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Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous
activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery,
several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all
these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences
about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using
thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in
computational physiology with regard to its capability of monitoring psychophysiological activity.

1. Introduction

Understanding affective and psychophysiological states of
a conversational interlocutor is fundamental for setting a
proper communication, establishing social and affective ties,
choosing social strategies, and maintaining a contingent
interaction. Such understanding and the quantitative assess-
ment of psychophysiological states represent one of the major
challenges in applied psychophysiology and, more recently,
one of the major issues in human-machine or human-
artificial agent interaction.

In fact, a common key requirement for all typologies of
the human-artificial agent interaction is to set up a contingent
interaction, with the agent being capable of not only reacting
to human actions, but also (or should) reacting in ways that
are congruent with the emotional and psychophysiological
state of the human user or interlocutor [1, 2].

Conventional approaches for assessing affective and psy-
chophysiological states are based on the measurements of
several physiological parameters expressing autonomic ner-
vous system (ANS) activity, like skin sympathetic response
(SSR), hand palm temperature, heart rate and/or breath mod-
ulations, peripheral vascular tone, facial expression, posture,

gaze, and electromyography activity [3-5]. Apart from the
assessment of facial expression, monitoring these parameters
usually requires the use of contact sensors attached to the
subject. More recently, some of them are monitored through
watch-like or wireless devices.

In order to exceed limitations derived from the use of
contact sensors, computational psychophysiology based on
imaging approach can be recommended.

To this goal, thermal infrared (IR) imaging has been
proposed as a potential solution for noninvasive and ecolog-
ical recording of ANS activity [6]. Thermal imaging allows
the contactless and noninvasive recording of the cutaneous
temperature through the measurement of the spontaneous
thermal irradiation of the body [7]. The psychophysiological
activity can thus be assessed through its thermal effects
recorded by thermal IR imaging. In fact, skin temperature is
modulated by the ANS activity, which in turn regulates the
cutaneous blood perfusion, the local tissue metabolism, and
the sudomotor response [8-17]. Since the face is naturally
exposed to social communication and interaction, thermal
imaging for psychophysiology is generally performed by
imaging the subject’s face. Given the proper choice of IR ima-
ging systems, optics, and solutions for tracking the regions of
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interest, it is possible to avoid any behavioral restriction of
the subject [18, 19]. This possibility is particularly important,
for example, in the developmental psychology or human-
artificial agent interaction fields.

This paper reviews the state of the art in the field of
thermal IR imaging-based computational physiology. The
general intent of the paper is to provide insights about
its potentialities and limits for its use in quantitative psy-
chophysiology.

2. Thermal Signatures of
Psychophysiological Signals

Thermal signatures of a variety of psychophysiological signals
have been identified. In particular, it has been demonstrated
that, through bioheat transfer models, it is possible to com-
pute at a distance the cardiac pulse, the breathing rate, the
cutaneous blood perfusion rate, and the sudomotor response.
This section summarizes the methods and the results for
computational physiology based on thermal IR imaging.

2.1. Cardiac Pulse. Thermal IR imaging allows the computa-
tion of the cardiac pulse at a distance through the modeling
of the pulsatile propagation of blood in the circulatory system
[9, 20-23]. In fact, the heart contraction during the ven-
tricular systole generates a pressure wave, which propagates
through the arterial tree. The arterial pulse reflects the heart
activity thus providing a measure of cardiac interbeat inter-
vals, heart rate, and its variability [22]. The method presented
by Garbey and colleagues [9] is based on the hypothesis
that the temperature modulation due to pulsating blood flow
produces the strongest variation on the temperature signal
of a superficial vessel. The proposed model simulates the
heat diffusion process on the skin originating from the core
tissue and a major superficial blood vessel. They took into
account noise effects due to the environment and instability
in blood flow. Their simulation demonstrated that the skin
temperature waveform is directly analogous to the pulse
waveform, except for its smoothed, shifted, and noisy shape
because of the diffusion process. The method proposed by
Garbey and colleagues [9] for computing heart rate is based
on the information contained in the thermal signal emitted
from major superficial vessels and recorded through a highly
sensitive thermal imaging system. To compute the frequency
of modulation (pulse), the authors extract a line-based region
along the vessel. Then, they apply fast Fourier transform
(FFT) to individual points along this line of interest, to
capitalize on the pulse’s thermal propagation effect. Finally,
they use an adaptive estimation function on the average FFT
outcome to quantify the pulse (Figure 1). Experiments on a
data set of 34 subjects compared the pulse computed from the
thermal signal analysis method to concomitant ground-truth
measurements obtained through a standard contact sensor
(piezoelectric transducer). The performance of the method
ranges from 88.52% to 90.33% depending on the clarity of
the vessel’s thermal imprint. Sun et al. [20] applied the same
method but working at 90 degrees across the direction of the
target vessel. An extension of the abovementioned methods
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has been realized by Bourlai et al. [21]. They applied these
two methods on an automatic tracked region of interest (ROI)
and added noise reduction through a two-stage algorithm
that discards problematic frames as a result of bad tracking.
The new method was tested on 12 subjects and reduced the
instantaneous measurement error from 10.5% to 7.8%, while
it improved mean accuracy from 88.6% to 95.3%.

More recently, Farag et al. [22, 23] proposed an auto-
matic method to determine arterial pulse waveforms through
the use of thermal imaging. This method is based on the
hypothesis of the quasiperiodic thermal pattern on the skin
due to the arterial pulse to automatically detect the areas
surrounding superficial arteries. Multiscale decomposition
models, such as wavelet decomposition, are applied to each
thermal image to extract those scales containing most of
the arterial pulse information. The influence of irrelevant
noise is thus minimized and the arterial waveform recovery
is more accurate. The more coarse scales are used to track
the region of interest (ROI). The finer scales are used to
compute the arterial pulse through the periodicity detection
(PD) algorithm: a region of measurement (ROM) is chosen
within each ROI and different ROM configurations are
tested (size, orientation, scale, and location); for each tested
ROM, continuous wavelet analysis is run to remove high
frequency noise and to extract arterial pulses structures;
maxima are calculated from the resulting waveform which in
turn correspond to the systolic peaks (used to compute heart
rate, beat to beat, and heart rate variability). The PD algorithm
individuates the optimal ROM in terms of the periodicity of
the waveform and of its relevance to the true arterial pulse
propagation. Validation of the method on 8 subjects showed
perfect matching with oximeter data [23].

2.2. Breathing Rate. Breathing consists of inspiration and
expiration cycles during which heat exchanges occur between
airflows and nostrils. These exchanges create a periodic
or quasiperiodic thermal signal in the proximity of the
nostrils that oscillates between high (expiration) and low
(inspiration) values (Figure 2). Thermal imaging can capture
this phenomenon at a distance, achieving an accuracy of
96.43% [8].

In conventional respiratory studies, a thermistor is usu-
ally positioned near the nostrils to capture this phenomenon
and produce a representative breath signal [24].

Thermal imaging acts therefore as a virtual thermistor,
since it captures the same process, but at a distance. The
estimation of breathing rate through thermal imaging is
very accurate as proved by comparison with respiratory
signals taken with conventional sensors [25, 26]. From
the work of Murthy et al. [25], a high degree of chance-
corrected agreement (x = 0.92) was found between the
airflow monitored through thermal imaging and oronasal
thermistors. Correlation coefficients between the thermally
and mechanically (LifeShirt technology; see [26]) recorded
breath rate signals resulted as high as 1 over a sample of
25 subjects, in both shallow, normal, and forced ventilations
[26].

Lewis et al. [26] showed also the possibility of estimat-
ing the relative tidal volume from thermal imaging. The
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FIGURE 1: Pulse computation from thermal imaging data. (a) Collection point on the carotid arteriovenous complex, the frontotemporal
region, and the wrist of the subject. (b) Temperature profile after removing frequency signals lower than 0.67 Hz (40 bmp) and higher than

1.67 Hz (100 bmp) (adapted from [9]).
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FIGURE 2: Thermal imaging data. (a) Thermal image showing the thermal track of the airflow. (b) Raw temperature versus time profile for a

region of interest close to the nose tip.

correlation coefficient between the thermal and meccanical
recordings over the same sample was 0.90.

Statistical methods have also been proposed to compute
the contactless breathing signature. The algorithm used by
Murthy et al. [27] is based on the method of moments and
Jeftrey’s divergence measure. This method has been tested on
10 subjects leading to a mean accuracy of 92% compared with
the respiratory belt data at the thorax.

Multiresolution analysis has been used as well [28, 29].
Fei and Pavlidis [29] extracted the breathing content from the
mean temperature of the nostrils through wavelet analysis.
They found a high degree of agreement between the ther-
mally recovered breathing waveform and the corresponding
thermistor one in 20 subjects. In the work of Chekmenev
et al. [28] the nasal region is tracked over time and for
each frame the ROI is decomposed and averaged at three
different scales. Wavelet transform is then applied to the
resulting signal. The scale that contains most of the breathing
information is extracted and used to compute the breathing

rate. This approach has been tested on 4 subjects and the
results perfectly matched with the piezoelectric measure
device signals.

Thermal IR imaging has been also used to retrieve
breath-related thermal variations from nasal, ribcage, and
abdomen regions of interest in children, both healthy and
with respiratory pathology. The study proved that thermal IR
imaging reliably acquires time-aligned nasal airflow and tho-
racoabdominal motion without relying on attached sensor
performance and detects asynchronous breathing in pediatric
patients [30].

Fei and colleagues [31] proposed a novel methodology to
monitor sleep apnea through thermal imaging. The nostril
region was segmented and tracked over time via a net-
work of cooperating probabilistic trackers. Then, the mean
thermal signal of the nostril region, carrying the breathing
information, was analyzed through wavelet decomposition.
The experimental set included 22 subjects (12 men and 10
women). The sleep-disordered incidents were detected by
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FIGURE 3: From the thermal IR image series to the cutaneous blood
flow (CBF) images derived from thermal IR imagery. The series of
IR images is converted into a series of IR-CBF images by applying
computational models for bioheat exchange (adapted from [32]).

both thermal and standard polysomnographic methodolo-
gies. The high accuracy achieved confirmed the validity of the
proposed approach for nonobtrusive clinical monitoring of
sleep disorders [31].

2.3. Cutaneous Blood Perfusion Rate. Bioheat transfer models
permit the calculation of the cutaneous perfusion from high-
resolution IR image series (Figure 3) [32, 33]. Pavlidis and
Levine [33] even suggested to use cutaneous perfusion rate
changes in the periorbital region as a performing channel for
a new generation of deception detection systems, based on
the flight-fight response of the inquired subject to sensitive
questions. The models adopted are derived from previous
works of Fujimasa et al. [34], Pavlidis and Levine [33],
and Merla and colleagues [32]. According to these models,
cutaneous temperature change over a short time is mainly
due to the heat gain/loss via convection attributable to blood
flow of subcutaneous blood vessels and the heat conducted by
subcutaneous tissue.

The models show that the blood flow rate and the
cutaneous blood flow depend mostly on the time-derivative
of the cutaneous temperature and on the difference between
the temperatures of the cutaneous layers and the inner tissues
[32].

It has been demonstrated that it is therefore possible to
transform raw thermal image series in cutaneous blood flow
image series (Figure 3).

The method has been validated by comparison with laser
Doppler imagery (Figure 4). Merla and colleagues showed
that, in twenty healthy subjects, cutaneous blood flow values,
simultaneously computed by thermal IR imagery and mea-
sured by laser Doppler imaging, linearly correlate (R = 0.85,
Pearson Product Moment Correlation) [32]. The method has
been applied in psychophysiology for deception detection
[35] and emotion assessment [10].

2.4. Sudomotor Response. Electrodermal responses have
been among the most widely employed psychophysiological
measures of autonomic nervous system activity. The Skin
Conductance Response (SCR) and related measures, like
galvanic skin response (GSR), have been shown to correlate
with the number of active sweat glands, which activation can
be easily visualized through facial thermal IR imaging by the
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appearance of cold dots over the thermal distribution of the
face (Figure 5).

Concurrently to the palm area, strong sweat gland acti-
vation is manifested in the maxillary, perioral, and nose tip
regions (Figure 5). Multiresolution analysis of the temper-
ature changes reveals tonic (baseline and/or general) and
phasic (event-related) components strongly correlated with
GSR sympathetic constituents [12, 13, 16, 36]. For example,
Pavlidis et al. [13] reported very high correlation coefficients
between the GSR and the thermal measurement on the finger
(rvg = 0.968) and on the perinasal region (ryy = 0.943).
Moreover, wavelet analysis of thermal signals [12] revealed
that the maxillary channel contains information about the
sympathetic response almost as much as the GSR channel.

A number of studies suggest that the identification of
active eccrine sweat glands by thermal imaging may have util-
ity as a psychophysiological measure of sudomotor activity
and may serve as a surrogate for the SCR when a contact
method is either unavailable or undesirable [2, 6, 10, 12, 16,
36].

Recently, thermal IR imaging was used, together with
standard GSR, to examine fear conditioning in posttraumatic
stress disorder (PTSD) [37]. The authors examined fear
processing in PTSD patients with mild symptoms and in indi-
viduals who did not develop symptoms, through the study
of fear-conditioned response. The authors found that the
analysis of facial thermal response during the conditioning
paradigm performs like GSR to detect sympathetic responses
associated with the disease.

2.5. Stress Response. An almost exclusive feature of thermal
IR imaging in stress research is its noninvasiveness. Focused
on professional drivers, a study of occupational ergonomics
assessed mental workload using thermal IR imaging. Partic-
ipants were exposed to simulator driving tasks both in the
city and on the highway while cognitively challenged with a
mental loading task (MLT). Compared with temperatures of
the predriving session (baseline), significant differences were
observed in the nose temperature across all conditions. The
MLT seemed to have a defining effect on the temperature
decrease of the nose, during the simulated city drive. No
significant changes were observed on the forehead [38].

In a recent study, Pavlidis and colleagues [13] tried to
quantify stress by measuring transient perspiratory responses
on the perinasal area through thermal imaging. These
responses proved to be sympathetically driven and, hence, a
likely indicator of stress processes in the brain. The authors
were able to monitor stress responses in the context of
surgical training.

In another case and particularly in human-computer
interaction field, Puri et al. [39] and Zhu et al. [40] used
a Stroop task to exploit signs of frustration. Based on
frontal regions, they observed that, compared with rest, stress
increased blood volume into supraorbital vessels. Thermal IR
imaging has also been used to assess affective training times
by monitoring the cognitive load through facial temperature
changes [41]. Learning proficiency patterns were based on
an alphabet arithmetic task. Significant correlations, ranging
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FIGURE 4: Computation of cutaneous blood perfusion from thermal image series. (a) Thermal image of healthy hand; (b) cutaneous perfusion
computed from thermal imagery (in arbitrary units); (c) laser Doppler image (in arbitrary units). The overall distributions appear to be
consistent, both images similarly showing the same high-perfusion and low-perfusion regions.
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FIGURE 5: Emotional sweating and sudomotor response. The delivery of emotional pressure or stress stimulation (b) changes the rest of the
(a) temperature distribution. The spotted dark signature is associated with the activity of the sweating glands.



from —0.88 to 0.96, were found between the nose tip tem-
perature and the response time, accuracy, and the Modified
Cooper Harper Scale ratings. Thermal IR thus represents a
sensitive tool to assess learning and workload.

Engert et al. [15] explored the reliability of thermal IR
imaging in the classical setting of human stress research.
Thermal imprints were compared to established stress mark-
ers (heart rate, heart rate variability, finger temperature,
alpha-amylase, and cortisol) in healthy subjects participating
in two standard and well-established laboratory stress tests:
the cold pressor test [42] and the trier social stress test
[43]. Both tests showed evidence of thermal responses of
several regions of the face. Although the thermal imprints
and established stress marker outcome correlated weakly,
the thermal responses correlated with stress-induced mood
changes. On the contrary, the established stress markers
did not correlate with stress-induced mood changes. These
results suggest that thermal IR imaging provides an effective
technique for the estimation of sympathetic activity in the
field of stress research.

3. Discussion

Thermal IR imaging is a reliable method for ubiquitous and
automatized monitoring of physiological activity. It provides
a powerful and ecological tool for computational physiology.
The reliability and validity of this method were proven by
comparing data simultaneously recorded by thermal imaging
and by golden standard methods, as piezoelectric pulse
meter for pulse monitoring, piezoelectric thorax stripe for
breathing monitoring or nasal thermistors, skin conductance,
or galvanic skin response (GSR). As for the latter, studies
have demonstrated that fTRT and GSR have a similar detection
power [12, 13, 15, 35, 37]. Such results rely on the impressive
advancement of the technology for thermal IR imaging.
Modern devices ensure a high spatial resolution (up to 1280
x 1024 pixels with up to a few milliradiants in the field-of-
view), high temporal resolution (full-frame frequency rate
up to 150 Hz), and high thermal sensitivity (up to 15mK at
30°C) in the spectral range 3+5pum [44]. The commercial
availability of 640 x 480 focal plane array of uncooled
and stabilized sensors (spectral range 7.5+13.0 yum; full-frame
frequency rate around 30 Hz; thermal sensitivity around
40mK at 30°C) permits integrating this technology into
automated systems for remote and automatic monitoring of
physiological activity.

Real-time processing of thermal IR imaging data and data
classification for psychophysiological applications is possible
as the computational demand is not larger than that required
for 640 x 480 pixels visible-band imaging data [2, 18, 44].

Thermal IR imaging has been indicated as a powerful tool
to create, given the use of proper classification algorithms,
an atlas of the thermal expression of psychophysiological
responses [45, 46]. This would be based on the characteri-
zation of the thermal signal in facial regions of autonomic
valence (nose or nose tip, perioral or maxillary areas, peri-
orbital and supraorbital areas associated with the activity
of the periocular and corrugator muscle and forehead), to
monitor the modulation of the autonomic activity. Several
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studies have already shown the possibility of using thermal IR
imaging in psychophysiology (see [2, 47] for reviews). These
studies cover a number of fields, including developmental
psychology and maternal empathy [48-50], social psychol-
ogy [15, 51], and up to lie detection [52, 53].

However, several limitations exist for using thermal IR
imaging in a real world. Because of the homeostasis, the
cutaneous temperature is continuously adjusted to take into
account the environmental conditions. Countermeasures
must therefore be adopted to avoid attributing any psycho-
logical valence to pure thermoregulatory or acclimatization
processes [2].

Also, despite the advantages offered by thermal IR imag-
ing, it has to be taken into account that thermal signal devel-
opment as a result of vascular change, perspiration, or mus-
cular activity is rather slow with respect to other established
techniques. Proper considerations should therefore be taken
when monitoring thermal expression of psychophysiological
activity.

Despite these limits, there is the concrete possibility of
monitoring, in a realistic environment, at a distance and,
unobtrusively, several physiological parameters and affective
states. This opens the way for remote monitoring of the
physiological state of individuals without requiring their
collaboration and without interfering with their usual activi-
ties, thus suggesting the possibility of adding information of
psychophysiological valence to behavioral or other typologies
of investigation. One still unexplored but intriguing aspect is
the study of possible correlation between individual thermal
signatures and psychometric indexes, in order to assess, for
example, whether given personality traits lead to interindi-
vidual differences in the facial thermal signature of auto-
nomic activity or affective state or whether specific thermal
expressions of specific personality or sociality traits exist.
Of course, thermal IR imaging is not the first and unique
attempt to explore these possibilities [54, 55], but thermal
IR imaging seems to be one of the most ecological ones in
this perspective. As such, thermal IR imaging provides an
extraordinary opportunity to add physiological information
to psychometric features, toward more robust classification
of the individual’s affective states, emotional responses, and
profile.

A major issue that needs to be addressed for the practical
application of thermal IR imaging in support of psychomet-
rics concerns the adequacy of the method for identifying
specific emotional or affective state at individual level. There
are no specific studies available at the moment to answer
this relevant question, which needs to be addressed by
further research. A global limitation is derived from the fact
that cutaneous thermal activity is intimately linked to the
autonomic activity. The question therefore turns into “how
specific and peculiar of each emotion are the autonomic
responses and their thermal expression?” A definitive answer
to this question is currently not available.
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