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Targeted next-generation sequencing in steroid-
resistant nephrotic syndrome: mutations in multiple
glomerular genes may influence disease severity

Gemma Bullich1,2, Daniel Trujillano3,4,5,6, Sheila Santín1, Stephan Ossowski4,7, Santiago Mendizábal8,
Gloria Fraga9, Álvaro Madrid10, Gema Ariceta10, José Ballarín2, Roser Torra2, Xavier Estivill3,4,5,6

and Elisabet Ars*,1,2

Genetic diagnosis of steroid-resistant nephrotic syndrome (SRNS) using Sanger sequencing is complicated by the high genetic

heterogeneity and phenotypic variability of this disease. We aimed to improve the genetic diagnosis of SRNS by simultaneously

sequencing 26 glomerular genes using massive parallel sequencing and to study whether mutations in multiple genes increase

disease severity. High-throughput mutation analysis was performed in 50 SRNS and/or focal segmental glomerulosclerosis

(FSGS) patients, a validation cohort of 25 patients with known pathogenic mutations, and a discovery cohort of 25

uncharacterized patients with probable genetic etiology. In the validation cohort, we identified the 42 previously known

pathogenic mutations across NPHS1, NPHS2, WT1, TRPC6, and INF2 genes. In the discovery cohort, disease-causing mutations

in SRNS/FSGS genes were found in nine patients. We detected three patients with mutations in an SRNS/FSGS gene and

COL4A3. Two of them were familial cases and presented a more severe phenotype than family members with mutation in only

one gene. In conclusion, our results show that massive parallel sequencing is feasible and robust for genetic diagnosis of

SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and also in COL4A3 gene have

increased disease severity.
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INTRODUCTION

Nephrotic syndrome (NS) is characterized by heavy proteinuria,
hypoalbuminemia, edema, and dyslipidemia. Although most patients
are steroid-sensitive NS (SSNS), about 20% of children and 40% of
adults are steroid-resistant NS (SRNS) and progress to end-stage renal
disease (ESRD). In these cases, renal histology typically shows focal
segmental glomerulosclerosis (FSGS).1–3

Inherited structural defects in the glomerular filtration barrier
proteins are responsible for a significant proportion of SRNS.4,5

Patients with SRNS of genetic origin have poor renal survival but
low rate of disease recurrence after renal transplantation.6 Genetic
forms of SRNS can be inherited as an autosomal recessive (AR) or
autosomal dominant (AD) condition and can be isolated or
syndromic.5 Mutations in nephrin (NPHS1)7 and podocin (NPHS2),8

with an AR inheritance, are the major cause of congenital and
childhood onset NS, respectively. However, mutations in other genes
have also been reported.5,9 Mutations in inverted formin-2 (INF2),10

transient receptor potential channel 6 (TRPC6),11 and rarely, in
α-actinin-4 (ACTN4)12 and CD2-associated protein (CD2AP)13 genes

cause juvenile or adult onset FSGS with AD inheritance. In rare cases,
recessive mutations in NPHS2 are associated with adult onset FSGS.14

De novo heterozygous mutations in exons 8 and 9 of Wilms tumor
(WT1) gene can cause both syndromic15 and isolated childhood onset
SRNS.16 The study of the relative frequency of mutations in the most
commonly altered genes in patients with SRNS and/or FSGS allowed
the development of genetic testing algorithms based on age at onset,
family history, or renal histology.17–20 However, the genetic
heterogeneity and significant phenotypic variability of SRNS make
genetic testing using standard Sanger methods costly and time
consuming, even if the analysis is restricted to the most frequently
mutated genes.
Massive parallel next-generation sequencing (NGS) technology has

dramatically increased the throughput and reduced the cost per
nucleotide sequenced compared with traditional Sanger methods,
enabling cost-effective sequencing of multiple genes simultaneously.
Over the past 3 years, whole-exome sequencing has revealed new
genes associated with SRNS in a few cases, expanding the genetic
heterogeneity of the disease.21–25 Based on this scenario, targeted NGS
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of a broad panel of NS-related genes has emerged as a cost-effective
strategy to screen the multiple genes involved in SRNS/FSGS,26 but
optimal sensitivity and specificity must be demonstrated for each gene
in the panel.
In this study, we used targeted NGS to simultaneously sequence 26

genes associated with inherited glomerular diseases in a heterogeneous
cohort of 50 SRNS/FSGS patients and 5 control individuals. We aimed
to develop a glomerular disease gene panel for SRNS/FSGS and to
study the influence of mutations in multiple genes on phenotype
variability.

MATERIALS AND METHODS

Patients
A total of 50 Spanish patients with idiopathic SRNS/FSGS were included.
Patients developing steroid resistance at a later stage of the disease or with
recurrence after kidney transplantation were excluded as we considered that
they likely had an immunological cause. Biopsy findings included FSGS,
minimal change disease (MCD) or diffuse mesangial sclerosis. The validation
cohort consisted of 25 patients with known pathogenic mutations in the five
most commonly mutated SRNS/FSGS genes that had been previously identified
by Sanger sequencing.18 The discovery cohort consisted of 25 patients with
diagnosis of SRNS/FSGS, 21 genetically uncharacterized, and 4 incompletely
characterized. All 25 had a probable genetic etiology, based on early onset of the
disease (n= 10), familial history of SRNS/FSGS (n= 11), or consanguinity
(n= 4). Four of these patients had been analyzed by Sanger sequencing for the
most frequently mutated SRNS/FSGS genes in our previous study, and only one
recessive pathogenic mutation was identified.18 We also included five control
individuals without nephropathy who had been previously genome-wide
genotyped with a HumanOmni 2.5–8 BeadChip (Illumina, Inc., San Diego,
CA, USA) to test the performance of the assay across the whole panel. Blood
samples were obtained from other family members if they were available. All
the samples were codified, and data analysis was performed blindly. The study
was approved by the Institutional Review Board, and all participants gave their
signed informed consent.

Sequencing and data analyses
We selected 26 genes associated with hereditary glomerular diseases based on
published literature (Table 1). The complete genomic sequence (plus 1 kb of 5′
and 3′ flanking genomic regions) of NPHS1, NPHS2, WT1, TRPC6, INF2,
LAMB2, COL4A3, COL4A4, COL4A5, and GLA genes and all exons and intron
boundaries (plus 100 bp at each end) of the remaining genes were captured
using a custom NimbleGen SeqCap EZ Choice Library (Roche NimbleGen,
Madison, WI, USA). After removal of repetitive sequences, 83.6% of the
targeted bases were covered with capture baits ranging from 68 to 6689 bp
(average 1062 bp), for a final targeted region of 0.9Mb.
Genomic DNA was isolated from peripheral blood using the salting-out

method. Libraries were prepared with the TruSeq DNA Sample Preparation Kit
(Illumina, Inc.) according to the manufacturer’s instructions. In familial cases,
only the proband was analyzed by NGS. Pools of 24 individuals were prepared,
hybridized to the custom NimbleGen SeqCap EZ Choice Library (Roche
NimbleGen) for 72 h, stringently washed, amplified 17 PCR cycles, and run in a
HiSeq2000 instrument (Illumina Inc.).
Data analysis was performed blindly with an in-house developed pipeline

previously described.27 All candidate variants were required on both sequenced
DNA strands and to account for ≥ 20% of total reads at that site. Common
polymorphisms (≥5% in the general population) were discarded by compar-
ison with dbSNP 138, the 1000G (http://www.1000genomes.org), the Exome
Variant Server (http://evs.gs.washington.edu), and an in-house exome variant
database to filter out both common benign variants and recurrent artifact
variant calls. To identify large structural variants, we used Pindel,28 Conifer,29

and PeSV-Fisher (http://gd.crg.eu/tools).

Evaluation of the pathogenicity of the variants
Nonsense, frameshift, and canonical splice site variants were classified as
definitely pathogenic mutations (mutation group (MG)=A). Missense variants

were considered a priori unclassified sequence variants (UCV), and their
potential pathogenicity was evaluated using an in silico scoring system
developed for the PKD1 and PKD2 genes.30 This scoring system with some
minor modifications was tested using previously described pathogenic muta-
tions, for which functional studies had been performed, as positive controls,
and known neutral variants or polymorphisms as negative controls.31–33 This
scoring system takes into consideration the biophysical and biochemical
difference between wild type and mutant amino acid, the evolutionary
conservation of the amino-acid residue in orthologs,34 a number of in silico
predictors (Sift, Polyphen, Mutation taster, and Condel), and population data.
All candidate pathogenic variants not previously identified were validated by
conventional PCR amplification and Sanger sequencing and were not detected
in 284 control chromosomes. Segregation of these changes with the disease was
assessed for all the available family members. We scored each of these factors,
and their sum resulted in an overall variant score (VS). The UCV were
classified into four MGs: highly likely pathogenic (VS≥ 11, MG=B), likely
pathogenic (5≤VS≤ 10, MG=C), indeterminate (0≤VS≤ 4, MG= I), and
highly likely neutral (VS≤− 1, MG=NV). To evaluate the pathogenicity of
non-canonical splice site variants, RNA analysis was performed by RT-PCR and
Sanger sequencing. If no RNA was available, these variants were analyzed using
Alamut version 2.3 (Interactive Biosoftware, Rouen, France), a software package
that uses different splice site prediction programs to compare the normal and
variant sequences for differences in potential regulatory signals.35

We designated pathogenic mutations to be: (i) those sequence variants
predicted to result in a truncated protein (MG=A), (ii) canonical and non-
canonical splice site variants showed to alter splicing patterns (MG=A), and
(iii) those amino-acid substitutions expected to severely alter the protein
sequence using in silico predictors (MG=B). Missense substitutions classified as
MG=C or MG= I were considered as mild mutations in NPHS132 or variants
of unknown clinical significance. All the variants were entered in the Leiden
Open Variation Database (http://databases.lovd.nl/shared/genes).

RESULTS

Validation of the technology
Sequencing of the 26 glomerular disease gene panel (Table 1) in 50
patients with SRNS/FSGS and 5 control individuals generated a mean of
14.3 million reads per patient. On average, 99.1% of these reads
mapped to the reference genome. A mean depth of coverage of 466×
was achieved for the 26 targeted genes across all individuals, with 99.6%
of targeted bases covered by at least 20 reads (Supplementary Table S1).
The validation cohort included 25 SRNS/FSGS patients who carried

a total of 42 known pathogenic mutations in NPHS1, NPHS2, WT1,
TRPC6, or INF2 genes and with different phenotypic characteristics
(Table 2). We identified all known pathogenic mutations (33 different)
in their correct heterozygous/homozygous state, specifically: 22 mis-
sense, 3 nonsense, 2 splice site, 4 small deletions, 1 small insertion, and
1 deletion/insertion (Indel) (data not shown). No spurious pathogenic
mutations were found in any of these samples. Prior Sanger sequencing
of these patients had revealed a total of 285 variants in these genes, 281
of which were also detected by NGS, resulting in 98.6% accuracy.
To assess the sensitivity and specificity of our assay across all 26

genes included in the panel, we evaluated 5 control individuals
without nephropathy who had been previously genome-wide geno-
typed. Sensitivity of detecting homozygous and heterozygous poly-
morphisms across the 26 genes was 95.6% (1315/1375), and specificity
of detecting non-variant sites from the reference genome was 99.9%
(3387/3391). No spurious pathogenic mutations were found in any of
these samples. Detailed quality control parameters are provided in
Supplementary Table S2.

Sequence variants in NS genes in the discovery cohort
We identified disease-causing mutations in NS genes in 9 out of
the 25 SRNS/FSGS patients in the discovery cohort (Table 3).
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The distribution of mutations in SRNS/FSGS genes differed depend-
ing on the age at onset. The mutation detection rate decreased as the
age at onset of NS increased. In congenital onset patients (from 0 to
3 months), all the five patients (100%) carried mutations in NPHS1
(n= 3) and NPHS2 (n= 2) genes. In the early-childhood onset cohort
(from 4 months to 5 years), two out of the nine patients (22%) had
mutations in NPHS1 (n= 1) and WT1 (n= 1). No disease-causing
mutations were found in any of the three patients with late-childhood
onset NS (from 6 to 12 years). In patients with adult onset of NS or
FSGS (418 years), two out of the eight patients (25%) carried
mutations in INF2 (n= 1) and TRPC6 (n= 1) (Table 2). A detailed
scoring matrix for the missense variants is provided in Supplementary
Table S3.

In the discovery cohort, we included four cases (one familial and
three sporadic), with only one recessive pathogenic mutation pre-
viously identified by Sanger sequencing. The NGS approach detected
variants predicted to alter the non-canonical splice site sequences by
the Alamut software but with uncertain clinical significance in three
patients.

Phenotypic effect of mutations in multiple glomerular genes
We found four patients belonging to the validation cohort with three
mutated alleles in two recessive SRNS/FSGS genes (Supplementary
Table S4). Phenotype modification of the third mutated allele could
not be assessed in these patients as three of them were sporadic cases,

Table 1 Panel of genes involved in inherited glomerular diseases

Gene Disease association Inheritance Target Accession no. Chromosome

NPHS1 CNS, SRNS AR Whole gene NM_004646.2 19

NPHS2 CNS, SRNS AR Whole gene NM_014625.2 1

WT1 SRNS, Denys–Drash syndrome AD Whole gene NM_000378.4 11

INF2 SRNS, FSGS AD Whole gene NM_001031714.3 14

TRPC6 SRNS, FSGS AD Whole gene NM_004621.5 11

LAMB2 SRNS, Pierson syndrome AR Whole gene NM_002292.3 3

COL4A5 Collagen type IV nephropathy XL Whole gene NM_000495.4 X

COL4A3 Collagen type IV nephropathy AD/AR Whole gene NM_000091.4 2

COL4A4 Collagen type IV nephropathy AD/AR Whole gene NM_000092.4 2

GLA Fabry disease XL Whole gene NM_000169.2 X

PLCE1 CNS, SRNS AR Exons NM_016341.3 10

ACTN4 SRNS, FSGS AD Exons NM_004924.4 19

CD2AP SRNS AD/AR Exons NM_012120.2 6

MYO1E SRNS AR Exons NM_004998.3 15

ARHGAP24 NS, FSGS AD Exons NM_001025616.2 4

CUBN NS AR Exons NM_001081.3 10

CFH NS AR Exons NM_000186.3 1

COQ2 NS AR Exons NM_015697.7 4

COQ6 NS AR Exons NM_182476.2 14

ITGA3 NS AR Exons NM_002204.2 17

LMX1B NS, FSGS AR Exons NM_001174146.1 9

NEIL1 NS AR Exons NM_001256552.1 15

PDSS2 NS AR Exons NM_020381.3 6

PTPRO SRNS AR Exons NM_030667.2 12

SCARB2 NS AR Exons NM_005506.3 4

SMARCAL1 NS AR Exons NM_001127207.1 2

Abbreviations: AD autosomal dominant; AR, autosomal recessive; CNS, congenital nephrotic syndrome; FSGS, focal segmental glomerulosclerosis; NS, nephrotic syndrome; SRNS, steroid-resistant
nephrotic syndrome; XL, X-linked.

Table 2 Overview of genotypic data obtained by next-generation sequencing

Total Familial Sporadic Congenital onset Early or late childhood onset Adolescent or adult onset

Validation cohort 25 10 15 10 9 6

Patients with pathogenic mutations in an SRNS/FSGS gene 23 9 14 9 8 6

Patients with mutations in an SRNS/FSGS gene and COL4A3 2 1 1 1 1 0

Patients with no pathogenic mutations found 0 0 0 0 0 0

Discovery cohort 25 15 10 5 12 8

Patients with pathogenic mutations in an SRNS/FSGS gene 9 4 5 5 2 2

Patients with mutations in an SRNS/FSGS gene and COL4A3 1 1 0 0 0 1

Patients with no pathogenic mutations found 15 10 5 0 10 5

Abbreviations: FSGS, focal segmental glomerulosclerosis; SRNS, steroid-resistant nephrotic syndrome. Onset was classified as follows: congenital, 0–3 months; early childhood, 4 months to 5 years;
late childhood, 6–12 years; adolescent, 13–18 years; adult, 418 years.
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and only two siblings, both carrying the three mutated alleles, were
identified.
We identified three patients carrying mutations in an SRNS/FSGS

gene and also in COL4A3 (Table 3). Patient 266 carried two NPHS1
pathogenic mutations, an in-frame deletion and a frameshift, together
with a heterozygous missense mutation in COL4A3, previously
reported by Heidet et al.36 She had a congenital NS presenting with
microhematuria and no family history of NS. Patient 10-1 and his
affected sister (10-2) both carried compound heterozygous missense
pathogenic mutations in NPHS2 gene, but only the proband 10-1
harbored a heterozygous missense variant in COL4A3 predicted to be
likely pathogenic. Both siblings had early childhood onset of SRNS.
Patient 10-1 presented with nephrotic range proteinuria and micro-
hematuria. His renal biopsy revealed FSGS, and he developed ESRD at
12 years. His sibling 10-2 presented with borderline nephrotic range
proteinuria but no evidence of microhematuria, renal biopsy showed
MCD and she presented normal renal function by the age of 18 years
(Figure 1a). Patient 253-1 carried a heterozygous splicing mutation in
COL4A3, demonstrated to produce exon 46 skipping by RNA analysis
and predicted to result in a protein lacking 42 amino acids, in
combination with a missense variant in the exon 12 of INF2. This
novel non-conservative substitution, p.R689W, is located at a highly
conservative domain (FH2) in the INF2 protein and scored as highly
likely pathogenic, using mutation prediction programs. The arginine
in the position 689 is totally conserved in mammals and a basic amino
acid in all the species. She presented with SRNS and microhematuria
at 32 years, and her renal biopsy showed mesangioproliferative lesions
with FSGS. Her renal function rapidly deteriorated, reaching ESRD at
33 years. The COL4A3mutation was inherited from her affected father
(253-2) who presented with non-nephrotic range proteinuria and
hematuria at 39 years. His renal biopsy showed FSGS, and he reached
ESRD at 51 years. The INF2 variant was inherited from her
asymptomatic mother (253-5). Two of the proband’s uncles carried
the COL4A3 mutation, but they only presented microhematuria at 61
(253-3) and 56 years (253-4) (Figure 1b).

DISCUSSION

In this study, we show that the simultaneous analysis of 26 genes
causative of inherited glomerular diseases allows a more complete and
efficient characterization of patients with SRNS/FSGS than traditional
Sanger sequencing. In addition, we identified three patients carrying
combined mutations in an SRNS/FSGS gene and COL4A3, suggesting
that mutations in different genes that converge in the glomerular
filtration barrier influence disease severity.
In the past years, several genetic testing algorithms for SRNS/FSGS

have been developed to help in establishing a prioritization of the
genes to be sequenced by Sanger. However, the genetic heterogeneity
and phenotypic variability of this disease make this approach
expensive and time consuming.17–20 Recently, two studies used NGS
technology to analyze the exons and intron boundaries of 24 genes26

and 21 genes37 associated with SRNS. Our gene panel included not
only genes related with SRNS/FSGS but also genes involved in other
glomerular diseases, as we hypothesized that disease severity could be
influenced by mutations in multiple glomerular genes. The identifica-
tion of all previously known pathogenic mutations and no spurious
pathogenic mutations in our validation cohort, as well as the high
sensitivity and specificity obtained with the analysis of the previously
genotyped controls, demonstrate the suitability of this approach for
genetic diagnosis of SRNS/FSGS.
In the discovery cohort, we identified disease-causing mutations in

NS genes in 9 out of the 25 patients. All patients carried pathogenic

mutations in the most likely mutated NS gene according to their age at
disease onset.18 Interestingly, patient 324 had a congenital onset of the
disease but still normal renal function at the age of 19 years. He
carried a homozygous splicing mutation (c.1930+5G4A) in NPHS1
found to produce the deletion of the 31 last nucleotides of exon 14 in
the mRNA, which is predicted to result in a truncated protein. The
mild phenotype of this patient could be explained, because splicing
mutations that do not affect the canonical GT/AG splice sites could
allow the coexistence of a certain proportion of wild-type NPHS1
mRNA with the altered mRNA, as previously suggested.38 Although
mRNA analysis from patient’s blood did not confirm this hypothesis,
we cannot discard the occurrence of this phenomenon in kidneys
(Supplementary Figure S1).
We also included four patients with only one recessive candidate

pathogenic mutation in an SRNS gene identified by Sanger sequen-
cing. We hypothesized that these patients would carry a large insertion
or deletion or a deep intronic splicing mutation as a second
pathogenic mutation. Thus we included the whole genomic sequence
of the most frequently mutated genes in glomerular diseases in our
NGS gene panel and analyzed the data using specific algorithms to
search for structural variants. No clear pathogenic mutation was
detected, but only variants in non-canonical splice sites were found in
three patients. However, RNA from these patients was not available,
and the pathogenicity of these variants could not be assessed.
The phenotypic variability observed in SRNS/FSGS patients bearing

mutations in the same gene suggests that modifier genes and
environmental factors may have a significant role in the renal
presentation and outcome.4 Evidence of oligogenic inheritance with
mutations in genes encoding proteins that converge in common
pathomechanistic pathways has been reported in Bardet–Biedl
syndrome.39 In addition, the p.R229Q variant in NPHS2 gene has
been suggested to contribute to proteinuria and ESRD in thin
basement membrane nephropathy.40,41 Recently, modifier genes have
been proposed to explain early and severe polycystic kidney disease.42

McCarthy et al26 described two patients carrying a homozygous
mutation in NPHS1 and a possibly pathogenic variant in WT1, who
developed a more aggressive disease than a third patient carrying the
same mutation in NPHS1 but without the WT1 variant. To study the
putative role of mutations in multiple glomerular genes on SRNS/
FSGS clinical variability, disease severity should ideally be compared
among various family members with different genotype combinations.
Here, four patients carrying three mutated alleles in two SRNS/FSGS
genes were found. Unfortunately, three of them were sporadic cases,
and only two affected siblings—both carrying the three mutated alleles
—were identified. Therefore, the putative effect of the third variant on
disease severity could not be assessed.
We identified three patients carrying mutations in an SRNS/FSGS

gene in combination with a heterozygous mutation in COL4A3 gene.
Heterozygous mutations in COL4A3 and COL4A4 genes cause the
mildest phenotype of collagen type IV (α3α4) nephropathy, also
named thin basement membrane nephropathy. This nephropathy is
characterized by hematuria and low proteinuria,43,44 and progression
to ESRD has recently been described in 30% of cases.45 The clinical
phenotype of the three patients with combined mutations in an SRNS/
FSGS gene and COL4A3 stands out for the coexistence of NS and
microhematuria at presentation. Interestingly, in two of these three
cases, several family members with different genotype combinations
were available (Figure 1). In both families, patients with mutations in
an SRNS/FSGS gene and COL4A3 had a more severe phenotype than
their family members carrying mutations in only one gene. Variable
disease penetrance in INF2-mutated patients has been reported46 likely
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explaining that, in family 253, the proband’s mother (253-5) remained
asymptomatic. These findings suggest that mutations in multiple
glomerular disease genes explain some of the phenotypic variability
in nephropathies. Another possible explanation for clinical intrafami-
lial variability could arise in families carrying a splicing mutation that

does not affect the canonical splice sites, such as the mutation in
COL4A3 gene detected in family 253. This mutation could lead to
variable amounts of the correctly spliced transcript and could explain
the phenotypic variability among the three siblings carrying this
splicing mutation.38

10-1 10-2

NPHS2:c.[274G>T];[506T>C]

p.[G92C];[L169P]

COL4A3:c.[4504T>C];[=]

p.[F1502L];[=]

Family 10

NPHS2: c.[274G>T];[506T>C]

p.[G92C];[L169P]

COL4A3:c.[=];[=]

p.[=];[=]

Family 253

253-3

INF2:c.[2065C>T];[=]

p.[R689W];[=]

COL4A3:c.[4028-3C>A];[=]

r.[4028_4153del];[=]

INF2:c.[=];[=]

p.[=];[=]

COL4A3:c.[4028-3C>A];[=]

r.[4028_4153del];[=]

INF2:c.[=];[=]

p.[=];[=]

253-2

253-1

COL4A3:c.[4028-3C>A];[=]

r.[4028_4153del];[=]

INF2:c.[=];[=]

p.[=];[=]

253-4 253-5

COL4A3:c.[4028-3C>A];[=]

r.[4028_4153del];[=]

INF2:c.[2065C>T];[=]

p.[R689W];[=]

Exon 46 skipping in COL4A3 mRNA due to c.4028-3C>A mutation (patient 253-1)

r.[4028_4153del];[=]

a

b

Figure 1 Pedigrees of two families with mutations in an SRNS/FSGS gene and COL4A3. (a) In family 10, both siblings had compound heterozygous
pathogenic mutations in NPHS2 gene and the more severely affected individual (10-1) carried an additional likely pathogenic variant in COL4A3 gene. (b) In
family 253, individuals 253-1 to -4 carried a pathogenic mutation in COL4A3 gene demonstrated to produce exon 46 skipping by reverse transcriptase-PCR
and Sanger sequencing and predicted to result in a protein lacking 42 amino acids. Patient 253-1 carried an additional variant in INF2 gene inherited from
her mother and developed a more aggressive phenotype than the other affected family members. Cr, creatinine; wt, wild type. The arrows indicate probands.
Squares denote males, circles denote females. Filled symbols indicate affected status. Quarter solid symbols indicate microhematuria.
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Despite the broad panel of genes analyzed, we could not find
pathogenic mutations in 15 of the patients in the discovery cohort, 8
of whom were familial cases. The fact that some SRNS/FSGS patients
present with recurrence after kidney transplantation indicates that
some of these cases may be due to an immunological cause, although
no evidence of immunological bases was observed in our cohort. In
the familial cases, it is highly likely that an SRNS/FSGS gene, as yet
non-identified, is responsible for the disease. The next step should
therefore be to sequence the whole exome in the 8 familial cases to
identify new candidate genes.
The results obtained in the validation cohort demonstrate that our

approach is suitable for genetic diagnosis of SRNS/FSGS but, based on
the discovery cohort findings, we propose some modifications: (1) to
sequence a gene panel with only the six most frequently mutated genes
in SRNS/FSGS (NPHS1, NPHS2, PLCE1, WT1, INF2, TRPC6). The
COL4A3, COL4A4 and COL4A5 genes, associated with collagen type
IV (α3α4) nephropathy, could also be included as they may influence
disease severity. If no pathogenic mutations are identified, a more
extensive glomerular gene panel or exome sequencing could be
performed; and (2) to restrict the targeted sequence to exons and
intron boundaries as the assessment of the pathogenicity of deep
intronic variants is challenging and their involvement in the disease
speculative. In terms of the cost, NGS will allow the simultaneous
analysis of around 250 exons for approximately the same cost of
consumables than sequencing 40 exons by Sanger, with three times
saving in hands-on time. Identifying pathogenic mutations in SRNS is
important for many reasons. It can help to avoid the adverse effects of
steroid therapy, modify the intensity and duration of immuno-
suppressive therapies, encourage living donor kidney transplantation,
provide prognostic information regarding the gene and type of
mutations, and enable genetic counseling. Sequencing a panel of
genes involved in glomerular inherited diseases will also help to
elucidate cases with atypical renal phenotypes and/or with high clinical
intrafamilial variability. Based on our findings, such cases could be
more prevalent than previously expected.
In conclusion, this study shows the feasibility and robustness of

targeted NGS for genetic diagnosis of SRNS/FSGS, allowing a more
complete characterization of patients with SRNS/FSGS. Our results
indicate that patients carrying mutations in an SRNS/FSGS gene and
also in COL4A3 gene have increased disease severity.
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