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A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary
traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be
straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs
to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in
identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric
evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information
gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire
distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association
data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative
trait.

1. Introduction

Recent advances in high-throughput genotyping techniques
have produced massive volumes of genetic data. Although
it is common to analyze single SNP effects extensively, such
approaches cannot adequately explain the intricate genetic
contributions to complex diseases such as hypertension,
diabetes, and certain psychiatric disorders. Consequently
there are still large amounts of genetic components that
remain unexplained. Gene-gene interaction analysis may be
one method to adequately address this missing heritability
problem [1].

For case-control studies, which formulate the measures
for a binary trait, a number of statisticalmethods for detecting
gene-gene interactions have been proposed. One of the most
popular methods is multifactor dimensionality reduction
(MDR) [2] that converts a high-dimensional contingency
table to a one-dimensional model without raising the issue

of sparse cells. Several variants of MDR have been recently
developed [3–8], while another approach was developed
[9–11] from information theory [12, 13]. More recently, an
entropy-based approach which utilizes the relative gain of
information, as well as its standardized measure, has also
been proposed [14].

However, for quantitative traits such as the blood pres-
sure, body mass index, and patient survival times, relatively
few attempts have been made to analyze the genetic inter-
actions. Because many phenotype measures are intrinsically
quantitative, and categorizing a continuous trait may not
always be straightforward and meaningful, association of
gene-gene interactions with an observed distribution of
such phenotypes needs to be investigated directly without
categorization. To that end, introducing a new statistic is one
way to tackle the problem [15]. Extending theMDRalgorithm
to continuous traits, as in the ways of the generalized MDR
(GMDR) and the model-based MDR (MB-MDR), has been
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proposed [3, 6]. More recently a quantitative MDR (QMDR)
was proposed to replace the balanced accuracy metric with
a 𝑡-test statistic [16]. However, these MDR-based approaches
may oversimplify the original data to some degree, through
classification of phenotypes. An entropy-based approachmay
well be an alternative model. Entropy is commonly used in
information theory to measure the uncertainty of random
variables [12, 13], and information gain ormutual information
has been shown useful to represent association strengths [17–
19]. Although the usefulness of such information theoretical
methods is well known, the statistical methods based on
this approach for analyzing gene-gene interactions of the
quantitative traits are rarely found, with the exception of
one specific case [20]. However, the application may also be
limited by assuming a normal distribution.

Here, we extend the usefulness of the information concept
to quantitative traits by considering nonparametric estimates
based on sample-spacing or 𝑚-spacing [22–25] for the
conditional entropy of a quantitative phenotype, based on
a given genotype. The challenge, therefore, is to couple
a nonparametric entropy estimator to correct and stable
information gains.We thus developed the useful information
gain standardized (IGS) approach and applied it to datasets
composed of several genotypes and the quantitative trait.
This approach could be considered an extension of previous
work on categorical traits [14] to the quantitative phenotypes.
The proposed method, however, does not attempt in any
way to classify quantitative phenotypes like other methods,
such as variants of MDR but instead handles them directly,
providing an intrinsic advantage of removing the chance
of misclassification. While previous entropy-based methods
of analyzing quantitative traits assumed the shape of its
distribution to be normal [20], our method does not need to
specify the distribution to estimate the association. Any reg-
ular or irregular distribution would not cause any difficulties.
Although this is also an advantage of GMDR or QMDR, we
propose a method that takes the advantageous characteristics
from both of those methods. We also performed extensive
simulation studies to compare the powers of the proposed
method to QMDR and GMDR, demonstrating its advantage
in detection power.

In the following sections, after a brief review of nonpara-
metric entropy estimation, we describe a new method for
modeling genetic interactions. A nonparametric entropy esti-
mator is shown to successfully couple with genetic datasets
through our modifying work in the Materials and Methods.
Application of this information gain standardized (IGS)
approach is evaluated for both simulation and real datasets
in the Results and Discussions.

2. Materials and Methods

2.1. Estimation of the Entropy for a Continuous Variable. If𝑋
is a random vector with probability density function,𝑓(𝑥), its
differential entropy is defined by

𝐻(𝑓) = −∫𝑓 (𝑥) ln (𝑓 (𝑥)) 𝑑𝑥. (1)

A well-known approach for estimating a solution to this
equation is to use plug-in estimates. In this approach, 𝑓(𝑥)

is first estimated using a standard density estimation method
such as a histogram or kernel density estimator, and the
entropy is then computed. Integral, resubstitution, splitting
data, and cross-validation estimates are among the usual
plug-in estimates [22]. Another approach is based on sample-
spacing. Let {𝑋𝑘} be a set of independent and identically
distributed real valued random variables, with corresponding
order statistics of {𝑋𝑛,𝑘}. Here, 𝑛 represents the total number
of measured samples. For the arbitrary integers 𝑖 and 𝑚

satisfying the condition of 1 ≤ 𝑖 < 𝑖 + 𝑚 ≤ 𝑛, a spacing of
order 𝑚 or 𝑚-spacing is defined as 𝑋𝑛,𝑖+𝑚 − 𝑋𝑛,𝑖. A density
estimate, based on sample-spacing,𝑚, is then constructed as

𝑓𝑛 (𝑥) =
𝑚

𝑛

1

𝑋𝑛,𝑖𝑚 − 𝑋𝑛,(𝑖−1)𝑚

, (2)

where 𝑥 ∈ [𝑋𝑛,(𝑖−1)𝑚, 𝑋𝑛,𝑖𝑚) [14]. This density estimate is
consistent if, as 𝑛 → ∞, 𝑚 → ∞ and 𝑚/𝑛 → 0

[22]. Several variations of an entropy estimator with minor
differences have been proposed, all based on the above
density estimates [23, 24]. Among them, the following were
reported to approximate with lowered variance [25]:

𝐻𝑚,𝑛 =
1

𝑛 − 𝑚

𝑛−𝑚

∑

𝑘=1

ln(
𝑛

𝑚
(𝑋𝑛,𝑘+𝑚 − 𝑋𝑛,𝑘)) . (3)

Asymptotic bias of this estimator can be corrected by adding
additional terms, including the digamma function [22, 28]:

𝐻𝑚,𝑛 =
1

𝑛 − 𝑚

𝑛−𝑚

∑

𝑘=1

ln(
𝑛

𝑚
(𝑋𝑛,𝑘+𝑚 − 𝑋𝑛,𝑘)) −

Γ
󸀠
(𝑚)

Γ (𝑚)
+ ln𝑚.

(4)

As𝑚 increases, the correctional terms become negligible and
the two estimators coincide. Our evaluation of the entropy
of a phenotype, 𝐻(𝑃), of a quantitative trait is based on this
estimator.

2.2. Modification of the 𝑚-Spacing Based Entropy Estimator.
The estimator in (4) has both 𝑛 and 𝑚 as parameters. In
genetic association studies, the number of samples, 𝑛, of
several hundreds is common. However, when the conditional
entropy is estimated, there may be a minor allele that could
have a much smaller number of samples corresponding to
that allele. Moreover, the choice of the sample-spacing, 𝑚,
should affect the resulting estimation of an entropy value.
Therefore, it is required to have an entropy estimation scheme
independent of the number of samples, without the need
of choosing a particular value of the sample-spacing. To
illustrate such a requirement, an ensemble of 3,000 sets of the
random deviation from 𝑁(0, 1

2
) was generated for each data

point in Figure 1, where the mean and standard deviation of
the estimates are plotted for each ensemble. On the left panel
of Figure 1, 𝑚 is fixed to 10 and 20 while 𝑛 is varied. The
analytic formula of the entropy for a normal distribution can
be obtained as follows [20], where 𝑒 is Euler’s number:

𝐻 = ln (𝜎√2𝜋𝑒) . (5)
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Figure 1: The 𝑛-dependence (a) and 𝑚-dependence (b) of the entropy estimator 𝐻
𝑚,𝑛

. An ensemble of 3,000 sets of random sampling from
𝑁(0, 1

2
)was constructed and used for each point in the plot.The sample-spacing,𝑚, was fixed while varying the number of samples, 𝑛, (a) to

evaluate the 𝑛-dependence of the entropy estimator. In (b), 𝑛 was fixed and 𝑚 was varied to show the 𝑚-dependence. Analytically obtained
true values are represented by the arrowed horizontal lines.

The calculated value of (5) is pointed on the vertical axis
with a horizontal arrow with the corresponding 𝜎 above
it. The obvious 𝑛-dependence of the estimator can be seen
in this plot, where the estimation approaches the analytic
value, as 𝑛 increases with √𝑛-consistency, as expected [24].
In Figure 1(b), 𝑛 is fixed to 400, while 𝑚 is varied. In this
plot, the estimated entropy again changes in value throughout
the possible range of 𝑚. It is shown that the estimated
value is always smaller than the analytically calculated value.
Therefore, assigning a particular value to 𝑚 such as √𝑛, the
typical choice [25], would not be appropriate in this sampling
range. Because of these 𝑛- and𝑚-dependences, the estimator
in (4) may need to be modified. Therefore, we modify the
entropy estimator in (4) as follows:

𝐻⟨𝑚⟩,𝑛 =
1

𝑛 − 1

𝑛−1

∑

𝑚=1

(
1

𝑛 − 𝑚

𝑛−𝑚

∑

𝑘=1

ln(
𝑛

𝑚
(𝑋𝑛,𝑘+𝑚 − 𝑋𝑛,𝑘))

−
Γ
󸀠(𝑚)

Γ (𝑚)
+ ln𝑚) .

(6)

In this modification, an entropy estimator is averaged over
the possible 𝑚 values for each 𝑛, which is denoted by ⟨𝑚⟩.
This estimator is used to plot the entropy versus number of
samples in Figure 2. Over a wide range of 𝑛, this entropy esti-
mator yields very stable values, in contrast to Figure 1(a). An
increase in the extremely small 𝑛 range should be within the
tolerable error in an application of genome-wide association,

as the contribution to the conditional entropy by such aminor
allele would be suppressed by the weighting factor of the
marginal probability that should be proportional to the num-
ber of corresponding samples. Analytically obtained entropy
values for 𝑁(0, 𝜎

2
), with three different 𝜎’s, are marked on

the vertical axis on the right-hand side. Regardless of the
value of 𝜎, the differences between the analytically obtained
value and the values given by the estimator stay essentially
the same. Considering that the association study measures
the difference between the entropy and the corresponding
conditional entropy, the stability should be a more critical
issue than the absolute value of the estimates. Therefore
compensation of this Δ would not be necessary as long as
it is stable. Furthermore, the underestimation of the entropy
shown in the plot should have little effect on the association
strength. Hence, an entropy estimator has been set up that
should satisfy the practical 𝑛-independence without the need
to find a proper sample-spacing.

2.3. Evaluation of a Conditional Entropy. Now let 𝐺 be a
categorical variable assigned to each sample measurement
𝑋𝑘. 𝐺may be a genotype given by a measured SNP or a com-
bination of SNPs, while 𝑋𝑘 represents the measured value of
a phenotype. For detecting the main effect of a single SNP, 𝐺
consists of three categories of 𝐺 = 0, 𝐺 = 1, and 𝐺 = 2. For
detecting the interaction between SNP𝑖 and SNP𝑗, 𝐺 consists
of 9 categories, such that 𝐺 = 0 = (SNP𝑖 = 0, SNP𝑗 = 0),
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𝐺 = 1 = (SNP𝑖 = 0, SNP𝑗 = 1), 𝐺 = 2 = (SNP𝑖 = 0, SNP𝑗 =
2), 𝐺 = 3 = (SNP𝑖 = 1, SNP𝑗 = 0), . . ., and 𝐺 = 8 = (SNP𝑖 =
2, SNP𝑗 = 2). Detection of the higher order interaction can be
performed in the same way with expansion of the categories
of 𝐺. Then an estimator for each specific component of the
conditional entropy, 𝐻(𝑃 | 𝐺 = 𝑔), can be constructed
using the genotype-selected subset measurements {𝑋𝑛𝑔 ,𝑘

},
along with an individual sample-spacing of 𝑚𝑔. Extending
(6), while applying the above argument, should now readily
produce the estimators for the entropy of a phenotype and the
conditional entropy. Here 𝑑 denotes the order of a gene-gene
interaction:

𝐻(𝑃) =
1

𝑛 − 1

𝑛−1

∑

𝑚=1

(
1

𝑛 − 𝑚

𝑛−𝑚

∑

𝑘=1

ln(
𝑛

𝑚
(𝑋𝑛,𝑘+𝑚 − 𝑋𝑛,𝑘))

−
Γ
󸀠(𝑚)

Γ (𝑚)
+ ln𝑚) ,

𝐻 (𝑃 | 𝐺)

=

3
𝑑
−1

∑

𝑔=0

𝑛𝑔

𝑛
(

1

𝑛𝑔 − 1

𝑛𝑔−1

∑

𝑚𝑔=1
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1

𝑛𝑔 − 𝑚𝑔

⋅

𝑛𝑔−𝑚𝑔

∑

𝑘=1

ln(

𝑛𝑔

𝑚𝑔

(𝑋𝑛𝑔 ,𝑘+𝑚𝑔
− 𝑋𝑛𝑔 ,𝑘

))

−

Γ
󸀠
(𝑚𝑔)

Γ (𝑚𝑔)

+ ln𝑚𝑔))

=

3
𝑑
−1

∑

𝑔=0

𝑛𝑔

𝑛
𝐻 (𝑃 | 𝐺 = 𝑔) .

(7)

2.4. Standardized Measure of an Association Strength. Since
the differential entropy values are scale-dependent, when the
above estimators are calculated with {𝑋𝑖} and {𝑐𝑋𝑖} (where 𝑐

is a constant scale factor), the difference would be ln 𝑐:

𝐻{𝑐𝑋𝑖}
= ln 𝑐 + 𝐻{𝑋𝑖}

. (8)

For example, if the phenotype is height it may be measured
in meters or centimeters. In this case, the scale factor is
100. Nevertheless, the association strength should also be the
same. Also note that a negative value is perfectly legitimate
for a differential entropy. Information gain, IG, as in the
form defined with discrete entropies [14], should satisfy scale
independence, while correctly representing an association
strength without being affected by negative values.Therefore,
it should retain its usefulness as a measure of an association
strength:

IG = 𝐻 (𝑃) − 𝐻 (𝑃 | 𝐺) . (9)

IG would be readily estimated with the above estimator
(7). IG standardized (IGS) is set up with the means and
standard deviations of IGs obtained from repeated shuffling
of the phenotypes while all genotypes remained fixed [14].
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Figure 2: The 𝑛-independence and constant offset from the true
value of the estimates averaged over all possible𝑚 values for each 𝑛.
Each symbol represents a result of samplings from 𝑁(0, 𝜎

2
). While

varying 𝑛, the number of samples, the estimated entropy values were
averaged over all the possible𝑚, sample-spacing values. ⟨𝑚⟩ denotes
this averaging, which should not depend on weighting due to the
virtually same standard deviations shown in Figure 1(b). Over awide
range of 𝑛, the estimated entropy stays effectively the same, showing
𝑛-independence in the range of practical number of sampling.
Moreover, the almost flat line connecting each symbol shifts up or
down following exactly the change of the true value indicated by the
horizontal arrows. The rise in the extremely small 𝑛 range should
be within the tolerable error of any specific application, because
the contribution to conditional entropy by such a case would be
suppressed by weighting, based on the marginal probability that
should be proportional to 𝑛.

Let IG(1)
𝑖

denote the maximum IG of the 𝑖th permuted
dataset. Then, the mean and standard deviation of IG(1)

1
,

IG(1)
2

, . . . , IG(1)
𝑛

can be computed as follows:

IG𝑝 =
∑
𝑛

𝑖=1
IG(1)
𝑖

𝑛
, 𝑆𝑝 =

√
∑
𝑛

𝑖=1
(IG(1)
𝑖

− IG𝑝)
2

𝑛 − 1
,

(10)

where 𝑛 is the number of permuted datasets. Now IGS is
defined as follows:

IGS =

IG − IG𝑝
𝑆𝑝

. (11)

3. Results and Discussions

3.1. Demonstration of the 𝑚-Spacing Method. To show
the plausibility of the proposed 𝑚-spacing method,



BioMed Research International 5

0.7

0.6

0.5

BA
 (b

y 
G

M
D

R) P < 0.001

P = 0.003

Main effect
2-order
3-order

−4 0 4 8

IGS (by m-spacing)

(a)

P < 0.001

P = 0.003

t-
st

at
ist

ic
 (b

y 
Q

M
D

R)

6

2

0

4

Main effect
2-order
3-order

−4 0 4 8

IGS (by m-spacing)

(b)

Figure 3: Comparison of the QMDR, GMDR, and𝑚-spacing methods. Association strengths obtained by GMDR versus𝑚-spacing (a) and
by QMDR versus𝑚-spacing (b) are compared for a simulated dataset. All three methods were used to evaluate the main effect as well as 2nd
and 3rd order interactions. The dataset was designed to have one 2nd order interaction causal pair.

a representative result is shown in Figure 3, using a
dataset whose quantitative trait was generated from a
normal distribution with a single causal SNP pair simulated,
as described in the next section. The sample size of the
dataset was 400, with 20 SNPs. In panel (a), the association
strengths, obtained by 𝑚-spacing and GMDR, are plotted
as horizontal and vertical coordinates, respectively. Filled
triangles represent the main effects, while open circles are
for the 2nd order interactions. Both methods identify the
same single SNP pair having a prominent interaction plotted
in the upper right corner. One of the SNPs was found to
produce the main effect, in contrast to others. Again, the
result is agreed by both methods. 𝑃 values obtained by
permutation are given in the boxes for those selected points.
Association strengths of the 3rd order interactions are
plotted with a plus sign. Because no 3rd order interaction is
simulated into the dataset, the combinations of SNPs made
by adding a single SNP to the causal pair are expected to
have high association values. Those points are clustered near
the identified causal pair in the upper right corner. In panel
(b) of Figure 3, the same comparison was made using the
result from 𝑚-spacing and QMDR. Both comparisons show
consistent results between the proposed 𝑚-spacing method
and GMDR or QMDR. Note that IGS instead of IG was used.
The distribution of the IG values from a dataset would shift to
a higher direction, with increased order of interactions.Thus,
the more conditions applied, the less entropy may be left to
find. In other words, as the order of interaction increases,
the conditional entropy 𝐻(𝑃 | 𝐺) tends to decrease, while

𝐻(𝑃) remains the same. Therefore IGS is vital if one needs
to compare the association strengths between genotypes
from different orders of interactions. Figure 3 shows that the
simulated causal pair has the largest IGS value among all
points, from different orders of interactions.

3.2. Generation of the Simulation Data. To examine the
performance of the 𝑚-spacing method, an extensive set of
simulation data was necessarily generated. First, three types
of quantitative trait distributions were considered. Two of
them were normal and gamma distributions, and another
one was a mixture of those two types. With single causal
pair designed, 70 different penetrance models, based on [21],
were incorporated. For the case of a normal distribution, a
phenotype value, 𝑦, associated with two interacting SNPs
was selected from a normal distribution, as defined by
the penetrance values tabled for possible combinations of
genotypes associated as follows:

𝑦 | (SNP1 = 𝑖, SNP2 = 𝑗) ∼ 𝑁(𝑓𝑖𝑗, 𝜎
2
) . (12)

Here 𝑓𝑖𝑗 represents the penetrance values tabled for every
model simulated and can be found in [21]. It is tabulated
for each possible pair of genotypes, (𝑖, 𝑗). In 70 different
penetrancemodels, 14 different combinations of two different
minor allele frequencies (MAFs) and seven different heri-
tability values were considered. Specifically, we considered
the cases when the MAFs were 0.2 and 0.4 and when the
heritability was 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, and 0.4. Three
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Figure 4: Demonstration of the simulation scheme. Phenotype distributions were plotted to associate with the genotypes by two interacting
SNPs, as denoted in the parentheses on top of each plot. SNPs may take values of 0, 1, and 2 or AA, Aa, and aa. For this particular dataset, the
MAF was set to 0.200. On the bottom of each plot, the penetrance value for this particular model is given, which is taken from [21]. Inside
each plot, the number of samples generated to satisfy the simulation constraint is given. The vertical dotted lines are for the mean values of
the high- and low-risk groups. By constraint, the line on the left is for the low-risk group.

different values (0.8, 1.0, and 1.2) of the variance, 𝜎, were used
independently for the high- and low-risk groups, resulting in
9 combinations. The grouping constraint for the generated
event was set such that the averaged 𝑦 of the high-risk group
should be larger than or equal to the overall average. The
averaged 𝑦 of the low-risk group should be less than the
overall average. In Figure 4, 9 possible distributions of a
generated phenotype are shown. In this example, the sample

size is 400. The high- and low-risk groups have the same
number of samples and both have a variance of 1.0. For
gammadistributions, phenotype values follow the rule below:

𝑦 | (SNP1 = 𝑖, SNP2 = 𝑗) ∼ Γ (𝑘, 𝜃) . (13)

The shape and scale parameters, 𝑘 and 𝜃, were determined
by 𝑓𝑖𝑗 and 𝜎, using the relationship 𝑓𝑖𝑗 = 𝑘𝜃 and 𝜎 = 𝑘𝜃

2.
Penetrance models were classified by 7 heritability values:
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Figure 5: Comparison of the hit ratios or the detection probabilities among the proposed𝑚-spacing method, QMDR, and GMDR. Genomic
datasets were generated based on 70 different penetrance functions [21], which were, in turn, classified into 7 distinct values of heritability.
For each model, the phenotype values are simulated with normal (a), gamma (b), and mixed (c) distributions. High- and low-risk groups
in a quantitative trait overlapped with 9 different combinations of the standard deviations. Considering all of the above, 100 data files were
generated for each case, adding up to 9,000 simulated files being examined for each point in the plot.

0.01, 0.02, 0.05, 0.1, 0.2, 0.3, and 0.4, resulting in 10 models for
each heritability. The generated data files had a sample size
of 400, with 20 SNPs. In all, 3 × 70 × 9 = 1,890 different
conditionswere set up, with 100 simulated data files generated
for each condition.

3.3. Comparison of the Detection Probability and Type I
Error. The “hit ratio,” or detection power, of the IGS was
evaluated and compared. Simulated data files described in
the previous subsection were used. All of them had a single
causal pair to identify. In addition to our proposed𝑚-spacing

method, QMDR and GMDR were used to compare the
results. Figure 5 shows the comparison. Panels (a), (b), and
(c) are for the quantitative trait of normal, gamma, andmixed
distributions, respectively. Seventy penetrance models were
grouped into 7 cases of heritability on the horizontal axis,
while all 9 combinations of the variances in high- and low-
risk distributions were merged into each heritability case.
With a normal distribution, as shown in Figure 5(a), the
𝑚-spacing’s performance was in between those of QMDR
and GMDR for higher values of penetrance. However, in the
range of penetrance less than 0.2, the 𝑚-spacing performs
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best. Note that theQMDR shows higher detection probability
than the GMDR throughout the range. In the case of a
gamma distribution, as shown in Figure 5(b), the QMDR’s
performance drops rapidly, as the heritability decreases when
the hit ratios of 𝑚-spacing, as well as the GMDR, stay better
than that of QMDR and are comparable to each other. Note
the switch of the GMDR and QMDR’s performance ranks
with the change of the phenotype distribution. What QMDR
does is essentially the dichotomization of the observed values
of the quantitative phenotypes. Therefore, it should do better
with well-defined symmetric distributions, such as a normal
distribution, than with an asymmetric one (e.g., gamma dis-
tribution).The proposed𝑚-spacingmethod is expected to be
effective regardless of the shape of the phenotype distribution,
because it makes no assumptions regarding the distribution
and is therefore nonparametric, as demonstrated in Figures
5(a) and 5(b).This nonparameterization is again confirmed in
Figure 5(c), showing that𝑚-spacing outperforms the QMDR
and theGMDR, throughout the whole range of heritability, in
the case of themixed form of phenotype distribution. Among
the threemethods examined,𝑚-spacing was themost robust,
performing consistentlywithin the range of conditions for the
simulation.

To estimate the type I error rate, the null datasets were
generated under the same scheme as used for the detection
power analysis except that there was no causal pair intended.
Now there are 20 SNPs that none of the pairs are expected
to have an association. Permutation 𝑃 values for a particular
pair were obtained by permuting each dataset 1000 times.
We took the significance level 𝛼 as 0.05 to get the ratio of
the permutation 𝑃 values smaller than or equal to 𝛼. We
report this ratio as the type I error rate in Table 1, whose
accuracy to one decimal place when expressed in percent was
ensured by the number of the permutation. Table 1 presents
the type I error rate for each combination of three trait
distributions, two MAFs, and seven heritability values, along
with the overall estimates. Throughout these conditions,
the type I error rates are gathered tightly around 5% with
maximum and minimum of 5.4% and 4.3%, respectively.
Moreover there exists no sign of the dependence on the
trait shape, heritability, and MAF. Therefore our proposed
method preserved the type I error rates on these condi-
tions.

3.4. Application to Real Data. A full-scale real dataset from
the Korean Association Resource (KARE) project [20] was
analyzed to investigate the effectiveness of the 𝑚-spacing
method. Among the available phenotypes, “height” was
chosenwith a sample size of 8,842 from the population-based
cohort.The total number of SNPs was 327,872, spanning over
22 chromosomes.The “height” phenotype showed to be close
to a normal distribution such that the𝑚-spacingmethodmay
not take advantage of the shape of the phenotype distribution,
as discussed in the previous subsection. Table 2 lists the
SNPs, selected by the 𝑚-spacing method (IGS), that had the
strongest main effects. Out of 10 selected SNPs, rs2079795
and rs6440003 coincide with two previous reports [26, 27],
although twomore matched SNPs, rs11989122 and rs1344672,
could be found as results of our analysis using the same tool

Table 1: Type I error estimation with the significance level 𝛼 of 0.05.

Type I error rate (%) Normal Gamma Mixed

MAF 0.2 5.0 5.0 5.1
0.4 5.1 5.0 5.1

Heritability

0.01 5.3 5.0 4.8
0.02 4.9 5.4 5.2
0.05 5.3 4.3 5.3
0.1 5.0 5.3 5.1
0.2 5.0 5.3 5.1
0.3 4.8 4.9 4.8
0.4 5.1 4.7 5.3

Overall 5.0 5.0 5.1

as in [26], but using the newly imputed dataset. 𝑃 values
were estimated by permutation of the phenotype values to
make null distributions. Permutations were iterated 100,000
and 10,000 times for the main effect and the interaction,
respectively. A clear distinction between rs11989122 and the
other selected SNPs can be seen in the IGS values. In Table 3,
the 2nd order gene-gene interaction result is given. The top
selected pair (rs6499786, rs1788421) was found to have the
strongest association with “height,” but the distinction was
not so obvious, compared to the case of the main effect.

4. Conclusion

In this paper, we present a modified 𝑚-spacing method for
genome-wide association studies with a quantitative trait.
The robustness of this method makes it useful for a wide
range of sample sizes, while the original 𝑚-spacing method
yields a reliable result only for datasets with a large sample
size. Extensive simulation was performed to produce the
datasets with different shapes of phenotype distributions,
while varying the penetrance functions and adjusting the
heritability as well. Causal pair detection probability was
unaffected the most by the compared methods, based on the
distribution shape and heritability, while GMDR and QMDR
showed more dependency. The proposed 𝑚-spacing method
is proven to outperform the others regardless of the shape of
the trait distribution and also the range of lower heritability.
In the higher heritability region, the performance of the
proposedmethod is comparable to that of GMDR or QMDR,
whichever shows better performance in that region. This
would lead to versatile applicability of our nonparametric
method for quantitative traits, with various characteristics.
We applied this method to successfully identify the main
effect and gene-gene interactions for the phenotype “height”
with the full set of KARE samples. Although several of them
overlapped with a previous report, new interactions were
also found. Because “height” is presumed to be a trait with a
normal distribution having a higher heritability, our method
may be said to have performed successfullywith no advantage
over other methods. More extensive study is needed for
quantitative traits, having various characteristics, to further
demonstrate the expected robustness of our modified 𝑚-
spacing method.
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Table 2: Application of the𝑚-spacing method to a full set of KARE samples with the phenotype “height;” main effect.

Main effect
rs ID Chromosome IGS 𝑃 value Previous report
rs11989122 8 11.3892 1 × 10

−5 ∗
5.89 × 10

−6

rs7316119 12 8.7531 1 × 10
−5 —

rs936634 18 8.6125 2 × 10
−5 —

rs7632381 3 7.8235 1 × 10
−5 —

rs2079795 17 7.6542 1 × 10
−5 2.92 × 10

−6

Ref. [26]
rs1344672 3 7.6177 1 × 10

−5 ∗
5.21 × 10

−7

rs2523865 6 7.6044 4 × 10
−5 —

rs3790199 20 7.5362 2 × 10
−5 —

rs6440003 3 7.5231 1 × 10
−5 3.87 × 10

−7

Ref. [27]
rs17628655 19 7.5117 6 × 10

−5 —
∗Identified using the same method as [26] but with imputed data, which is the same one we analyzed.

Table 3: Application of the𝑚-spacing method to a full set of KARE samples with the phenotype “height;” 2nd order interaction.

2nd order interaction
rs ID Chromosome rs ID Chromosome IGS 𝑃 value
rs6499786 16 rs1788421 21 4.6197 1 × 10

−4

rs2529232 7 rs1788421 21 4.3869 1 × 10
−4

rs2241704 19 rs1788421 21 4.3855 1 × 10
−4
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