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U2 snRNP auxiliary factor 65 kDa (U2AF65) is a general splicing factor
that contacts polypyrimidine (Py) tract and promotes prespliceo-
some assembly. In this report, we show that U2AF65 stimulates al-
ternative exon skipping in spinal muscular atrophy (SMA)-related
survival motor neuron (SMN) pre-mRNA. A stronger 5′ splice-site
mutation of alternative exon abolishes the stimulatory effects of
U2AF65. U2AF65 overexpression promotes its own binding only on
the weaker, not the stronger, Py tract. We further demonstrate
that U2AF65 inhibits splicing of flanking introns of alternative exon
in both three-exon and two-exon contexts. Similar U2AF65 effects
were observed in Fas (Apo-1/CD95) pre-mRNA. Strikingly, we dem-
onstrate that U2AF65 even inhibits general splicing of adenovirus
major late (Ad ML) or β-globin pre-mRNA. Thus, we conclude that
U2AF65 possesses a splicing Inhibitory function that leads to alter-
native exon skipping.
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Pre-mRNA splicing is a process in which noncoding intron
sequences are removed and exon sequences are then ligated

together (1, 2). Pre-mRNA splicing is carried out by spliceosome,
a large RNA–protein complex that contains five small nuclear
ribonucleoproteins (U snRNPs) and more than 100 additional pro-
teins (3). Pre-mRNA splicing occurs in the consensus sequences at
the 5′ splice-site, 3′ splice-site, and branch point that are necessary
for splicing. The sequence between 3′ AG dinucleotide and branch
point is the polypyrimidine (Py) tract that directs spliceosome as-
sembly on the 3′ splice-site. Alternative splicing provides an im-
portant regulatory mechanism in higher eukaryotes for multiple
proteins produced from a single gene (4, 5).
The U2 snRNP auxiliary factor 65 kDa (U2AF65) exists as a

heterodimer with U2AF35 (6). U2AF65 contains three C-terminal
RNA recognition motifs (RRMs) and an N-terminal arginine/
serine-rich (RS) domain (7, 8). Using U2AF65 depletion/adding
back technology with in vitro HeLa nuclear extract, it was dem-
onstrated that U2AF65 is an essential splicing factor (9). Whereas
U2AF65 binds to Py tract to promote prespliceosome assembly
and branchpoint/U2 snRNA base pairing, U2AF35 plays a role in
the 3′ splice-site (10, 11). As U2AF65 prefers high C/U-rich se-
quences in the Py tract, a stronger interaction between U2AF65

and Py tract promotes prespliceosome assembly (12). U2AF65 is
also essential in vertebrate development (13, 14). Its expression
level is related to myotonic dystrophy, cystic fibrosis, and cancers
(15, 16).
Proximal spinal muscular atrophy (SMA) is an autosomal re-

cessive genetic disease (17) and a leading cause of infant mor-
tality. The motor neurons in the anterior horn of spinal cord are
severely damaged in patients with type 1 SMA, usually leading to
death before age 2 y as a result of a lack of respiratory support
(18, 19). In patients with SMA, the SMN1 gene is deleted or
mutated, whereas the SMN2 gene, a duplicate of the SMN1 gene,
is included (20). SMN2 genomic DNA contains a few nucleotide
mutations compared with SMN1 (21, 22). Full-length SMN protein
functions in the U snRNP assembly/disassembly, as well as in
the β-actin mRNA transport in neurons (23, 24). However, the

mutations in SMN2 pre-mRNA cause predominantly skipping of
exon 7, which produces SMNΔ7, a truncated and less stable pro-
tein with reduced self-oligomerization activity. Alternative exon 7
splicing of SMN pre-mRNA was modulated by orchestrated RNA–
protein and protein–protein interactions, secondary structures of
RNA, and RNA sequences (25–27). Among the mutations on
SMN2 pre-mRNA, the most functionally understood one is the
C-to-U point mutation on exon 7, which plays an important role in
alternative splicing of exon 7 (25–27). In vitro analysis using HeLa
nuclear extract and S100 extract demonstrates that SRSF1 pro-
motes exon 7 inclusion through contacting the enhancer sequence
on exon 7 of SMN1 pre-mRNA, and that C-to-U mutation on
SMN2 pre-mRNA disrupts SRSF1 binding and then conse-
quently disrupts the enhancer function of SRSF1 (28). However,
cell-based analysis shows a different result, indicating that SRSF1
does not play an essential role in SMN exon 7 splicing (29). In
contrast, cell transfection analysis demonstrates that heteroge-
neous nuclear ribonucleoprotein (hnRNP) A1 interacts with the
C-to-U mutation on SMN2 pre-mRNA to inhibit exon 7 splicing
(29). A possible explanation for these different results is that different
analysis systems could provide different conclusions.
Although the roles of U2AF65 in alternative splicing are ver-

ified to some extent, the function and mechanism are unclear.
The previous reports have shown that U2AF65 roles in alterna-
tive splicing are the target of alternative splicing regulatory fac-
tors, as demonstrated with increased U2AF65 binding by other
splicing regulatory proteins (30, 31). More recently, genome-
wide analysis has demonstrated that upstream intronic binding of
U2AF65 interferes with the immediate downstream 3′ splice-site
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of alternative or constitutive exons to cause exon skipping or
inclusion (32). In the SMN pre-mRNA, it was demonstrated that
U2AF65 interacts more strongly with the SMN1 Py tract than the
SMN2 Py tract (33). However, it is unclear how U2AF65 itself
regulates alternative splicing.
Here we identified the function of U2AF65 in the alternative

splicing. Through siRNA-knockdown and overexpression of U2AF65,
we show that U2AF65 promotes alternative exon exclusion of both
SMN2 and SMN1 pre-mRNA. Mutations of 5′ splice-site in exon 7
to a higher score sequence abolished the U2AF65 effects. Highly
expressed U2AF65 also represses splicing of exon 7, flanking introns
in three or two exon contexts. Strikingly, U2AF65 also inhibits intron
splicing of adenovirus major late (AdML) and β-globin pre-mRNA.
In addition, U2AF65 selectively increases its own binding on the
weaker Py tract sequence, but not the stronger Py tract. Our
results support the conclusion that the U2AF65 activity in pro-
moting alternative exon skipping comes from its own splicing
inhibitory activity.

Results
U2AF65 Stimulates Alternative Exon Exclusion.To determine the role
of U2AF65 in alternative exon spicing, we first applied siRNA-
directed knockdown of U2AF65. We examined U2AF65 effects
mostly on alternative exon 7 splicing of SMN pre-mRNA. In the
first set of experiments, we obtained the 293A (human embry-
onic kidney) cells in which U2AF65 expression is reduced by
shRNA-virus treatment, and the control cells with nonsilencing
shRNA. Immunoblotting analysis with anti-U2AF65 antibody
(MC3) and RT-PCR results showed that the treatment with
U2AF65-siRNA, but not nonsilencing shRNA, virus signifi-
cantly decreased the expression of U2AF65 (Fig. 1A). To ex-
amine the effects of U2AF65 on endogenous exon 7 splicing of
SMN1 and SMN2 pre-mRNA, RT-PCR was performed. We have
found that reduced expression of U2AF65 promotes exon 7 in-
clusion in SMN2 pre-mRNA significantly (∼25%) in 293A cells
(lane 3). The promoting activity on alternative exon inclusion was
confirmed in C33A (human epithelial carcinoma), SH-SY5Y (hu-
man neuroblastoma), and SMA patient cells (GM03813) (∼31%,
∼34%, and ∼13%, respectively; Fig. 1A, lanes 6, 9, and 12). Thus,
our results indicate that reduced expression of U2AF65 promotes
exon 7 inclusion in endogenous SMN2 pre-mRNA. Interestingly, we
also found that effects of U2AF65 knockdown are not limited to
SMN pre-mRNA, as we demonstrated that as shown in Fig. S1,
reduced U2AF65 expression also promoted exon 10 inclusion of
Tau pre-mRNA.
To ask whether increased U2AF65 expression has the opposite

effect on SMN2 splicing, we overexpressed U2AF65 in 293A cells
that were transiently transfected with the SMN2 minigene. As
previously shown, SMN2 minigene harbors exon 6–8 sequences
with a deletion of intron 6 (∼1 kb) (Fig. 1B, Left) (34) and
produces predominantly exon 7-skipped isoform, with only a
small amount of exon 7-included isoform (lanes 1, 4, 7, and 10;
Fig. 1B). The results in Fig. 1B (Right) show that U2AF65 over-
expression promotes significantly exon 7 skipping of SMN2 pre-
mRNA (∼47%; Fig. 1B, lane 3), which is opposite to the effects of
U2AF65 siRNA knockdown. Consistently, U2AF65 also supports
the increase in the exon 7-skipped form of SMN2 pre-mRNA in
C33A, SH-SY5Y, and GM03813 cells (∼48%, ∼48%, and ∼38%
independently; lanes 6, 9, and 12; Fig. 1B). Therefore, we conclude
that U2AF65 promotes exon 7 skipping of SMN2 pre-mRNA.
We next wondered whether U2AF65 affects SMN1 splicing.

Because the endogenous SMN1 predominantly produced the
exon 7-included isoform (Fig. 1A), a further decrease of exon 7
skipping in SMN1 pre-mRNA would be hard to be detected.
Nonetheless, similar to the U2AF65 effects on SMN2 pre-mRNA
splicing, the reduction of exon 7-skipped isoform of SMN1 pre-
mRNA was still observed in the U2AF65-siRNA-treated 293A
and C33A cells (Fig. 1A, lanes 3 and 6). We further asked

whether increased U2AF65 expression also promotes exon 7
splicing of SMN1 pre-mRNA. As shown in Fig. 1C, in the SMN1
minigene, U2AF65 overexpression promotes exon 7 skipping of
SMN1 pre-mRNA significantly in 293A, C33A, and SH-SY5Y
cells (∼40%, ∼28%, ∼26%, and ∼40%, respectively; Fig. 1C).
Therefore, we conclude that U2AF65 promotes exon 7 skipping
of SMN1 pre-mRNA. To analyze the functional requirement for
U2AF65 in alternative splicing, we applied U2AF65 mutations
with either the RS domain (U2AF65ΔRS) or the RRM domain
deleted (U2AF65RS). Our results in Fig. S2 show that neither
U2AF65ΔRS nor U2AF65RS was able to support exon 7 skipping
(lanes 4 and 5). Thus, we conclude that both the RS domain and
the RRM domain of U2AF65 are required for increasing the exon
7-skipped isoform. Taken together, we conclude that U2AF65

promotes exon 7 skipping of both SMN1 and SMN2 pre-mRNA,
and therefore, U2AF65 effects are not related to the point mu-
tations on SMN2 pre-mRNA.

A Stronger 5′ Splice Site on Exon 7 of SMN Pre-mRNA Prevents U2AF65

Effects on Exon 7 Splicing. Using a bioinformatics splice-site score
calculation program, we predicted that exon 6 harbors a much
stronger 5′ splice-site than exon 7. We wondered whether a
stronger 5′ splice-site on exon 7 could avoid the inhibitory effects
of U2AF65 on exon 7 inclusion. To test this hypothesis, we gen-
erated a mutant in which 5′ splice-site of exon 7 (GGA) is replaced
by 5′ splice-site sequence of exon 6 (AUG) (5′E7-E6) (Fig. 2A). It
is worth noting that a single G nucleotide substitution at the last
position of exon 7 has been previously shown to be able to strongly
improve exon 7 inclusion (35). As predicted, Fig. 2B shows that the
mutations on both SMN1 and SMN2 pre-mRNA induced an ex-
clusive exon 7 inclusion (lanes 1 and 4), and that the mutations
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Fig. 1. U2AF65 stimulates exon 7 exclusion in both SMN2 and SMN1 pre-mRNA.
(A) RT-PCR results of both endogenous SMN1 and SMN2 pre-mRNA are shown
from untreated, nonsilencing shRNA-treated and U2AF65-shRNA-treated 293A,
C33A, SH-SY5Y, and GM03813 cells. The percentage of exon 7 included RNA
versus total RNA and its SD are indicated at the bottom. Immunoblotting analysis
of these cells using an anti-U2AF65 (MC3) antibody are shown. (B, Left) The
scheme of SMN2 minigene is shown with the intron RNA as a thicker line,
whereas the vector sequence as a dot line. The RNA sequence of pseudo 3′ splice-
site is shown. (Right) Shown is RT-PCR analysis from cells that express SMN2
minigene with overexpression of Flag-U2AF65 plasmid or control plasmid. Im-
munoblotting analysis with antiflag antibody is illustrated. (C, Left) SMN1 mini-
gene scheme is shown. (Right) Results of RT-PCR analysis of the SMN1 minigene.
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completely escaped the U2AF65 effects on exon 7 splicing (lanes 3
and 6). Thus, a stronger 5′ splice-site on exon 7 prevents U2AF65

effects on exon 7 splicing. The results were confirmed in another 5′
splice-site mutant, in which the 5′ splice-site of exon 7 is substituted
by a conserved sequence (AAG) (5′E7-con) (Fig. 2A). This mutant
also has G nucleotide at the 3′ end of exon 7. Similar to with the
5′E7-E6 mutant, 5′E7-con mutant minigenes in SMN1 and SMN2
pre-mRNA also produced exon 7 included isoform predominantly
(Fig. 2C, lanes 1 and 4), preventing U2AF65 effects. Furthermore,
U2AF65 did not promote exon 7 skipping in these mutants (lanes 3
and 6). Therefore, we conclude that a stronger 5′ splice-site se-
quence abolishes the activity of U2AF65 in the exon 7 skipping.

U2AF65 Promotes Its Own Binding Only on the Weaker Py Tract in SMN
Pre-mRNA. U2AF65 was previously shown to interact with the Py
tract to promote prespliceosome assembly (36). It was also
demonstrated that stronger binding of U2AF65 enhances pre-
mRNA splicing. We have noticed that the Py tract of exon 7
(Py7) harbors more frequent U residues than that of exon 8
(Py8) (Fig. 3A). We wondered whether and how overexpression
of U2AF65 affects its own binding on the Py tract of both exon 7
and exon 8. To answer the question, we incubated the Py tract
RNA of exon 7 and exon 8 (Py7 and Py8) with either U2AF65

overexpressed cell lysates or untreated cell lysate as a control.
After incubation, we performed UV-crosslinking analysis and then
immunoprecipitation, using anti-U2AF65 antibody (MC3). Fig. 3B
shows that, on the Py8 RNA, there is a significantly increased
U2AF65 binding in the U2AF65 overexpressed cell lysates. How-
ever, on the Py7 RNA, the binding of U2AF65 was not altered.
The results demonstrate that increased expression of U2AF65

promotes its own binding only on the weaker Py tract, but not on
the stronger Py tract. One possibility is that U2AF65 binding to the
stronger Py tract is already saturated, and therefore there is no
binding increase even with increased U2AF65 expression.

U2AF65 Inhibits Flanking Intron Splicing of Alternative Exon. To fur-
ther characterize the mechanisms of U2AF65 function, we ex-
amined its effects on intron splicing of SMN pre-mRNA. The
first approach was to detect intron 6 splicing with one primer
that base pairs with plasmid sequence upstream of exon 6, and
the other primer that base pairs with exon 7 (Fig. 4A, Upper). In
the untreated cells, we found that only intron 6 spliced isoform
was detected in both SMN1 and SMN2 pre-mRNA (lanes 1 and 4).
However, U2AF65 expression induced an appearance of unspliced
isoform and a decrease of spliced isoform in both SMN1 and
SMN2 pre-mRNA (Fig. 4A, lanes 3 and 6). Thus, U2AF65 inhibits
intron 6 splicing of both SMN1 and SMN2 pre-mRNA. To test

whether the 5′ splice-site of exon 7 interferes with U2AF65 effects
on intron 6 splicing, we produced a minigene for SMN1 and SMN2
pre-mRNA, in which the 3′ end of exon 7, intron 7, and exon 8 was
deleted (Fig. 4A, Upper). To differentiate this minigene from the
other minigenes that harbor exon 6 through exon 8 (E6–E8), we
named it the E6-7 minigene. The results in Fig. 4A show that E6-7
also produced unspliced intron 6 under U2AF65 treatment to a
much smaller extent than did E6-8 minigenes (lanes 9 and 12).
Thus, we conclude that U2AF65 inhibits intron 6 splicing and that
exon 7 definition alleviates the inhibitory effects of U2AF65.
We further analyzed the U2AF65 effects on intron 7 splicing,

using one primer that base pairs with exon 7, and the other
primer that base pairs with the plasmid sequence downstream of
exon 8 (Fig. 4B, Upper). The results in Fig. 4B show that U2AF65

remarkably inhibited intron 7 splicing, as shown with the signifi-
cant amount of unspliced product in the E6-8 minigenes of SMN1
and SMN2 pre-mRNA (Fig. 4B, lanes 3 and 6). Furthermore,
U2AF65 was able to inhibit intron 7 splicing in E7-8 minigenes on
a similar level as in E6-8 minigenes (Fig. 4B, lanes 9 and 12).
Thus, we conclude that U2AF65 inhibits intron 7 splicing and that
the 3′ splice-site of exon 7 does not affect the inhibitory effects of
U2AF65. By combining the results in Fig. 4 together, we conclude
that U2AF65 inhibits splicing of both intron 6 and intron 7 and
that, whereas 5′ splice-site of exon 7 reduced the inhibitory effects
of U2AF65, 3′ splice-site of exon 7 did not affect its inhibition.
A recent report has demonstrated that upstream intronic

binding of U2AF65 interferes with the immediate downstream 3′
splice-site of alternative exon or constitutive exon, causing exon
skipping or inclusion (32). We found that intron 6 of SMN1/2
that includes uucuuuuuuuuuuuuuuuuuuuuuugag sequence con-
tains pseudoexon with a potential U2AF65 binding sequence;
thus, according to the report, this sequence interferes with the 3′
splice-site of exon 7, thereby promoting an exon 7 skipping event
(Fig. 1B). To test whether this interfering event is the major
cause of exon skipping, we analyzed U2AF65 effects on a well-
established Fas minigene, which includes exon 5 through exon 7
(Upper) (37). As shown in Fig. S3A, Upper, intron 6 includes a
cuccuuuuuccuucuuauauuucucuuag sequence with a pseudoexon
and a strong U2AF65 binding site. According to 3′ splice-site
interfering theory, U2AF65 should be able to promote inclusion
of alternative exon. However, inconsistent with this prediction,
Fas exon 6 skipping, but not inclusion, was strongly stimulated by
U2AF65 (Fig. S3A, lane 3). Furthermore, we examined U2AF65

effects in two other minigenes in two exon contexts, one of which
includes exons 5 through 6 (F-E5-6), the other of which includes
exons 6 through 7 (F-E6-7) (Fig. S3 B and C, Upper). As shown in
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Fig. S3 B and C, U2AF65 overexpression induced the production
of a high amount of unspliced isoforms of intron 5 and intron 6
(lane 3). Thus, we conclude that U2AF65 inhibits splicing of intron 5
and intron 6. Furthermore, our results indicate that U2AF65 inhibits
Fas exon 6 inclusion through inhibiting splicing of intron 5 and 6,
but not through interfering with the downstream 3′ splice-site.

Overexpression of U2AF65 Inhibits Splicing of Ad ML and β-globin Pre-
mRNA. It is well known that U2AF65 is required for pre-mRNA
splicing, as demonstrated by in vitro depletion-adding back ex-
periments. However, inhibitory effects of U2AF65 on splicing
have not yet been documented. Thus, we first hypothesized that
the inhibitory effects of U2AF65 are specific to SMN intron 6 and
intron 7 and that there must be essential RNA sequences that are
required for intron 6 and intron 7 splicing of SMN pre-mRNA.
To test this hypothesis, we generated two chimeric minigenes.
The first minigene was produced from the E6-7 minigene by
replacing exon 6 and part of intron 6 with Ad ML exon 1 and part
of intron 1 [E6 (A1)-7], and the second minigene was generated
from the E7-8 minigene by replacing exon 8 and the upstream
part of intron 7 with Ad ML exon 2 and the downstream part of
intron 1 [E7-8(A2)] (Fig. 5A, Upper). The results in Fig. 5A show
that U2AF65 was able to promote an unspliced isoform to a sig-
nificant level in these two minigenes (lanes 3, 6, 9, and 12). We
therefore initially concluded that the deleted parts in E6-7 and
E7-8 are not needed for the inhibitory activity of U2AF65.
However, when we express U2AF65 with the Ad ML minigene,
we observe that U2AF65 is also able to inhibit splicing of Ad ML
pre-mRNA (Fig. 5A, lane 15), suggesting U2AF65 even inhibits
general splicing. To confirm the results, we expressed AdML pre-
mRNA with U2AF65 plasmid in different concentrations. Fig. 5B
shows that U2AF65 did not inhibit splicing with a lower amount of
plasmid (lane 3); however, unspliced product appeared at higher
amounts of plasmid (lane 4). Furthermore, we found that the
production of unspliced RNA is dosage-dependent on the

U2AF65 plasmid (Fig. 5B, Left, lanes 4–9). To further confirm
the results, we asked whether inhibition of U2AF65 on splicing
is time-dependent. We are concerned that as Ad ML pre-mRNA
is almost completely spliced 48 h after transfection, we were not
able to observe the stimulatory effects of U2AF65. As shown in
Fig. 5B (Right), whereas a high percentage of unspliced isoform
was detected at 2 h transfection (lane 1), spliced isoform was
primarily observed at 4 h, as well as 6 h transfection (lane 4 and
7). However, we found that U2AF65 can strongly inhibit splicing
even at 4 h and 6 h transfection (lanes 6 and 9). Strikingly,
U2AF65 was even able to repress splicing at a 2-h point, when
splicing was not yet complete. Therefore, we conclude that U2AF65

repress pre-mRNA splicing of Ad ML pre-mRNA in cells in a
dosage- and time-dependent manner.
As the second approach to identifying RNA sequence re-

quirements in SMN pre-mRNA for splicing inhibition, we used a
previously reported construct that includes upstream β-globin
exon 1 and downstream GFP/RFP exons as a reporter for the
splicing of middle test exon (38). We inserted SMN exon 7 and
its upstream 573-nt intron and downstream 424-nt intron be-
tween the β-globin and GFP/RFP exons (SMN1/2-E7; Fig. 5C,
Upper). As shown in Fig. 5C, U2AF65 promoted a significant
increase in exon 7 skipping of SMN1-E7 minigene (Fig. 5C, lane
3). Similarly, in the SMN2-E7 minigene, although low expression
of the exon 7-included isoform made it hard to detect its de-
crease, the decrease of the exon 7-included isoform is still de-
tectable (Fig. 5C, lane 6). We further asked whether the exon 7
skipping in the β-globin and SMN chimeric pre-mRNA was
induced by splicing inhibitory effects of U2AF65 on β-globin
pre-mRNA. As shown in Fig. 5D, we found that U2AF65 treat-
ment promoted unspliced isoform on β-globin pre-mRNA
(lane 3). Thus, we conclude that U2AF65 inhibits not only SMN
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pre-mRNA splicing but also general splicing when expressed in
the cells, and that the exon-skipping stimulatory effects of
U2AF65 are induced by its intrinsic inhibitory activity.

Discussion
U2AF65 has been previously shown to play important roles in
general splicing procedure through promoting ATP-dependent
3′ spliceosome assembly (14, 36). In alternative splicing, U2AF65

has been reported to be a regulatory target of multiple splicing
factors (30, 31), but its role in alternative splicing has not been
clear. From systematic evolution of ligands by exponential en-
richment (SELEX) and RNA seq data, it was demonstrated that
U2AF65 has a high specificity for CU-rich sequences and that
U2AF65 specifically contacts Py tract in vivo (10, 39–41). Recent
reports show that U2AF65 is able to regulate alternative splicing
in the case that Py tract-linked pseudo-splice-sites exist in the
flanking introns of alternative exon (32) and that upstream
intronic binding events interfere with the immediate downstream
3′ splice-site selection. All of the conclusions were drawn by ana-
lyzing siRNA-knockdown effects of U2AF65 on the endogenous
alternative splicing. We tested U2AF65 effects on two pre-mRNAs:
SMN and Fas. Whereas SMN pre-mRNA includes an intronic
U2AF65 binding event at the upstream intron of flanking exon, Fas
pre-mRNA includes it at the downstream intron. In contrast to the
previous model, our results show that U2AF65 overexpression in
cells promotes alternative exon skipping. The conflicting results may
be a result of one or more experimental variables, as two studies
differed substantially in the endogenous or minigene pre-mRNA
used, siRNA treatment, or overexpression of U2AF65. However,
our results do not rule out the possibility that, in the endogenous
pre-mRNA, the upstream intronic binding of U2AF65 interferes
with immediate downstream 3′ splice-site selection.
It has not been reported that U2AF65 interacts with enhancers

or inhibitors on pre-mRNA, which is different from SR proteins
and hnRNP, which interact with enhancer or inhibitor sequences
on pre-mRNA. It was shown in previous reports that increased
binding of U2AF65 is directly related with increased splicing
activity (31, 42). However, it was also reported that enhanced
splicing is not directly related with enhanced U2AF65 binding
(43). Our results demonstrate that U2AF65 promotes its own
binding only on a weak 3′ splice-site in mammalian cells. Sur-
prisingly, increased U2AF65 expression did not affect its binding
on a strong Py tract. In alternative splicing, the relative strength
of the Py tract provides a potential that U2AF65 can regulate the
alternative splicing. It has been reported that SR proteins or
hnRNPs have antagonistic functions in alternative splicing (44, 45).
Furthermore, the opposite effects occur based on their binding
locations (45). In vitro SELEX results demonstrate that U2AF65 is
able to contact various U-rich sequences on pre-mRNA; however,
in vivo iClips demonstrate that U2AF65 interacts only with Py tract
sequence in pre-mRNA (7, 14). Although we do agree that U2AF65

interacts with Py tract to promote prespliceosome assembly, we do
not exclude the possibility that U2AF65 interacts with other se-
quences to inhibit splice-site selection.
U2AF65 protein is not the only protein that participates in both

general and alternative splicing activity. There is a general un-
derstanding that SR proteins and hnRNP proteins regulate al-
ternative splicing by contacting enhancers or inhibitors (46–50).
However, it was also reported that hnRNP M and hnRNP L are
essential in general pre-mRNA splicing. Remarkably, U1C, which
is essential in the first step of spliceosome assembly as well as for
stabilizing early splicing complexes, when mutated, affects a large
set of alternative splicing (51). The functional relationship of SR
proteins, hnRNP proteins, and general splicing factors in general
and alternative splicing need to be further determined.

One of our findings is that U2AF65 inhibits flanking intron
splicing of alternative exon in three- or two-exon contexts. Most
strikingly, we demonstrate that U2AF65 inhibits intron splicing of
even Ad ML and β-globin pre-mRNA, common pre-mRNAs that
are used in general splicing mechanisms. Previous conclusion
that U2AF65 is a general splicing factor came from the experi-
ments, in which U2AF65 was depleted from nuclear extract and
then purified U2AF65 protein was added back. Although our
results are not contrary to the fact that purified U2AF65 protein
is an essential splicing factor, the inhibitory effects of U2AF65

have not been detected yet. The difference may be a result of the
difference in the assay systems, HeLa nuclear extract, and cell
overexpression systems. The different results from different as-
say systems were also observed in other groups. Whereas SRSF1
was demonstrated to promote exon 7 splicing of SMN1 pre-
mRNA using HeLa nuclear extract, its effects on exon 7 splicing
were not detected in cell transfection assays (28, 52).

Materials and Methods
Plasmid Construction. SMN1-L, SMN2-L, SMN1-S, and SMN2-S minigene con-
structs were produced as described previously (53, 54). We constructed
5′E7-E6 and 5′E7-con minigenes through site-directed mutagenesis, using
the following primers: common primers (SMNE6.F/SMNE8.R), specific primers
for 5′E7-E6 (E7E6.F/E7E6.R), and 5′con (E7CS.F/E7CS.R). E6-7 (SMN1/2) and E7-8
(SMN1/2) were generated by using the following primer sets: SMNE6.F/
SMNE6-7.R (E6-7), SMN1E7-8.F, SMN2E7-8.F/SMNE8.R (E7-8), and with SMN1/
2-S minigenes as templates. To produce SMN1/2-E7 constructs, we used
SMN1/2-L minigenes as templates and performed PCR with SMN.F and SMN.
R primers to amplify the 573-nt intron 6, exon 7, and 424-nt intron 7. Ad ML
and β-globin minigenes were generated by PCR amplification using primers
(Ad ML.F/Ad ML.F and globin.F/globin.R primer). pIRES2-EGFP U2AF65△RS
and RS constructs were generated with following primer sets: U2AF65△RS.
F/U2AF65.R and U2AF65 RS.F/U2AF65.R. All primer sequences are listed in
Table S1.

RT-PCR. Forty-eight hours after transfection, cells were harvested and total
RNAs were isolated using RiboEx reagent (Geneall). To generate cDNA, re-
verse transcription was carried out using oligo dT oligomer and ImProm-II TM
reverse transcriptase (Promega). One microgram of total RNA was used per
reverse transcription reaction. A primer set (Ex5.F/Ex8.R) was used to PCR-
amplify endogenous SMN1 and SMN2 transcripts. Minigene-specific spliced
products were amplified with Taq polymerase and the following primer
combinations: SMN1/2-L (pCI.F/GFP.R), SMN1/2-S (SMNE6.F/pcDNA.R), and
SMN1/2-E7 (E1.F/pFlare GFP.R). To analyze splicing of the intron 6 and 7 in
SMN1/2 E6-E8, SMN1/2 E6-7, and SMN1/2 E7-8 minigenes, we used the fol-
lowing primer sets: SMN1/2 E6-7 (SMNE6.F/SMNE7.R) and SMN1/2 E7-E8
(SMNE7.F/pcDNA.R). To analyze pre-mRNA splicing of Ad ML, β-globin,
and Fas, the following primer sets were applied: Ad ML.F/pcDNA.R,
globin.F/pcDNA.R, and FasE5.F/pcDNA.R. U2AF65 mRNAs were amplified with
primers U2AF65 (RT).F and U2AF65 (RT).R. All of primer sequences are listed in
Table S1.

UV-Crosslinking Immunoprecipitation Assay. A UV-crosslinking immunopre-
cipitation assay was performed as previously described (54). A mixture
containing 100 pmol 5′-biotinylated RNA (Bioneer), cell lysates, 16 mM cre-
atine phosphate, 0.4 mM ATP, and 2.6 mM MgCl2 was incubated for 10 min
at 30 °C and then was irradiated with UV in a Stratalinker (Stratagene) at
80,000 μJ for 5 min on ice. After incubating with MC3 antibody, protein A
agarose beads (Upstate) were added to immunoprecipitate U2AF65. Luminol/
peroxide solution was used to detect the RNA–protein complex.
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