families, starting from a single sequence or a group of related
sequences.

From Alignment Blocks to Weight Matrices

The simplest weight matrices for database searching, and
those we will study here, are ones that do not allow gaps and
that must be matched across their entire lengths (8, 10, 15, 18,
20). Such matrices are generated from alignment blocks
which consist ofN ungapped sequence segments of length L.
A protein weight matrix, Wjk, generated from such a block
will have 20 rows (one for each possible residue) and L
columns. Given an alignment block, there are many possible
ways in which the scores of the corresponding weight matrix
may be calculated. We have investigated four methods.
Method A: Average-Score Method. For pairwise protein

sequence comparison, many different sets of amino acid
substitution scores, such as the PAM (23-25) or BLOSUM
(26, 27) matrices, have been proposed. Let the scores in such
a substitution matrix be Sij, and suppose that amino acid i
occurs Cjk times within column k of the given alignment
block. Perhaps the simplest way to generate a position-
dependent weight matrix from the scores SV is to average
them: let Wjk = (V,1CtkSj)/N. This method is essentially that
proposed by Gribskov et al. (17) for the calculation of
profiles.
Method B: Bayesian Prediction Method. Theory supports

specifying weight matrix scores to be Wjk = log(qjk/pj), where
qjk is the probability for residuej to occur in motif position k,
and pj is the "background" probability of residuej (8, 10, 15,
16, 19, 21). As the number of essentially independent seg-
ments grows, estimates of qjk should converge to Cjk/N, but
this is a poor formula for small N (10, 15, 16). The simplest
Bayesian prediction approach estimates qjk as (Cjk + Bpj)/(N
+ B) (10). The parameter B may be thought of as
"pseudocounts," allotted among the residues in proportion
to the pi; empirically, choosing B - N has proven effica-
cious (10).
Method C: Data-Dependent Pseudocount Method. Method B

unfortunately ignores amino acid interrelationships. A simple
yet ad hoc way around this problem is for the residue
pseudocounts to depend, via a substitution matrix St,, upon the
observed data. Formally, the number of pseudocounts, Bpj,
for residuej in motif position k may be multiplied by (X,?21=Cik
e~)sO/N, where A is the natural scale for matrix S (28).
Pseudocounts for residues similar to those observed are aug-
mented at the cost of residues dissimilar. This method may
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approximate using the matrix Su, when N = 1, and estimating
qjk = CjkIN for large N.
Method D: Dirichlet Mixture Method. The Bayesian pre-

diction method above can be generalized by letting the prior
probabilities for the qjk be a mixture of multiple Dirichlet
distributions, as opposed to just one (21). This is a mathe-
matically rigorous way to graft the notion of amino acid
relationships onto method B. In making the pseudocounts for
each residue data-dependent, the approach is similar to the
ad hoc method C.
Given a weight matrix produced by any of these methods,

a protein database is searched by sliding the matrix along
each sequence and computing a score for every segment of
length L by summing the appropriate matrix elements.

Statistics of Weight Matrix Database Searches

It is possible to calculate precisely the distribution ofsegment
scores implied by the type of weight matrix described above.
We assume that the matrix elements are all integers-scaling
and rounding can produce any desired level of precision. The
score for a segment oflengthL may then assume only integral
values. Given a protein model in which every amino acid is
chosen independently with background residue probabilities
pj, the probability for every possible segment score may then
be calculated straightforwardly (14, 29). In brief, assume that
the probability distribution Pa-i(x) for a matrix consisting of
the first a - 1 columns of W is known. Then, inductively,
Pa(x) = 7,?01Pa-1(X - Wja)pj. The probabilities for the pos-
sible scores from the first column of W may of course be
calculated directly from the pj.
Although the scores of overlapping segments are not

independent, the theoretical number of database segments
expected to achieve a score x is simply PL(x) times the
number of segments examined. It is possible to generate an
empirical score distribution by scanning the database with the
matrix and collecting all the resulting segment scores. Fur-
thermore, a theoretical probability distribution for scores
from true positive protein segments can be computed by
using the residue frequencies qJk in place of the pj in the
calculation described above.
A comparison is shown in Fig. 1 of the theoretical and

empirical score distributions for a matrix derived from a
block conserved in a well-characterized superfamily ofRNA-
dependent RNA polymerases. First, the theoretical distribu-
tion differs significantly from a normal distribution with the
same mean and standard deviation (curves 1 and 3 in Fig.
1A). Specifically, the normal distribution underestimates the
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probability of high scores and thus provides a poor approx-
imation for weight matrix database searching. Second, many
more high scores are found empirically than predicted by the
right-hand tail of the theoretical distribution (curves 1 and 2
in Fig. 1A and curves indicated in Fig. 1B). These scores are,
however, reasonably well modeled by the theoretical curve
for true positive segments (curve 4 in Fig. 1A). Anomalous
high scores vanish when the columns of the matrix are
shuffled (Fig. 1B).
The number of segments predicted to attain score above a

given cutoff value gives the expected number, F, of false
positives-i.e., segments that are similar to the block by
chance. Subtracting F from the number of scores over the
cutoff actually observed gives a predicted number, T, of true
positives-i.e., segments that are similar to the block for
biological reasons. The ratio R = FIT gives the estimated
odds that a segment with score over the cutoff is a false
positive. Cutoff scores may alternatively be characterized
solely by F. Odds ratios have the advantage that the same
cutoff is appropriate for matrices representing both large and
small protein families; we routinely useR to set cutoffs in our
search procedure.
We have developed a program called MOST (Motif Search

Tool) that takes as input an alignment block, constructs a
corresponding weight matrix, scans a protein database with
this matrix, produces theoretical and empirical score distri-
butions, retrieves segments exceeding an appropriate cutoff
score, and assesses their statistical significance. The program
incorporates as well two important semiheuristic procedures.
First, in the matrix construction stage, it employs a simple
weighting procedure that groups segments with reference to
their percent identity. Second, to remove compositionally
biased segments that frequently yield spurious hits in data-
base searches, the segments retrieved are filtered with the
SEG program (2, 47).
The execution time for MOST is proportional to the length

of the database and the length L of the input alignment block
but is essentially independent of the number of sequences in
the block. Using a single processor SGI workstation to scan
the Swiss-Prot database (30), Release 26 (10,875,091 resi-
dues), required =1 sec per weight matrix column.

Relative Discriminating Power of Weight Matrices

To measure how well a weight matrix distinguishes a biolog-
ical motiffrom background noise, one needs a reliable a priori
division of the database into segments that do and do not
instantiate the motif. For this purpose we used several
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FIG. 1. Theoretical and empirical score distributions for segments from Swiss-Prot (30), Release 27. They-axis scales are logarithmic. (A) Score
distributions for a weight matrix derived by the Dirichlet mixture method from the positive-strand and double-stranded RNA virus RNA-dependent
RNA polymerase (RdRp) motif V (31). The alignment block consists of 13 segments of 18 residues each, representing different groups of
polymerases. All RdRps contain a set offour conserved motifs that unequivocally define the superfamily (31). There are 175 members of the RdRp
superfamily in Swiss-Prot, Release 27. Curves: 1, theoretical distribution assuming background residue probabilities pj; 2, empirical distribution;
3, normal distribution with same mean and standard deviation as curve 1; 4, theoretical distribution assuming position-dependent residue
frequencies qik and 175 instances of the motif. (B) Cumulative distributions (number of scores 2x) for the weight matrix from RdRp motif V.
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Table 1. Discrimination power (no. of false positives, E) of position-dependent weight matrices calculated by various methods
Helicases I Helicases II RdRp DdDp UvrA-related

Motif V Motif VI Motif V Motif VI Motif IV Motif V Motif A Motif B ATPases, motif II
Method (n = 85) (n = 84) (n = 128) (n = 125) (n = 175) (n = 175) (n = 51) (n = 51) (n = 147)
A 39 42 45 20 33 27 5 8 21
B 40 39 32 28 28 27 7 8 27
C 34 36 30 28 27 27 6 7 26
D 29 27 30 18 22 23 3 8 21
Control 49 48 41 30 34 40 9 3 26
For each alignment block and method for calculating segment scores, a cutoff was chosen for which the number offalse positives, E, equaled

the number of false negatives. The table gives E for each block and method; lowerE corresponds to better discrimination. The alignment blocks
for motifs V and VI from the two distantly related superfamilies of (putative) helicases (reviewed in ref. 32) included, respectively, 9 and 10
segments from experimentally characterized helicases and nucleic acid-dependent ATPases. For helicase motifs V and VI, a different size of
superfamily (n) is indicated because only putative helicase fragments containing one of the motifs are available in Swiss-Prot. The
RNA-dependent RNA polymerase (RdRp) motifs were represented by blocks of 14 segments from different groups of positive-strand RNA virus
and double-stranded RNA virus polymerases (31). The A and B motifs from the superfamily of DNA-dependent DNA polymerases (DdDp) (33)
were represented by blocks of 10 segments from cellular and viral DdDp. MotifH from the superfamily of UvrA-related ATPases (34) included
11 segments from experimentally characterized ATPases.

protein families that have been studied in sufficient detail that
a canonical list of true family members could be produced
(Table 1).
When all database segments have been assigned scores by

a weight matrix representing a given motif, any particular
cutoff score will yield a certain number offalse negatives and
false positives. These numbers reflect the inevitable trade-off
between sensitivity and selectivity. Given a correct classifi-
cation of all segments, a convenient measure of the power of
a matrix may be constructed by finding the cutoffat which the
number of false positives, E, equals the number of false
negatives (W. Pearson, personal communication). Clearly,
the lower is E the greater is the discriminating power of the
matrix, with E ideally equal to zero. These values could be
determined only for protein superfamilies with precisely
defined membership. Five such superfamilies, defined by a
combination of functional information and comparative se-
quence analysis, were selected.
Using the MOST program and the measure E, we explored

the relative discriminating power of weight matrices con-
structed by methods A-D described above. For each align-
ment block, we also evaluated a control procedure that
assigns to every database segment its maximum pairwise
score, using a standard amino acid substitution matrix, with
any segment from the alignment block. This control helps
determine to what extent weight matrices abstract useful
information from alignments, information not available col-
lectively in the constituent segments.
For a variety of test motifs, we scanned the Swiss-Prot

database (30) by using the methods described above. The
results in Table 1 show that weight matrices, particularly
those constructed by method D, significantly outperform the
control in most cases. No difference was observed only with
very selective motifs-e.g., those for DNA polymerases
(Table 1)-that showed high discriminating power with all
methods. The information implicit in an alignment block thus
appears to be better captured by weight matrices than by the
raw collection of segments that comprise the block. This is
particularly true for weight matrices constructed (as in
method D) with reference to both observed amino acid counts
and a priori knowledge of residue relationships.

Iterative Weight Matrix Search

When a database is scanned, the retrieval of any segments
that were not in the original alignment block potentially
brings useful information. An obvious way to exploit this
information is to generate a new alignment block and asso-
ciated weight matrix and to repeat the search. Iterative
approaches have been applied to motif searches in several

studies (19, 35-37), but we are unaware of any systematic
investigation of their behavior.
We designed an iterative procedure, based on the MoST

algorithm, that searches databases for related sequences.
During each stage a weight matrix is generated from the
current alignment block, the theoretical score distribution for
the matrix is calculated, the database is scanned to produce
an empirical score distribution, a cutoffscore is chosen based
upon either a fixed number F or odds ratio R of false
positives, and segments with score exceeding this cutoff are
added to the alignment block. The process is repeated until
no new segments are found.

Fig. 2 shows the dynamics of segment retrieval in iterative
searches seeded with the same block whose score distribu-
tion is shown in Fig. 1. For this and all other initial alignment
blocks studied, the process always converged for sufficiently
stringent cutoff scores (R < 0.02 for the great majority of
cases). The number of iterations required varied by case.
When motifs with known positive and negative sets were
studied, the observed number of false positives generally
agreed with the number predicted by theory, although later
iterations sometimes yielded a greater proportion of false
positives (Fig. 2).
To assess the performance in an iterative search of meth-

ods A-D for weight matrix construction, we repeated until
convergence the above steps for each family in our test set
(see Table 1). For most ofthe motifs, methods B-D retrieved
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FIG. 2. Accumulation of segments related to an alignment block
in iterative searches of Swiss-Prot. The search was done with the
RNA-dependent RNA polymerase motif V. The broken line at 175
indicates the number of superfamily members. Dirichlet mixture
method D for weight matrix generation: 1 and la, true and false
positives forR = 0.03; 2 and 2a, true and false positives forR = 0.01.
Average-score method A for weight matrix generation: 3 and 3a, true
and false positives forR = 0.03; 4, true positives forR = 0.01 (there
were no false positives).
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when only weak, perhaps statistically nonsignificant similar-
ities are generated by a BLAST search, it is unclear which if
any of the alignments is functionally relevant. One indication
of possible relevance is the appearance of the same query
sequence segment in different alignments (5), and this is one
possible approach to the delineation ofconserved blocks. We
have developed a program called CAP (Consistent Alignment
Parser), which constructs alignment blocks from BLAST
search output. Alternatively, sequences with BLAST hits may
be extracted from the database and analyzed by using a
program for local multiple alignment such as MACAW (9) or
the Gibbs sampler (10). The alignment blocks found by any
of these methods can be used as input for a MOST search.

FIG. 3. The convergence of iterative search as a function of the
cutoff ratio R. Weight matrices constructed from the RdRp motif V
block were compared with Swiss-Prot. Both scales are logarithmic.
Curves: 1 and la, true and false positives for the Dirichlet mixture
method; 2 and 2a, true and false positives for the average-score
method.

a considerably higher fraction of the known family members
than either method A or the control (data not shown).
We also studied the behavior of iterative search as a

function of the cutoff odds ratio R. At certain critical values,
the number of false positives retrieved increased dramati-
cally, changing the outcome of the iterative search process
from convergence to divergence (Fig. 3). Convergence typ-
ically was not observed when an analogous iterative proce-
dure was implemented for direct similarity search using the
BLAST algorithm. Except for very high cutoffs, the number of
the retrieved sequences grew explosively, with a majority of
false positives even at early iterations (data not shown).
Our iterative procedure is flexible in the choice of cutoff

values for successive iterations as well as in the method for
weight matrix construction. We found that using a relatively
high R(0.05-0.1) for the fist iteration, and more stringent
values subsequently, frequently led to improved results (data
not shown). This was the case particularly when the original
alignment block contained few sequences.

From Pairwise Database Searches to Alignment Blocks

The procedure described above uses an alignment block to
seek a motif present in sequences throughout the database.
Ideally, one would start with a single, uncharacterized se-
quence and construct a conserved block representative ofthe
protein family to which the sequence belongs. In many cases,

New Findings with Old Motifs and New Motifs from
Uncharacterized Sequences

We analyzed various biologically important protein se-
quences by using the search strategy described above. Com-
bined, iterative use of BLAST and MOST permitted the descrip-
tion of several new protein superfamilies, as well as a number
of functional predictions (38-40). Below we describe two
conserved domains found in proteins involved in DNA re-
combination, repair, and replication.
A highly conserved motif was found in bacterial RecR

proteins and class I DNA topoisomerases. A BLAST database
search with E. coli RecR protein (41, 42) found significant
similarity only to the same protein in other bacteria. How-
ever, a subsequent search with MOST revealed a 25-residue
motif shared by RecR proteins and class I topoisomerases.
The same set of 12 sequences was retrieved from the nonre-
dundant protein sequence database (NR, supported by the
National Center for Biotechnology Information) by using R
values as low as 0.01. A reciprocal test, beginning with only
the topoisomerase segments, produced the same result.
When each sequence of the set was compared with NR by
BLAST, no significant new sequence similarities were found.
Further analysis using MACAW showed that RecR proteins
and topoisomerases shared a second, less obvious region of
similarity (Fig. 4). The motif revealed by MOST has been
previously described as one of the highly conserved regions
in class I topoisomerases (43). An obvious common activity
of RecR and topoisomerases is DNA binding, but the actual
function of their shared sequence motifs remains to be
established.
Another motif is shared by the E. coli repair protein RecJ,

a subunit of DNA polymerase III (DnaE), and an uncharac-
terized putative protein encoded by open reading frame 30

RecR Ec 82 ICVVZSPADIYAIEQTGQF 29 RLAEEKITEVXLL!NPTVIGZATANYIAELC P12727
RecM Bs 81 ICVVQDPKDVIAMEKMKEY 29 RLQDDQVTEVILA!NPNIZGKATAMYISRLL P24277
RecR Ml 81 VCVVKEPKDVQAVERTREF 29 RVDDVGITEVIIATDPNTZG3ATATYLVRMV L01263g

LILCZKPSQAMDLSTVFAK 73
LVIVKSPAKAKTINKYLGS 73
VILAZKPSQALAYASALKQ 71
LVIVZSPTKARTIRNYLPK 58
__________-------- O

LCVAZKNSIAKAVSQILGG 83
LFIAZKPSLARAIADVLPK 67
LLVVZSPNKAKTISSFFSR 98
UxUvlxpxxAxxfxxxxxx

aQ U

IFKENKIDEVIIA!DPARZGENIAYKILNQL
KQLAEKADHXYLATDLDRUGZAIAWRLREVI
AELLKQANTIIVATDSDRZGKNIAWSIIHKA
KDALKDADELILATDEDRZGKVISWHLLQLL
TIFDKRVKTIILLTDAAAZGBYIGRNILYRL
KREARNADYLKIWTDCDRZGEYIGWEIWQEA
KRFLHEASEIVHAGDPDRZGQLLVDEVLDYL
RNLAVEADEVLIGTDPDTZG3KIAWDLYLAL
xxxxxxxxxU&uatDxxxZGexxxxxUxxxu

g N q a

FIG. 4. A conserved domain in RecR and class I topoisomerases (TOP). The alignment was generated with the MACAW program (9). The
conserved block detected by an iterative MOST search of the protein NRDB is overlined. The consensus line indicates conserved residues.
Uppercase letters indicate that all residues in the column are chemically similar; lowercase indicates that most are. U designates a bulky aliphatic
residue (I, L, V, or M), and & designates a bulky hydrophobic residue (I, L, V, M, F, Y, or W). For each sequence, the number of N-terminal
residues is indicated, as well as the number between the conserved blocks. TrsI is a transport protein from a Staphylococcus aureus (Sa) plasmid;
RGYR is reverse gyrase from the archaeon Sulfolobus acidocaldarius (Sac). Other abbreviations: Ec, E. coli; Bs, Bacillus subtilis; Ml,
Micrococcus luteus; Ef, Enterococcus faecalis; Ssp, Synechococcus sp.; Bf, Bacillus firmus (incomplete topoisomerase I sequence); Sc,
Saccharomyces cerevisiae. The Swiss-Prot, Protein Identification Resource (PIR) (p), or GenBank (g) accession number is given for each
sequence.

-2
log(ratio)

TrsI Sa 3
TOP 1 Ec 4
ORF1 Ef 3
TOP1 Ssp 3
TOP1 Bf 68
TOP3 Sc 3
TOP3 Ec 2
RGYR Sac 626
CONSENSUS

L11998g
P06612p
PQ0259p
S32158p
S23866p
P13099
P14294
L1065ig
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RecJ Ec 90 LSVLMRSLGCSNZDYLVPNRVEDGXG 26 HAGVEHARSLGIPVIVTDHHLPGD 401 P21893
DnaE Ec 83 LTVL&ANNTGYQNLTLLISKAYQRGYG 73 HAAVELAEaRGLPVVATNDVRFID 954 P10443
ORF30 P2 19 FAVLAFFSFGKSNZ4RLIAHYFNFGYS 85 EQSVIVRDATGIPYKNMMYYVYSD 106 U02597g
consensus &.VLA .... G. .NU.L ... ..GYG ........ . VA.(P&......D

S S

FIG. 5. Putative exonuclease motif. The overlined proximal motif was identified by using the combination of BLAST and MOST as described
in the text. The additional, distal motif was detected with MACAW (9). The consensus shows amino acid residues that are conserved in all the
three aligned sequences. For other details and designations, see legend to Fig. 4.

(ORF30) from bacteriophage P2 (Fig. 5). A BLAST search with
the RecJ sequence revealed only very limited, not statisti-
cally significant similarity with DnaE. When a 27-amino acid
region that was conserved between RecJ and DnaE was used
for a MOST search, a related segment was identified in the P2
protein. Each pair of sequences from this motif identified the
third sequence with R value below 0.01, whereas no other
sequences were selected from the database even with R =

0.1. These observations show that, at least in some cases, an
alignment of only two sequences may produce a sensitive
position-dependent weight matrix that can be used to identify
a specific, conserved motif. RecJ is a 5'-3' single-stranded-
DNA exonuclease (44, 45). Therefore we predict that the
N-terminal domains of DnaE and the P2 ORF30 product,
which is not essential for bacteriophage propagation in E. coli
(46), possess a similar exonuclease activity, and the con-
served motif may be a part of the active center.

Condusions

We have described an approach to protein database analysis
using weight matrices derived from alignment blocks. The
statistical distribution of matrix scores provides a measure

for assessing database segments. For each motif explored,
iterative database searches converged on an aligned block of
segments containing the motif. We used this approach to
evaluate the discriminating power of different methods for
computing weight matrices. The use of Dirichlet mixture
priors (21) generally was the most effective. The initial blocks
used to seed this approach can be generated from the output
of a standard database similarity search program, such as

BLAST, by parsing consistent segments from the alignments
reported. Thus, in principle, our strategy allows the con-

struction from a single uncharacterized sequence of con-

served motifs characteristic of a protein superfamily. Using
this approach, we identified several motifs of potential func-
tional importance that were not detectable by direct database
search. Source code and executable versions of the programs
MoST and CAP are available from the authors upon request.
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