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para-Aminosalicylic acid (PAS) entered clinical use in 1946 as the second exclusive drug for the treatment of tuberculosis (TB).
While PAS was initially a first-line TB drug, the introduction of more potent antitubercular agents relegated PAS to the second-
line tier of agents used for the treatment of drug-resistant Mycobacterium tuberculosis infections. Despite the long history of
PAS usage, an understanding of the molecular and biochemical mechanisms governing the susceptibility and resistance of M.
tuberculosis to this drug has lagged behind that of most other TB drugs. Herein, we discuss previous studies that demonstrate
PAS-mediated disruption of iron acquisition, as well as recent genetic, biochemical, and metabolomic studies that have revealed
that PAS is a prodrug that ultimately corrupts one-carbon metabolism through inhibition of the formation of reduced folate
species. We also discuss findings from laboratory and clinical isolates that link alterations in folate metabolism to PAS resis-
tance. These advancements in our understanding of the basis of the susceptibility and resistance of M. tuberculosis to PAS will
enable the development of novel strategies to revitalize this and other antimicrobial agents for use in the global effort to eradi-
cate TB.

Mycobacterium tuberculosis is responsible for approximately
8.6 million new cases of active tuberculosis (TB) infection

and 1.3 million deaths annually despite the existence of TB ther-
apy (1). While this therapy has a high success rate in curing drug-
susceptible TB infections, it is challenging, in part because it re-
quires a minimum of 6 months of treatment with drugs that are
associated with adverse reactions (2, 3). These factors contribute
to treatment errors and noncompliance, which have been impli-
cated in the emergence of drug-resistant strains of M. tuberculosis
(4, 5). Further, subsequent relapse of the disease can occur and is
associated with a high incidence of drug resistance (6). Together,
these complications have enabled the emergent spread of multi-
drug-resistant (MDR) and extensively drug-resistant (XDR)
strains of M. tuberculosis that require greater than 2 years of ther-
apy with second-line drugs and threaten the efficacy of existing TB
therapy (1, 7). Elucidating the mechanisms that govern the sus-
ceptibility and resistance of M. tuberculosis to existing antitu-
bercular agents will facilitate the discovery of new therapeutic
approaches to shorten treatment times and counter drug-resis-
tant TB.

para-Aminosalicylic acid (PAS) entered clinical use as a bacte-
riostatic antitubercular agent in 1946 (8). Shortly before the intro-
duction of PAS, the discovery of streptomycin as a therapeutic tool
had dramatically improved TB survival rates (9). At that time, it
was apparent that the rapid emergence of streptomycin-resistant
M. tuberculosis strains posed a threat to this monotherapy strategy
for TB infection (9). As PAS was effective against streptomycin-
resistant strains of M. tuberculosis (10), it was soon recognized that
combination therapy could reduce the emergence of drug resis-
tance (11–13). In the early 1950s, isoniazid was found to be highly
effective in treating M. tuberculosis infections and was often in-
cluded in streptomycin-PAS treatment regimens (14). This three-
drug combination was found to dramatically increase cure rates
and further decrease the emergence of drug resistance (15, 16).

PAS treatment was commonly associated with gastrointestinal
disturbance and was eventually replaced with a better-tolerated

companion agent, ethambutol (17). Yet, with the development of
improved formulations of PAS and the global spread of MDR and
XDR strains of M. tuberculosis, this drug has re-entered antituber-
cular drug regimens as an important second-line agent (18). In
response to the revitalization of PAS use in TB therapy, there have
been recent critical advances in our understanding of the molec-
ular details of susceptibility and resistance of M. tuberculosis to this
drug.

In this minireview, we summarize the current understanding
of the impact of PAS on M. tuberculosis metabolism. We focus
much of this discussion on folate metabolism, as PAS activity is
intimately associated with this essential metabolic pathway. We
discuss the proposed modes of action of PAS, its bactericidal ef-
fects, and recently characterized resistance mechanisms. Finally,
we summarize areas of investigation to further our understanding
of PAS interaction with M. tuberculosis.

FOLATE METABOLISM AS A HIGH-VALUE DRUG TARGET.

In prokaryotes and eukaryotes, reduced folate species serve as es-
sential cofactors in the transfer of one-carbon groups in pathways
for the synthesis of methionine, N-formylmethionyl-tRNA, gly-
cine, serine, pantothenate, purines, and thymidine (Fig. 1) (19,
20). While mammals lack the de novo folate biosynthesis pathway
and must obtain this nutrient from their diet, many microbes are
unable to acquire folates from the external environment and rely
on de novo folate synthesis to support one-carbon metabolism
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(21). The dichotomy in essentiality of this biosynthetic pathway in
humans and microbial pathogens makes it an ideal target for the
development of antimicrobial agents. There also exist structural
differences in key enzymes of folate utilization that enable selec-
tive targeting of microbes (22). Indeed, antifolate drugs, such as
sulfonamides and diaminopyrimidines (Fig. 2), have been widely
used in the treatment of numerous bacterial and parasitic infec-
tions (20, 23–26).

While antifolates are not part of the current first-line TB drug
regimen, they have a long history of use in TB therapy and are of
interest in ongoing TB drug discovery efforts. Shortly after their
discovery, sulfonamides were used with limited success in the
treatment of TB until more effective antitubercular drugs were
introduced (27, 28). The need for novel therapeutic agents to meet
the challenge of MDR and XDR TB has renewed interest in these
and other antifolates. Several reports indicate that the vast major-
ity of clinical isolates of M. tuberculosis, including MDR and XDR
strains, are susceptible to a combination of sulfamethoxazole and
the diaminopyrimidine trimethoprim (29–33). In addition, PAS
has recently been shown to be an antifolate prodrug (34–36).
Moreover, a series of folate structural analogs have recently been
developed that show potent disruption of M. tuberculosis one-
carbon metabolism through inhibition of folate reduction (37,
38). Thus, drugs that target folate metabolism show promise for
the future treatment of drug-susceptible and drug-resistant TB
infections.

The folate biosynthesis pathway of M. tuberculosis. The fo-
late biosynthetic pathway of M. tuberculosis begins with the syn-
thesis of para-aminobenzoic acid (PABA) and 7,8-dihydropterin

pyrophosphate (DHPPP) (Fig. 1). PABA is produced from cho-
rismate by the concerted action of aminodeoxychorismate syn-
thase (PabAB) and aminodeoxychorismate lyase (PabC) (39).
While these enzymes have yet to be biochemically characterized in
M. tuberculosis, genes corresponding to pabB and pabC were pre-
dicted to be essential for growth in high-throughput insertional
transposon mutagenesis studies (40, 41). A gene corresponding to
pabA, encoding chorismate-glutamine amidotransferase, is not
predicted in the annotated complete genome sequence of strain
H37Rv (42). Yet, it is possible that M. tuberculosis encodes an
amphibolic glutamine amidotransferase (annotated as trpG) that
is involved in the synthesis of both folate and tryptophan, as has
been described for Bacillus subtilis (43). Similar to pabB and pabC,
trpG has been predicted to be required for the growth of M. tuber-
culosis in a comprehensive assessment of gene essentiality (41).

DHPPP is produced from GTP via a multistep process (Fig. 1).
The first step is the conversion of GTP to dihydroneopterin phos-
phate and formate by GTP cyclohydrolase (FolE) (44). Dihydro-
neopterin phosphate is then dephosphorylated to dihydroneop-
terin by a nonspecific cytoplasmic phosphatase (45). Next,
dihydroneopterin aldolase (FolB) converts dihydroneopterin to
6-hydroxymethy-7,8-dihydropterin and glycolaldehyde (46). The
structure of M. tuberculosis FolB has been solved and was shown to
form a novel tetramer that undergoes substrate-induced octamer-
ization, which is essential for its catalytic activity (47). Finally,
6-hydroxymethy-7,8-dihydropterin is converted to DHPPP by
the diphosphotransferase FolK (48, 49). While folE and folB have
been predicted to be essential in M. tuberculosis (40, 41), disrup-
tion of folK is associated with a strong in vitro growth defect (41).

FIG 1 Schematic representation of M. tuberculosis folate metabolism. Enzymes of folate biosynthesis are blue, and enzymes of one-carbon metabolism are in
beige ovals. Pathway intermediates are connected by black arrows. Abbreviations: GTP, guanosine-5=-triphosphate; DHPPP, 7,8-dihydropterin pyrophosphate;
PABA, para-aminobenzoic acid; Glu, glutamate; H2Pte, dihydropteroate; H2PteGlu, dihydrofolate; H4PteGlu, tetrahydrofolate; C1-H4PteGlu, various single-
carbon-modified species of H4PteGlu; DHPS, H2Pte synthase; DHFS, dihydrofolate synthase; DHFR, dihydrofolate reductase; dTMP, deoxythymidine mono-
phosphate; FAICAR, 5-formamidoimidazole-4-carboxamide ribotide; AICAR, 5-aminoimidazole-4-carboxamide ribonucleotide; FGAR, 5=-phosphoribosyl-
N-formylglycinamide; GAR, 5=-phosphoribosylglycinamide; tRNAMet, methionyl-tRNA; tRNAfMet, N-formylmethionyl-tRNA.
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The genes of the DHPPP pathway are organized in an apparent
operon that includes one other gene involved in folate synthesis
(folP1), as well as ftsH (involved in cell division) and a gene of
unknown function (Rv3605c) (50, 51).

Production of dihydropteroate (H2Pte) from PABA and
DHPPP is catalyzed by H2Pte synthase (DHPS; Fig. 1) (48, 49).
While the M. tuberculosis genome contains two putative genes for
DHPS, folP1 and folP2, biochemical analysis has revealed that only
FolP1 is catalytically active in the production of H2Pte (52, 53).
The physiological role of FolP2 has yet to be defined (52).

The final enzyme of the de novo folate synthesis pathway is
dihydrofolate synthase (DHFS), which catalyzes the ATP-depen-
dent addition of L-glutamate to H2Pte to generate dihydrofolate
(H2PteGlu) (Fig. 1) (49). In M. tuberculosis, DHFS activity is en-
coded by folC (54) and has been predicted to be essential for in
vitro growth (40, 41). In many species, DHFS is a bifunctional
enzyme that also catalyzes the gamma linkage of additional L-glu-
tamate residues to the fully reduced folate species tetrahydrofolate
(H4PteGlu), producing polyglutamylated folates (H4PteGlun,
where n refers to the number of glutamate residues) (55). In mam-

malian cells, it has recently been shown that polyglutamylation is
important for the retention of folate species in subcellular com-
partments (56). Polyglutamylation of folates in bacterial systems
is widespread, but its physiologic role has not been exhaustively
studied (55). One important role for bacterial polyglutamylated
folates lies in methionine synthesis. In contrast to most bacterial
folate-dependent enzymes that can utilize H4PteGlu species, it has
been demonstrated that the cobalamin-independent methionine
synthase MetE preferentially utilizes 5-methyl-H4PteGlu3 for ca-
talysis (57).

H2PteGlu is reduced to H4PteGlu by dihydrofolate reductase
(DHFR) (58). H4PteGlu serves as a cofactor for serine hydroxylase
in the synthesis of glycine and is the essential precursor for various
one-carbon-carrying folate species (C1-H4PteGlu) used in one-
carbon metabolism (Fig. 1). Since DHFR is essential in many or-
ganisms, therapeutic agents targeting DHFR have been developed
for cancer, malaria, and toxoplasmosis, in addition to bacterial
infections. In M. tuberculosis, DHFR is encoded by dfrA (22) and is
essential for growth (41). Significant structural differences be-
tween the active sites of M. tuberculosis DHFR and human DHFR

FIG 2 Targets of antifolate drugs. As indicated by red blunted arrows, bioactivated PAS (hydroxy-H2PteGlu), trimethoprim, and WR99210 inhibit DfrA;
4-aminobenzene sulfonamides and dapsone inhibit FolP1. PAS is a prodrug that is activated through the folate biosynthetic pathway (shown on the left). PAS
differs from PABA by the presence of a hydroxyl group in the ortho position (circled in red). The native folate synthesis pathway is represented on the right.
During bioactivation, PAS serves as an alternate substrate to PABA and is sequentially converted to hydroxy-H2Pte and hydroxy-H2PteGlu by FolP1 and FolC,
respectively. Relevant enzymes are blue. Abbreviations: DHPPP, 7,8-dihydropterin pyrophosphate; PABA, para-aminobenzoic acid; Glu, glutamate; H2Pte,
dihydropteroate; H2PteGlu, dihydrofolate; H4PteGlu, tetrahydrofolate; DHPS, H2Pte synthase; DHFS, dihydrofolate synthase; DHFR, dihydrofolate reductase.
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make it an attractive target for antitubercular drug development
(22, 59).

Folate metabolism as a target for antitubercular agents.
Among the various enzymes of folate metabolism, only two,
DHPS and DHFR, are currently used as targets for antimicrobial
agents (Fig. 2). Many sulfonamides and the related compound
dapsone (Fig. 2), are structurally similar to PABA and have been
found to be competitive inhibitors of DHPS in various pathogens
(23, 24, 60–65). Sulfonamides inhibit M. tuberculosis FolP1 enzy-
matic activity in cell-free assays and show variable antitubercular
activity in culture (53, 60, 66). Dapsone, a first-line leprosy drug
(67), also inhibits M. tuberculosis FolP1 enzymatic activity in cell-
free assays (53, 60). Like some sulfonamides, dapsone lacks signif-
icant activity against whole cells because of the expression of an
uncharacterized inactivation pathway (34).

Trimethoprim is a bacteriostatic antimicrobial agent that po-
tently inhibits DHFR in various bacterial species. For example, the
Ki of trimethoprim for Escherichia coli DHFR is in the low nano-
molar range (68). Trimethoprim is frequently used in combina-
tion with sulfonamides because of the synergistic impact on the
disruption of folate metabolism. Unlike that which is observed in
many other bacteria, trimethoprim only weakly inhibits M. tuber-
culosis DHFR enzymatic activity in cell-free assays (50% inhibi-
tory concentration of 16.5 �M) (69). Accordingly, M. tuberculosis
is not regarded as being highly susceptible to trimethoprim alone
(MIC, �128 �g/ml) (31, 70, 71). A recent structural study sug-
gested that the Tyr100 residue in M. tuberculosis DHFR may be
responsible for the weak binding of trimethoprim to M. tubercu-
losis DHFR and showed that a variant, Y100F, had increased affin-
ity for trimethoprim (59). Despite this limited antitubercular ac-
tivity of trimethoprim, several studies have demonstrated that
combinations of trimethoprim and sulfamethoxazole are effective
against drug-susceptible and MDR strains of M. tuberculosis (29–
33). An evaluation of synergy between these drugs showed that
subinhibitory concentrations of sulfamethoxazole conferred a sig-
nificant reduction of the MIC of trimethoprim (fractional inhib-
itory concentration index of 0.5) (31). Yet, a parallel study re-
ported that while sulfamethoxazole alone showed measurable
activity against various M. tuberculosis isolates, no apparent im-
provement of trimethoprim activity was observed (70). Interest-
ingly, it has been demonstrated that specific disruptions in the
folate interconversion pathway can modulate the susceptibility of
M. smegmatis to various trimethoprim-sulfonamide combina-
tions (72), suggesting opportunities for potentiation of antifolate
action in mycobacteria (73).

Several studies have focused on the identification of new M.
tuberculosis DHFR inhibitors that have more potent antitubercu-
lar activity than trimethoprim (37, 71, 74, 75). Suling et al.
screened a series of lipophilic deazapteridine derivatives with
structural similarity to trimethoprim and identified several M.
tuberculosis DHFR inhibitors with improved activity relative to
that of trimethoprim in cell-free and whole-cell assays (71). In
addition, the antimalarial lead compound WR99210 (76) was
found to be effective against several species of mycobacteria (77,
78), including M. tuberculosis (37). The crystal structure of M.
tuberculosis DHFR and the brominated analog of WR99210 re-
vealed that Br-WR99210 binds within the active site of M. tuber-
culosis DHFR (22). Using a novel screening approach with a yeast
strain expressing M. tuberculosis dfrA, Gerum et al. identified sev-
eral promising WR99210 analogs that also showed improved an-

titubercular activity (37). The ability of these compounds to target
tubercle bacilli in animal models of infection awaits further study.

MODE OF ACTION OF PAS

Since the discovery of PAS as an antitubercular agent, there have
been multiple hypotheses regarding its antitubercular mode of
action. In 1940 and 1941, Bernheim observed that salicylate stim-
ulated increased oxygen consumption in M. tuberculosis (79),
while some structural analogs of salicylate had a negative impact
on oxygen uptake (80). Following up on these studies, Lehmann
screened a panel of salicylate analogs and identified PAS as a po-
tent antitubercular agent (8). These initial observations implied a
role for PAS in the disruption of a salicylate-linked metabolic
pathway; however, recent studies have revealed that the principal
antitubercular action of PAS occurs through poisoning of folate
metabolism.

PAS is a prodrug targeting folate metabolism. Initial hints
toward an interaction of PAS with folate metabolism came from
the observation that its antitubercular activity could be antago-
nized by supplementation with exogenous PABA (10) or methio-
nine (81, 82). This link to folate metabolism was further solidified
by the observation that loss-of-function mutations in thyA, en-
coding a folate-dependent thymidylate synthase, conferred resis-
tance to PAS (83). On the basis of both the structural similarity of
PAS to many antimicrobial sulfonamides and the ability of PABA
to antagonize the antitubercular activity of these drugs, it was
predicted that these compounds possess a conserved mode of ac-
tion (10). However, despite these structural and functional simi-
larities, there was no measurable cross-resistance between PAS
and sulfonamides in M. tuberculosis (84). Further, it was shown
that, in contrast to sulfonamides, PAS imposed only weak inhibi-
tion of purified recombinant M. tuberculosis FolP1 enzymatic ac-
tivity (60). Thus, as described below, for PAS to disrupt M. tuber-
culosis folate metabolism, it must do so downstream of FolP1.

Recently, Chakraborty et al. used a metabolomic approach to
investigate the impact of PAS treatment on M. tuberculosis folate
metabolism (34). In this innovative study, it was revealed that PAS
could be bioconverted to the folate intermediate analogs hydroxy-
H2Pte and hydroxydihydrofolate (hydroxy-H2PteGlu) via the M.
tuberculosis folate synthesis pathway (34). Further, by using cell-
free assays with purified recombinant proteins, it was demon-
strated that PAS and hydroxy-H2Pte were competent substrates
for M. tuberculosis DHPS and DHFS, respectively (Fig. 2) (34).
These data suggested for the first time that PAS was likely a pro-
drug that required activation via the folate synthesis pathway. This
concerted conversion of PAS to hydroxy-H2Pte and hydroxy-
H2PteGlu was confirmed by two subsequent studies (35, 36).
Taken together, these findings suggested that PAS is bioactivated
to a hydroxylated folate species analog that is disruptive for a
downstream target(s) in folate metabolism.

To further probe into this metabolic disruption, Chakraborty
et al. then profiled the change in abundance of folate-linked me-
tabolites in PAS-treated M. tuberculosis. It was found that PAS
treatment resulted in the rapid, dose-responsive accumulation of
precursors of folate-dependent metabolites such as 5-amino-1-
(5-phospho-D-ribosyl)imidazole-4-carboxamide, dUMP, homo-
cysteine, and serine (34). This metabolic disruption could be an-
tagonized by exogenously supplied PABA and mirrored metabolic
responses to bona fide folate antagonists (34, 38). These data in-
dicated that the ultimate bioactivation product of PAS was

Minireview

5100 aac.asm.org September 2015 Volume 59 Number 9Antimicrobial Agents and Chemotherapy

http://aac.asm.org


broadly disruptive of one-carbon metabolism, likely at an early
step in folate activation (34).

Subsequently, Zheng et al. provided the instrumental observa-
tion that PAS-mediated growth inhibition of M. tuberculosis could
be circumvented by overexpression of DHFR or by expression of a
structurally distinct enzyme (RibD) with DHFR activity (35). Fur-
ther, the authors demonstrated that small-molecule extracts from
PAS-treated M. tuberculosis contained an inhibitory activity
against purified recombinant M. tuberculosis DHFR (35). Synthe-
sis of this inhibitory activity could be blocked by the treatment of
bacilli with the DHPS inhibitor sulfathiazole (35). Collectively,
these data strongly support a model in which PAS is bioactivated
within the folate synthesis pathway to the H2PteGlu analog hy-
droxy-H2PteGlu, which then disrupts folate metabolism through
potent inhibition of DHFR (Fig. 2).

Bactericidal effects of PAS. PAS is generally regarded as a bac-
teriostatic agent for M. tuberculosis (8), yet bactericidal effects on
metabolically active populations of bacilli have been noted (85).
While antifolate drugs disrupt multiple biosynthetic pathways,
limitation for most of these metabolites results in stasis. However,
in metabolically active populations, limitation for dTMP typically
imposes a unique microbicidal effect known as thymineless death
(86–91). In organisms that express a thymine salvage pathway,
thymineless death can be circumvented via supplementation with
exogenous thymine or thymidine. Although the molecular mech-
anism leading to this loss of cell viability is still under investiga-
tion, several cellular changes have been causally linked with loss of
dTMP and include an increase in single- and double-stranded
DNA breaks, impaired Okazaki fragment assembly, and loss of
origin-of-replication integrity (92–94). Accumulation of dUMP
in M. tuberculosis cells treated with PAS was observed (34), indi-
cating that PAS treatment interferes with dTMP synthesis. Fur-
ther, induction of several DNA repair genes was observed in M.
tuberculosis during treatment with other DHFR-inhibiting antifo-
lates (38). These data suggest that thymineless death may contrib-
ute to loss of cell viability of M. tuberculosis during PAS treatment.

Folate metabolism is also intimately tied to the activated
methyl cycle, which is involved in the biosynthesis of S-adenosyl-
methionine (SAM). SAM-dependent methyltransferases are es-
sential for many cellular functions in M. tuberculosis, including
DNA methylation, biotin synthesis, modification of mycolic acids,
and methylation of rRNA (95–97). Loss of the ability to regenerate
SAM has been shown to be bactericidal in Borrelia burgdorferi
(98). Antifolate treatment has been demonstrated to reduce the
intracellular abundance of SAM in M. tuberculosis (38). It was also
recently shown that SAM can antagonize the antitubercular activ-
ity of WR99210. This finding suggests that WR99210 promotes
cell death in M. tuberculosis through the depletion of SAM pools
(38). Since WR99210 and bioactivated PAS act on the same cellu-
lar target, it is likely that PAS-mediated cell death is also linked to
depletion of SAM abundance.

Direct evidence of the contribution of dTMP and SAM limita-
tion to the bactericidal activity of PAS has yet to be described.
Thymineless death is difficult to assess directly because of the lack
of a thymidine salvage pathway in M. tuberculosis (99). Without a
salvage pathway, supplementation with exogenous salvage path-
way intermediates such as thymine or thymidine will not provide
a source of dTMP. Further, it is unlikely that dTMP can be taken
up directly by M. tuberculosis because of the limited permeability
of the cell wall (100). Effects stemming from disruption of the

activated methyl cycle have yet to be fully characterized in M.
tuberculosis. Thus, further studies are essential to elucidate the
mechanism of cell death in M. tuberculosis caused by PAS.

Other biological impacts of PAS. While folate metabolism is a
principal target of PAS action in M. tuberculosis, there is compel-
ling evidence that PAS can also interfere with mycobacterial iron
acquisition (101–103). Salicylate is a structural analog of PAS and
is an essential moiety of the mycobacterial siderophores mycobac-
tin and carboxymycobactin (104–106). It has been proposed that
PAS noncompetitively inhibits the incorporation of salicylate into
both mycobactin and carboxymycobactin, thereby disrupting
high-affinity iron scavenging of M. tuberculosis (101, 102). This
model stems from the observation that PAS inhibited mycobactin
production in Mycobacterium smegmatis and Mycobacterium bovis
under iron-restricted growth conditions (102, 107). Interestingly,
M. smegmatis mutant strains with the salicylate synthesis pathway
genes trpE2, entC, and entD deleted were found to have enhanced
susceptibility to PAS (101). In addition, it was found that treat-
ment of M. smegmatis with PAS led to a reduction of the specific
activity of some iron-containing enzymes, such as aconitase, glyc-
erol dehydrogenase, and NADH oxidase (107). Further, Mycobac-
terium avium showed a modest enhancement of PAS susceptibility
when cultivated under iron-limiting conditions (108). Interest-
ingly, in contrast to the robust antagonistic activity of PABA on
PAS-mediated growth inhibition, salicylate was found to be a rel-
atively weak antagonist (109), and mycobactin did not show mea-
surable antagonism of PAS action (107). Given the dispensability
of mycobactins for the growth of M. tuberculosis under iron-re-
plete culture conditions, yet the essentiality of mycobactins for
growth in iron-restricted niches of the mammalian host (110), it
will be important to evaluate the impact of PAS on M. tuberculosis
fitness in the context of iron restriction.

MECHANISMS OF PAS RESISTANCE

Resistance to PAS was described shortly after its introduction into
clinical use and was most prevalent when it was used in mono-
therapy (111). Recent findings have demonstrated that PAS resis-
tance in M. tuberculosis can emerge via multiple mechanisms that
include preventing sufficient bioactivation within the folate syn-
thesis pathway, mitigating the impact of target inhibition, and
limiting drug accumulation within the bacilli.

Mitigating the impact of target inhibition. The first genetic
evidence of the involvement of folate metabolism in the antituber-
cular action of PAS was that loss-of-function mutations in one of
the genes for thymidylate synthase conferred resistance on M. tu-
berculosis and M. bovis (83). In biological systems, thymidylate
synthase is essential for the 5,10-methylene-H4PteGlu-dependent
conversion of dUMP to dTMP. In most organisms, this reaction is
performed by a ThyA-type thymidylate synthase that releases
H2PteGlu following catalysis. This H2PteGlu must be reduced by
DHFR to re-enter folate metabolism (Fig. 3). Some organisms
encode a ThyX-type thymidylate synthase. Like most other folate-
dependent enzymes, ThyX regenerates H4PteGlu following catal-
ysis (Fig. 3) (112, 113). In contrast to ThyX utilization, ThyA
utilization results in an increased demand for DHFR activity to
provide sufficient levels of H4PteGlu for one-carbon metabolism
and is critical for the susceptibility of many organisms to DHFR
inhibitors. Loss-of-function mutations in thyA significantly de-
crease the demand for DHFR activity and are commonly associ-
ated with resistance to DHFR inhibitors (89). In many pathogens,
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thyA loss-of-function mutations lead to thymine auxotrophy and
loss of fitness during infection. Thus, thyA-mediated antifolate
drug resistance is rarely clinically relevant (114, 115). In contrast
to most bacterial pathogens, M. tuberculosis encodes both ThyA-
and ThyX-type thymidylate synthases (99). As bioactivated PAS
inhibits DHFR in M. tuberculosis, thyA loss-of-function mutations
confer up to 100-fold resistance to PAS (83, 99). Since ThyX can
support the cellular dTMP requirement, M. tuberculosis thyA mu-
tants are not attenuated and are associated with clinical resistance
to PAS (83, 116–118).

In addition to thyA loss-of-function mutations, artificial over-
expression of dfrA has been shown to confer PAS resistance on M.
tuberculosis (35). This observation is consistent with the idea that
the active form of PAS inhibits DfrA. Interestingly, it was also
found that a mutation 11 bp upstream of the ribD translational
start site increased ribD expression and gave rise to PAS resistance
in M. tuberculosis. ribD encodes a riboflavin biosynthesis protein
that contains a C-terminal oxidoreductase domain with 43%
amino acid sequence similarity to DfrA. It was suggested that
overexpression of ribD confers PAS resistance by compensating
for the inhibited DfrA function (Fig. 3). While ribD promoter
mutations have been identified in PAS-resistant clinical isolates of
M. tuberculosis, dfrA mutations have yet to be reported in such
isolates (35, 118).

Reduced bioactivation of PAS. As described above, PAS is a
prodrug that requires bioactivation within the folate biosynthetic
pathway by the concerted action of DHPS and DHFS. By selecting
for spontaneous PAS-resistant mutant strains of M. tuberculosis

H37Rv and H37Ra and M. bovis BCG, it was found that mutations
within folC (encoding DHFS) conferred resistance to PAS (35,
36). Mutations in folC were also identified in PAS-resistant M.
tuberculosis clinical isolates and were associated with an up to 64-
fold increase in PAS resistance (36, 118). A recent study tested
clinically isolated PAS-resistant M. tuberculosis strains from
northern China and identified folC mutations as the most pre-
dominant mutations among the PAS-resistant strains (118). In
three recent studies, the reported folC mutations mapped within
positions corresponding to substrate binding and nucleoside
binding domains that are essential for DHFS activity (35, 36, 118).
Indeed, when the DHFS activity of several of these FolC variants
was evaluated, reduced conversion of H2Pte to H2PteGlu (10 to
20% of wild-type activity) was observed (36). Importantly, con-
version of hydroxy-H2Pte to hydroxy-H2PteGlu was below the
limit of detection (36). Further, while a metabolite extract from
PAS-treated wild-type M. tuberculosis contained DHFR inhibitory
activity, this activity was absent from a metabolite extract from a
PAS-treated FolC variant strain of M. tuberculosis (35). These ob-
servations suggest that the reported FolC variants confer resis-
tance by precluding sufficient bioactivation of PAS.

Active efflux. Efflux pumps play a major role in bacterial drug
resistance (119). The M. tuberculosis genome encodes at least 46
putative drug efflux systems, and 22 drug efflux pumps have been
shown to confer drug resistance (120). Among the M. tuberculosis
drug efflux pumps, it was recently found that a major facilitator
superfamily drug efflux pump, Tap (Rv1258c), confers resistance
to PAS on M. bovis BCG (121). Overexpression of tap in M. bovis
BCG increased the MICs of PAS, gentamicin, streptomycin, spec-
tinomycin, tetracycline, triclosan, and vancomycin by more than
4-fold (121). In M. tuberculosis, expression of tap is induced in the
presence of rifampin and ofloxacin in vitro (122) and tap expres-
sion levels have been found to be elevated in some clinical isolates
of M. tuberculosis (123).

CLOSING REMARKS

In this review, we have summarized our current understanding of
the basis of the susceptibility and resistance of M. tuberculosis to
PAS. After nearly 70 years of clinical use of this drug in treating TB,
recent findings clearly establish a role for perturbation of one-
carbon metabolism as a major consequence of PAS incorporation
in and disruption of folate metabolism. These findings are consis-
tent with the observation that PAS-resistant clinical isolates show
alterations in three distinct nodes in folate metabolism. Despite
these incontrovertible findings, many standing questions remain
regarding the action of this drug against M. tuberculosis. One ma-
jor question is whether folate disruption is the exclusive antitu-
bercular action of PAS, as there is compelling evidence that this
drug disrupts iron assimilation in other species of mycobacteria.
Such an effect on iron assimilation is in no way mutually exclusive
with the impact on folate metabolism and warrants further inves-
tigation. In addition to gaps in our understanding of the mode of
action of PAS, it is also clear that additional resistance mecha-
nisms have yet to be described. Studies with cultured bacilli im-
plicate PAS efflux via TAP as a potential resistance mechanism
(121), yet a role for TAP in the limitation of PAS efficacy has yet to
be established in infection models or in a clinical setting. Further,
a PAS inactivation pathway involving the uncharacterized SAM-
dependent methyltransferase Rv0560c has been suggested (34,
109, 124, 125) and may be the basis for methionine-linked antag-

FIG 3 Mechanisms of PAS resistance. The four characterized mechanisms of
PAS resistance are shown. (A) Efflux. Intracellular PAS is excluded by the
efflux antiporter TAP of M. tuberculosis encoded by Rv1258c (green). (B)
Diminished bioactivation. FolC variants (FolC*) with an altered substrate
binding pocket show decreased bioactivation of PAS (gold). (C) DfrA or RibD
overexpression. Inhibition of dihydrofolate reduction can be negated by over-
expression of the target DfrA or by overexpression of the alternative reductase
RibD (blue). (D) Inactivation of the thymidylate synthase ThyA. Loss of ThyA
function is tolerated because of the alternate thymidylate synthase ThyX and
confers resistance to PAS by decreasing the catalytic demand on DHFR
(orange).
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onism of PAS activity (81, 82). Yet, whether this pathway limits
the full potential action of PAS remains to be demonstrated. By
interfering with pathways that antagonize PAS activity, it may be
possible to potentiate the action of this drug and perhaps restore
susceptibility in the context of PAS resistance.
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