
Statistical Analysis of Q-matrix Based Diagnostic Classification 
Models

Yunxiao Chen,
Columbia University, Statitics, New York, 10027 United States, yunxiao@stat.columbia.edu

Jingchen Liu,
Columbia University, Statistics, 1255 Amsterdam Avenue, New York, 10027 United States, 
jcliu@stat.columbia.edu

Gongjun Xu, and
University of Minnesota, Statitics, Minneapolis, United States, xuxxx360@umn.edu

Zhiliang Ying
Columbia University, Statitics, 1255 Amsterdam Avenue, 10th Floor, New York, 10027 United 
States, zying@stat.columbia.edu

Abstract

Diagnostic classification models have recently gained prominence in educational assessment, 

psychiatric evaluation, and many other disciplines. Central to the model specification is the so-

called Q-matrix that provides a qualitative specification of the item-attribute relationship. In this 

paper, we develop theories on the identifiability for the Q-matrix under the DINA and the DINO 

models. We further propose an estimation procedure for the Q-matrix through the regularized 

maximum likelihood. The applicability of this procedure is not limited to the DINA or the DINO 

model and it can be applied to essentially all Q-matrix based diagnostic classification models. 

Simulation studies are conducted to illustrate its performance. Furthermore, two case studies are 

presented. The first case is a data set on fraction subtraction (educational application) and the 

second case is a subsample of the National Epidemiological Survey on Alcohol and Related 

Conditions concerning the social anxiety disorder (psychiatric application).
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1 Introduction

Cognitive diagnosis has recently gained prominence in educational assessment, psychiatric 

evaluation, and many other disciplines (Rupp and Templin, 2008b; Rupp et al., 2010). A 

cognitive diagnostic test, consisting of a set of items, provides each subject with a profile 

detailing the concepts and skills (often called “attributes”) that he/she masters. For instance, 

teachers identify students’ mastery of different skills (attributes) based on their solutions 

(responses) to exam questions (items); psychiatrists/psychologists learn patients’ presence/

absence of disorders (attributes) based on their responses to diagnostic questions (items). 
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Various diagnostic classification models (DCM) have been developed in the literature. A 

short list includes the conjunctive DINA and NIDA models (Junker and Sijtsma, 2001; 

Tatsuoka, 2002; de la Torre and Douglas, 2004; de la Torre, 2011), the reparameterized 

unified/fusion model (RUM) (DiBello et al., 1995), the compensatory DINO and NIDO 

models (Templin and Henson, 2006), the rule space method (Tatsuoka, 1985, 2009), the 

attribute hierarchy method (Leighton et al., 2004), and Generalized DINA models (de la 

Torre, 2011); see also Henson et al. (2009); Rupp et al. (2010) for more developments and 

approaches to cognitive diagnosis. The general diagnostic model (von Davier, 2005, 2008; 

von Davier and Yamamoto, 2004) provides a framework for the development of diagnostic 

models.

A common feature of these models is that the probabilistic distribution of subjects’ 

responses to items is governed by their latent attribute profiles. Upon observing the 

responses, one can make inferences on the latent attribute profiles. The key component in 

the model specification is the relationship between the observed item responses and the 

latent attribute profiles. A central quantity in this specification is the so-called Q-matrix. 

Suppose that there are J items measuring K attributes. Then, the Q-matrix is a J by K matrix 

with zero-one entries each of which indicates whether an item is associated to an attribute. 

In the statistical analysis of diagnostic classification models, it is customary to work with a 

prespecified Q-matrix; for instance, an exam maker specifies the set of skills tested by each 

exam problem (Tatsuoka, 1990). However, such a specification is usually subjective and 

may not be accurate. The misspeficiation of the Q-matrix could possibly lead to serious lack 

of fit and further inaccurate inferences on the latent attribute profiles.

In this paper, we consider an objective construction of the Q-matrix, that is, estimating it 

based on the data. This estimation problem becomes easy or even trivial if the item 

responses and the attribute profiles are both observed. However, subjects’ attribute profiles 

are not directly observed and their information can only be extracted from item responses. 

The estimation of the Q-matrix should be solely based on the dependence structure among 

item responses. Due to the latent nature of the attribute profiles, when and whether the Q-

matrix and other models parameters can be estimated consistently by the observed data 

under various models specifications is a challenging problem. Furthermore, theoretical 

results on the identifiability usually do not imply practically feasible estimation procedures. 

The construction of an implementable estimation procedure is the second objective of this 

paper.

Following the above discussion, the main contribution of this paper is two-fold. First, we 

provide identifiability results for the Q-matrix. As we will specify in the subsequent 

sections, the Q-matrix estimation is equivalent to a latent variable selection problem. 

Nontrivial conditions are necessary to guarantee the consistent identification of Q-matrix. 

We present the results for both the DINA and the DINO models that are two important 

diagnostic classification models. The theoretical results provide the possibility of estimating 

the Q-matrix, in particular, the consistency of the maximum likelihood estimator (MLE). 

However, due to the discrete nature of the Q-matrix, MLE requires a substantial 

computational overhead and it is practically infeasible. The second contribution of this paper 

is the proposal of a computationally affordable estimator. Formulating Q-matrix estimation 
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into a latent variable selection problem, we propose an estimation procedure via the 

regularized maximum likelihood. This regularized estimator can be computed by means of a 

combination of the expectation-maximization algorithm and the coordinate descent 

algorithm. We emphasize that the applicability of this estimator is not limited to the DINA 

or the DINO model for which the theoretical results are developed. It can be applied to a 

large class of diagnostic classification models.

Statistical inference of Q-matrix has been largely an unexplored area in the cognitive 

assessment literature. Nevertheless, there are a few works related to the current one. 

Identifiability of the Q-matrix for the DINA model under a specific situation is discussed by 

Liu et al. (2013). The results require a complete knowledge of the guessing parameter. The 

theoretical results in the current paper are a natural extension of Liu et al. (2013) to 

generally all DINA models and further to the DINO model. Furthermore, various diagnosis 

tools and testing procedures have been developed in the literature (de la Torre and Douglas, 

2004; Liu et al., 2007; Rupp and Templin, 2008a; de la Torre, 2008), none of which, 

however, addresses the estimation problem. In addition to the estimation of the Q-matrix, we 

discuss the estimation of other model parameters. Although there have been results on 

estimation (Junker, 1999; Rupp and Templin, 2008b; de la Torre, 2009; Rupp et al., 2010), 

formal statistical analysis, including rigorous results on identifiability and asymptotic 

properties, has not been developed.

The rest of the paper is organized as follows. We present the theoretical results for the Q-

matrix and other model parameters under DINA and DINO models in Section 2. Section 3 

presents a computationally affordable estimation procedure based on regularized maximum 

likelihood. Simulation studies and real data illustrations are presented in Sections 4 and 5. 

Detailed proofs are provided in the supplemental material.

2 The identifiability results

2.1 Diagnostic classification models

We consider that there are N subjects, each of whom responds to J items. To simplify the 

discussion, we assume that the responses are all binary. The analysis of other types of 

responses can be easily adapted. Diagnostic classification models assume that subject’s 

responses to items are governed by his/her latent (unobserved) attribute profile that is a K-

dimensional vector, each entry of which takes values in {0, 1}, that is, α = (α1, …, αK) and 

αk ∈ {0, 1}. In the context of educational testing, αk indicates the mastery of skill k. Let R = 

(R1, …,RJ) denote the vector of responses to the J items. Both α and R are subject-specific 

and we will later use subscript to indicate different subjects, that is, αi and Ri are the latent 

attribute profile and response vector of subject i for i = 1, …, N.

The Q-matrix provides a link between the responses to items and the attributes. In particular, 

Q = (qjk)J×K is a J × K matrix with binary entries. For each j and k, qjk = 1 means that the 

response to item j is associated to the presence of attribute k and qjk = 0 otherwise. The 

precise relationship depends on the model parameterization.
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We use θ as a generic notation for the unknown item parameters additional to the Q-matrix. 

Given a specific subject’s profile α, the response Rj to item j follows a Bernoulli distribution

(1)

where cj,α is the probability for subjects with attribute profile α to provide a positive 

response to item j, i.e.,

The specific form of cj,α additionally depends on the Q-matrix, the item parameter vector θ, 

and the model parameterization. Conditional on α, (R1, …, RJ) are jointly independent. We 

further assume that the attribute profiles are i.i.d. following distribution

Let p = (pα : α ∈ {0, 1}K). In what follows, we present a few examples.

Example 1 (DINA model, Junker and Sijtsma (2001)) For each item j and attribute vector 

α, we define the ideal response

(2)

that is, whether α has all the attributes required by item j. For each item, there are two 

additional parameters sj and gj that are known as the slipping and guessing parameters. The 

response probability cj,α takes the form

(3)

If  (the subject is capable of solving a problem), then the positive response 

probability is 1 − sj; otherwise, the probability is gj. The item parameter vector is θ = {sj, 

gj : j = 1, ⋯, J}.

The DINA model assumes a conjunctive (non-compensatory) relationship among attributes. 

It is necessary to possess all the attributes indicated by the Q-matrix to be capable of 

providing a positive response. In addition, having additional unnecessary attributes does not 

compensate for the lack of necessary attributes. The DINA model is popular in the 

educational testing applications and is often employed for modeling exam problem solving 

processes.

Example 2 (NIDA model) The NIDA model admits the following form
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The problem solving involves multiple skills indicated by the Q-matrix. For each skill, the 

student has a certain probability of implementing it: 1 − sj for mastery and gj for non-

mastery. The problem is solved correctly if all required skills have been implemented 

correctly by the student, which leads to the above positive response probability.

The following reduced RUM model is also a conjunctive model, and it generalizes the 

DINA and the NIDA models by allowing the item parameters to vary among attributes.

Example 3 (Reduced NC-RUM model) Under the reduced noncompensatory 

reparameterized unified model (NC-RUM), we have

(4)

where πj is the correct response probability for subjects who possess all required attributes 

and rj,k, 0 < rj,k < 1, is the penalty parameter for not possessing the kth attribute. The 

corresponding item parameters are θ = {πj, rj,k : j = 1, ⋯, J, k = 1, ⋯, K}.

In contrast to the DINA, NIDA, and Reduced NC-RUM models, the following DINO and C-

RUM models assume compensatory (non-conjunctive) relationship among attributes, that is, 

one only needs to possess one of the required attributes to be capable of providing a positive 

response.

Example 4 (DINO model) The ideal response of the DINO model is given by

(5)

Similar to the DINA model, the positive response probability is

The DINO model is the dual model of the DINA model. The DINO model is often employed 

in the application of psychiatric assessment, for which the positive response to a diagnostic 

question (item) could be due to the presence of one disorder (attributes) among several.

Example 5 (C-RUM model) The GLM-type parametrization with a logistic link function is 

used for the compensatory reparameterized unified model (C-RUM), that is

(6)
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The corresponding item parameter vector is . The C-RUM 

model is a compensatory model and one can recognize (6) as a structure in 

multidimensional item response theory model or in factor analysis.

2.2 Some concepts of identifiability

We consider two matrices Q and Q′ that are identical if we appropriately rearrange the 

orders of their columns. Each column in the Q-matrix corresponds to an attribute. 

Reordering the columns corresponds to relabeling the attributes and it does not change the 

model. Upon estimating the Q-matrix, the data does not contain information about the 

specific meaning of each attribute. Therefore, one cannot differentiate Q and Q′ solely based 

on data if there are identical up to a column permutation. For this sake, we present the 

following equivalent relation.

Definition 1 We write Q ~ Q′ if and only if Q and Q′ have identical column vectors that 

could be arranged in different orders; otherwise, we write Q ≁ Q′.

Definition 2 We say that Q is identifiable if there exits an estimator Q̂ such that

Given a response vector R = (R1, ⋯,Rj)𝖳, the likelihood function of a diagnostic 

classification model can be written as

Definition 3 (Definition 11.2.2 inCasella and Berger (2001)) For a given Q, we say that the 

model parameters θ and p are identifiable if distinct values of (θ, p) yield different 

distributions of R, i.e., there is no (θ̃, p̃) ≠ (θ, p) such that L(θ, p,Q) ≡ L(θ̃, p̃,Q) for all R ∈ 

{0, 1}J.

Let Q̂ be a consistent estimator. Notice that the Q-matrix is a discrete parameter. The 

uncertainty of Q̂ in estimating Q is not captured by its standard deviation or confidence 

interval type of statistics. It is more natural to consider the probability P(Q̂ ≁ Q) that is 

usually very difficult to compute. Nonetheless, it is believed that P(Q̂ ≁ Q) decays 

exponentially fast as the sample size (total number of subjects) approaches infinity. We do 

not pursue along this direction in this paper. The parameters θ and p are both continuous 

parameters. As long as they are identifiable, the analysis falls into routine inference 

framework. That is, the maximum likelihood is asymptotically normal centered around the 

true value and its covariance matrix is the inverse of the Fisher information matrix. In what 

follows, we present some technical conditions that will be referred to in the subsequent 

sections.
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A1 α1,…,αN are independently and identically distributed random vectors following 

distribution P(αi = α) = pα. The population is fully diversified meaning that pα > 

0 for all α.

A2 All items have discriminating power meaning that 1 − sj > gj for all j.

A3 The true matrix Q0 is complete meaning that {ei : i = 1, …, k} ⊂ RQ, where RQ 

is the set of row vectors of Q and ei is a row vector such that the i-th element is 

one and the rest are zero.

A4
Each attribute is required by at least two items, that is,  for all k.

The completeness of the Q-matrix requires that for each attribute there exists at least one 

item requiring only that attribute. If Q is complete, then we can rearrange row and column 

orders (corresponding to reordering the items and attributes) such that it takes the following 

form

(7)

where matrix ℐK is the K × K identity matrix. Completeness is an important assumption 

throughout the subsequent discussion. Without loss of generality, we assume that the rows 

and columns of the Q-matrix have been rearranged such that it takes the above form.

Remark 1 One of the main objectives of cognitive diagnosis is to identify subjects’ attribute 

profiles. It has been established that completeness is a sufficient and necessary condition for 

a set of items to consistently identify all types of attribute profiles for the DINA model when 

the slipping and the guessing parameters are both zero. It is usually recommended to use a 

complete Q-matrix. More discussions regarding this issue can be found in Chiu et al. (2009) 

and Liu et al. (2013).

2.3 Identifiability of Q-matrix for the DINA and the DINO model

We consider the models in Examples 1 and 4 and start the discussion by citing the main 

result of Liu et al. (2013).

Theorem 1 (Theorem 4.2, Liu et al. (2013)) For the DINA model, if the guessing 

parameters gj’s are known, under Conditions A1, A2, and A3, the Q-matrix is identifiable.

The first result in this paper generalizes Theorem 1 to the DINO model with a known 

slipping parameter. In addition, we provide sufficient and necessary conditions for the 

identifiability of the slipping and guessing parameters.

Theorem 2 For the DINO model with known slipping parameters, under Conditions A1, A2, 

and A3, the Q-matrix is identifiable; the guessing parameters gj and the attribute population 

p are identifiable if and only if Condition A4 holds.

Furthermore, under the setting of Theorem 1, the slipping parameters sj and the attribute 

population parameter p are identifiable if and only if Condition A4 holds.
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Theorems 1 and 2 require the knowledge of the guessing parameter (the DINA model) or the 

slipping parameter (the DINO model). They are applicable under certain situations. In the 

educational testing context, some testing problems are difficult to guess, for instance, the 

guessing probability of “879 × 234 =?” is basically zero; for multiple choice problems, if all 

the choices look “equally correct, ” then the guessing probability may be set to one over the 

number of choices.

We further extend the results to the situation when neither the slipping nor the guessing 

parameters is known, for which additional conditions are required.

A5 Each attribute of the Q-matrix is associated to at least three items, that is, 

 for all k.

A6 Q has two complete submatrices, that is, for each attribute, there exists at least 

two items requiring only that attribute. If so, we can appropriately arrange the 

columns and rows such that

(8)

Theorem 3 Under the DINA and DINO models with (s, g, p) unknown, if Conditions A1, 2, 

5, and 6 hold, then Q is identifiable, i.e., one can construct an estimator Q̂ such that for all 

(s, g, p)

Theorem 4 Suppose that Conditions A1, 2, 5, and 6 hold. Then s, g, and p are all 

identifiable.

Theorems 3 and 4 state the identifiability results of Q and other model parameters. They are 

nontrivial generalizations of Theorems 1 and 2. As we mentioned in the previous section, 

given that s, g, and p are identifiable, their estimation falls into routine analysis. The 

asymptotic distribution of the maximum likelihood estimator and generalized estimating 

equation estimators are all asymptotically multivariate normal centered around the true 

values and their variances can be estimated either by the Fisher information inverse or by the 

sandwich variance estimators.

The identifiability results for Q only state the existence of a consistent estimator. We present 

the following corollary that the maximum likelihood estimator is consistent under the 

conditions required by the above theorems. The maximum likelihood estimator (MLE) takes 

the following form

(9)
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where

Corollary 1 Under the conditions of Theorem 3, Q̂MLE is consistent. Moreover, the 

maximum likelihood estimator of s, g, p

(10)

are asymptotically normal with mean centered at the true parameters and variance being 

the inverse Fisher information matrix.

Proof of Corollary 1. Based on the results and proofs of Theorems 3 and 4, this corollary is 

straightforward to develop by means of Taylor expansion of the likelihood. We therefore 

omit the details.

To compute the maximum likelihood estimator Q̂
MLE, one needs to evaluate the profile 

likelihood, sups,g,p LN(s, g, p,Q), for all possible J by K matrices with binary entries. The 

computation of Q̂
MLE induces a substantial overhead and is practically impossible to carry 

out. In the following section, we present a computationally feasible estimator via the 

regularized maximum likelihood estimator.

Remark 2 The identifiability results are developed under the situation when there is no 

information about Q at all. In practice, partial information about the Q-matrix is usually 

available. For instance, a submatrix for some items (rows) is known and the rest needs to be 

estimated. This happens when new items are to be calibrated based on existing ones. 

Sometimes, a submatrix is known for some attributes (columns) and that corresponding to 

other attributes needs to be learned. This happens when some attributes are concrete and 

easily recognizable in a given item and the others are subtle and not obvious. Under such 

circumstances, the Q-matrix is easier to estimate and the identifiability conditions are 

weaker than those in Theorem 3. We do not pursue the partial information situation in this 

paper.

Remark 3 The equivalent relation “~” defines the finest equivalent classes, up to which Q 

can be estimated based on the data without assist of prior knowledge. In this sense, Theorem 

4 provides the strongest type of identifiability and in turn it also requires some restrictive 

conditions. For instance, Condition A6 sometimes is difficult to satisfy in practice and it 

usually leads to some over simplified items especially when the number of attributes K is 

large. In that case, the Q-matrix can only be identified up to some weaker equivalence 

classes. We leave this investigation for future study.
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3 Q-matrix estimation via a regularized likelihood

3.1 Alternative representation of diagnostic classification models via generalized linear 
models

We first formulate the Q-matrix estimation as a latent variable selection problem and then 

construct a computationally feasible estimator via the regularized maximum likelihood, for 

which there is a large body of literature (Tibshirani, 1996, 1997; Fan and Li, 2001). The 

applicability of this estimator is not limited to the DINA or the DINO models and it can be 

applied to basically all Q-matrix based diagnostic classification models in use. A short list of 

such models includes DINA-type models (such as the DINA and HO-DINA models), RUM-

type models (like the NC-RUM, reduced NC-RUM, and C-RUM), and the saturated models, 

the log linear cognitive diagnosis models (LCDM) and generalized DINA (Henson et al., 

2009; Rupp et al., 2010; de la Torre, 2011).

In the model specification, the key element is mapping a latent attribute α to a positive 

response probability, cj,α, that additionally depends on the Q-matrix and other model 

parameters. To motivate the general alternative representation with the DINA model, we 

consider the following equivalent representation of the DINA model (c.f. (3))

(11)

where  for p ∈ (0,1). On the right-hand side, inside the logit-inverse 

function is a function of α = (α1, …, αK) with all the interactions. Notice that the response to 

item j is determined by the underlying attribute α. Thus, the above generalized linear 

representation of cj, α is a saturated model, that is, all diagnostic classification models 

admitting a K-dimensional attribute profile is a special case of (11).

In what follows, we explain the adaptation of (11) to the DINA model and further to a Q-

matrix. The response distribution to each item under the DINA model could be either 

Bernoulli (1 − sj) or Bernoulli (gj) depending on the ideal responses ξj. Suppose that item j 

requires attributes 1, 2,…, and Kj, that is, qjk = 1 for all 1 ≤ k ≤ Kj and 0 otherwise. Then, the 

positive response probability (3) can be written as

Thus, if αk = 1 for all 1 ≤ k ≤ Kj, then  otherwise, 

. Generally speaking, if an item requires attributes k1, …, kj, the 

coefficients  and  are non-zero and all other coefficients are zero. Therefore, each 

row vector of the Q-matrix, corresponding to the attribute requirement of one item, maps to 
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two non-zero β-coefficients. One of these two coefficients is the intercept  and the other 

one is the coefficient for the product of all the required attributes suggested by the Q-matrix.

Therefore, each Q-matrix corresponds to a non-zero pattern of the regression coefficients in 

(11). Estimating the Q-matrix is equivalent to identifying the non-zero regression 

coefficients. There is a vast literature on variable and model selection, most of which are 

developed for linear and generalized linear models. Technically speaking, (11) is a 

generalized linear mixed model with α1, …, αK and their interactions being the random 

covariates and β being the regression coefficients. We would employ variable selection 

methods for the Q-matrix estimation.

Notice that the current setup is different from the regular regression setting in that the 

covariates αi’s are not directly observed. Therefore the variables to be selected are all latent. 

The results in the previous section establish sufficient conditions under which the latent 

variables can be consistently selected. The validity of the methods proposed in this section 

stands on those theoretical results. We propose the usage of the regularized maximum 

likelihood estimator. In doing so, we first present the general form of diagnostic 

classification models. For each item j, the positive response probability given the latent 

attribute profile admits the following generalized linear form

(12)

where βj is a 2K-dimensional parameter (column) vector and h(α) is a 2K-dimensional 

covariate (column) vector including all the necessary interaction terms. For instance, in 

representation (11), h(α) is the vector containing 1, α1, α2,…, αK, and their interactions of 

all orders α1α2, α1α3, … For different diagnostic classification models, we may choose 

different h(α) so that their coefficients correspond directly to a Q-matrix. Examples will be 

given in the sequel. The likelihood function upon observing αi for each subject is

(13)

where cj,α is given by (12). Notice that αi are i.i.d. following distribution pα. Then, the 

observed data likelihood is

(14)

To simplify the notation, we use L to denote both the observed and the complete data 

likelihood (with different arguments) when there is no ambiguity. A regularized maximum 

likelihood estimator of the β-coefficients is given by

(15)
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where pλj is some penalty function and λj is the regularization parameter. In this paper, we 

choose pλ to be either the L1 penalty or the SCAD penalty (Fan and Li, 2001). In particular, 

to apply the L1 penalty, we let

where β = (β1, …, βk); to apply the SCAD penalty, we let

The function  is defined as  and

for x > 0; for x < 0, the function is . There is an additional “a” parameter that 

is chosen to be a = 3.7 as suggested by Fan and Li (2001).

On the consistency of the regularized estimator—A natural issue is whether the 

consistency results developed in the previous section can be applied to the regularized 

estimator. The consistency results for the regularized estimator can be established by means 

of the techniques developed in the literature (Yu and Zhao, 2006; Fan and Lv, 2011; Fan and 

Li, 2001). Therefore, we only provide an outline and omit the details. First of all, the 

parameter dimension is fixed and the sample size becomes large. The regularization 

parameter is chosen such that λj → 0 and  as N → ∞. For the DINA (or DINO) 

model, let Q1 and Q2 be two matrices. If Q1 ≁ Q2, the consistency results in the previous 

section ensure that the two families of distributions under different Q’s are separated. Thus, 

with probability tending to one, the true matrix Q is the global maximizer of the profiled 

likelihood. Since λj = o(1) and the penalty term is of order o(N), the results in the previous 

section suggests that the maximized regularized likelihood has to be obtained within ε 

distance from the true value, that is, the consistency results localize the regularized estimator 

to a small neighborhood of their true values. The oracle properties of the L1 regularized 

estimator and SCAD regularized estimator are developed for maximizing the penalized 

likelihood function locally around the true model parameters (Yu and Zhao, 2006; Fan and 

Lv, 2011; Fan and Li, 2001). Thus, combining the global results (Q-matrix identifiability) 

and the local results (oracle condition for the local penalized likelihood maximizer), we 

obtain that the regularized estimators admit the oracle property in estimating the Q-matrix 

under the identifiability conditions in the previous section. We mention that for the L1 

regularized estimator irrepresentable condition is needed concerning the Fisher information 

matrix to ensure the oracle condition (Yu and Zhao, 2006).
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For other DCM’s, such as NIDA, reduced NC-RUM, and C-RUM, whose representation 

will be presented immediately, the families of response distributions may be nested among 

different Q’s. Then, the consistency results of the regularized estimator could be developed 

similarly as those of generalized linear models or generic likelihood functions given that Q 

is identifiable and the regularization parameter λj is chosen carefully such that λj → 0 and 

 as N → ∞. Further discussion on the choice of λj will be provided later in the 

discussion section.

3.2 Reparameterization for other diagnostic classification models

We present a few more examples mentioned previously. For each of them, we present the 

link function g, h(α), and the non-zero pattern of the β-coefficients corresponding to each Q-

matrix.

DINO model—For the DINO model, we write the positive response probability as

Similar to the DINA model, each row of the Q-matrix, corresponding to one item, maps to 

two non-zero coefficients. One is the  and the other one corresponds the interactions of all 

the required attributes by the Q-matrix.

NIDA model—The positive response probability can be written as

Then, the corresponding Q-matrix entries are given by . Unlike the DINA and 

the DINO model, the number of non-zero coefficients for each item is unknown.

Reduced NC-RUM—This model is very similar to the NIDA model. The positive 

probability can written as

and .
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C-RUM—The positive probability can written as

and .

As a summary, all the diagnostic classification models in the literature admit the generalized 

linear form as in (12). Furthermore, each Q-matrix corresponds a nonzero pattern of the 

regression coefficients and the regularized estimator has a wide applicability.

3.3 Computation via EM algorithm

The advantage of the regularized maximum likelihood estimation for the Q-matrix lies in 

computation. As mentioned previously, the computation of Q̂
MLE in (9) requires evaluation 

of the profiled likelihood for all possible Q-matrices and there are 2J×K such matrices. This 

is computationally impossible even for some practically small J and K. The computation of 

(15) can be done by combining the expectation-maximization (EM) algorithm and the 

coordinate descent algorithm. In particular, we view α as the missing data following the 

prior distribution pα. The EM algorithm consists of two steps. The E-step computes function

where the above expectation is taken with respect to αi, i = 1, …,N, under the posterior 

distribution P(· |Ri, i = 1, …, N, β1, …, βJ, pα). The E-step is a closed form computation. 

First, the complete data log-likelihood function is additive

Furthermore, under the posterior distribution α1,…, αN are jointly independent. Therefore, 

one only needs to evaluate

for each i = 1, …,N and j = 1, …, J. Notice that α is a discrete random variable taking values 

in {0, 1}K. Therefore, the posterior distribution of each αi can be computed exactly and the 

complexity of the above conditional expectation is 2K that is manageable for K as large as 10 

that is a very high dimension for diagnostic classification models in practice. Therefore the 

overall computational complexity of the E-step is O(NJ2K).

The M-step consists of maximizing the H-function with the penalty term
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Before applying the coordinate descent algorithm, we further reduce the dimension. The 

objective function can be written as

For each j, the term

consists only of . Thus, the M-step can be done by maximizing each  independently. 

Each  has 2K coordinate and we apply the coordinate descent algorithm (developed for 

generalized linear models) to maximize the above function for each j. For details about this 

algorithm, see Friedman et al. (2010). Furthermore, pα is updated by 

.

The EM algorithm guarantees a monotone increasing objective function. However, there is 

no guarantee that the algorithm converges to the global maximum. We empirically found 

that the algorithm sometimes does stop at a local maximum, especially when λ is large. 

Therefore, we suggest applying the algorithm with different starting points and select the 

best.

3.4 Further discussions

It is suggested by the theories that the regularization parameter λ be chosen such that λ → 0 

and  that is a wide range. For specific diagnostic classification models, we may 

have more specific choices of λ. For the DINA and the DINO model, each row of the Q-

matrix, corresponding to the attribute requirement of one item, maps to two non-zero 

coefficients. Therefore, we may choose λj for each item differently such that the resulted 

coefficients βj has exactly two non-zero elements.

The NIDA, NC-RUM, and C-RUM models do not admit a fixed number of co-efficients for 

each item. To simplify the problem, instead of using item-specific regularization parameters, 

we choose a single regularization parameter for all items. Furthermore, we build a solution 

path for different λ. Thus, instead of providing one estimate of the Q-matrix, a set of 

estimated Q-matrices corresponding to different λ is obtained. We may further investigate 

these matrices for further validation based on our knowledge of the item-attribute 

relationship. In case one does not have enough knowledge, one may choose λ via standard 
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information criteria. For instance, we may choose λ such that the resulted selection of latent 

variables admits the smallest BIC.

4 Simulation study

In this section, simulation studies are conducted to illustrate the performance of the 

proposed method. The DINO model is mathematically equivalent to the DINA model 

(Proposition 1) and thus we only provide results for the DINA model. The data from the 

DINA model are generated under different settings and then the estimated Q-matrix and the 

true Q-matrix are compared. Two simulation studies are conducted when the attributes α1, 

…, αK are independent and dependent. The results are presented assuming all the model 

parameters are unknown including the Q-matrix, attribute distribution, slipping and guessing 

parameters.

4.1 Study 1: independent attributes

Attribute profiles are generated from the uniform distribution

We consider the cases that K = 3 and 4 and J = 18 items. The following Q-matrices are 

adopted

These two matrices are chosen such that the identifiability conditions are satisfied. The 

slipping and guessing parameters are set to be 0.2, but treated as unknown when estimating 

Q. All other conditions are also satisfied. For each Q, we consider sample sizes N = 500, 

1000, 2000, and 4000. For each particular Q and N, 100 independent data sets are generated 

to evaluate the performance.

L1 regularized estimator—The simulation results of the L1 regularized estimator are 

summarized in Tables 1, 2, and 3. According to Table 1, for both K = 3 and 4, our method 

estimates the Q-matrix almost without error when the sample size is as large as 4000. In 

addition, the higher the dimension is the more difficult the problem is. Furthermore, for the 

cases when the estimator misses the Q-matrix, Q̂ differs from the true by only one or two 
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rows. We look closer into the estimators in Table 2 that reports the proportion of entries 

correctly specified by Q̂

We empirically found that the row vectors of Q1 and Q2 that require three attributes or four 

attributes (rows 15 to 18 in Q1 and rows 16 to 18 in Q2) are much more difficult to estimate 

than others. This phenomenon is reflected by Table 3, in which the notation QI1:I2 represents 

the submatrix of Q containing row I1 to row I2. In fact, for all simulations in this study, most 

misspecifications are due to the misspecification of the submatrices of Q1 and Q2 that the 

corresponding items require three attributes or more.

SCAD estimator—Under the same setting, we investigate the SCAD estimator. The 

results are summarized in Tables 4 and 5. The SCAD estimator performs better than the L1 

regularized estimator upon comparing Table 1 and Table 4.

4.2 Study 2: dependent attributes

For each subject, we generate θ = (θ1, ⋯ θK) that is a multivariate normal distribution N(0, 

Σ), where the covariance matrix Σ has unit variance and has a common correlation ρ, that is,

where 1 is the vector of ones and IK is the K by K identity matrix. We consider the situations 

that ρ = 0.05, 0.15 and 0.25. Then the attribute profile α is given by

We consider K = 3 and Q1 be the Q-matrix. Table 6 shows the probability distribution pα. 

The slipping and the guessing parameters remain 0.2. The rest of the setting is the same as 

that of Study 1.

L1 regularized estimator—The simulation results of the L1 regularized estimator are 

summarized in Tables 7 and 8. Based on Table 7, the estimation accuracy is improved when 

the sample size increases. We also observe that the proposed algorithm performs better 

when ρ increases. A heuristic interpretation is as follows. The row vector of Q tends to be 

more difficult to estimate when the numbers of subjects who are capable and who are not 

capable to answer are not balanced. The row vector (1, 1, 1) is the most difficult to estimate 

because only subjects with attribute profile (1, 1, 1) are able to solve them and all other 

subjects are not. According to Table 6, as ρ increases, the proportion of subjects with 

attribute profile (1, 1, 1) increases, which explains the improvement of the performance. In 
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fact, similar to the situation that αi’s are independent, for most simulations in which the Q̂ 

misses the true, Q̂ differs from the true at the row vectors whose true value is (1, 1, 1).

SCAD estimator—Under the same simulation setting, the results of the SCAD estimator 

are summarized in Tables 9 and 10. Its performance is empirically better than that of the L1 

regularized estimator. When the sample size is as small as 500, it has a very high probability 

estimating all the entries of the Q-matrix correctly.

Remark 4 Once an estimate of the Q-matrix has been obtained, other model parameters 

such as the slipping and the guessing parameters and the attribute population can be 

estimated via the maximum likelihood estimator (10). Simulation studies show that these 

parameters can be estimated accurately given that the Q-matrix is recovered with a high 

chance. As the main focus of this paper is on the Q-matrix, we do not report detailed 

simulation results for these parameters.

5 Real data analysis

5.1 Example 1: fraction subtraction data

The data set contains 536 middle school students’ responses to 17 fraction subtraction 

problems. The responses are binary: correct or incorrect solution to the problem. The data 

were originally described by Tatsuoka (1990) and later by Tatsuoka (2002); de la Torre and 

Douglas (2004) and many other studies of diagnostic classification models. In these works, 

the DINA model is fitted with a Q-matrix pre-specified. We fit the DINA model to the data 

and estimate the Q-matrix for K = 3 and 4. Then we validate the estimated Q-matrix by our 

knowledge of the cognitive processes of problem solving.

Table 11 presents the estimated Q-matrix along with the slipping and the guessing 

parameters for K = 3 based on L1 regularization. The slipping and the guessing parameter 

are estimated by (10). According to our knowledge of the cognitive processes, the items are 

clustered according to Q̂ reasonably. Roughly speaking, the three attributes can be 

interpreted as “finding common denominator”, “writing integer as fraction”, and 

“subtraction of two fraction numbers when there are integers involved” respectively.

We further fit a four dimensional DINA model and the results are also summarized in Table 

11. The first attribute can be interpreted as “finding common denominator”, the second as 

“borrowing from the whole number part“, and the third and fourth attributes can be 

interpreted as “subtraction of two fraction numbers when there are integers involved”. 

However, it seems difficult to interpret the third and the fourth attributes separately.

This data set has been studied intensively. A Q-matrix (with a little bit variation from study 

to study) is also prespecified based on understandings of each test problem. Table 12 

presents the Q-matrix used in de la Torre and Douglas (2004) that contains eight attributes 

(K = 8). Each attribute corresponds one type of manipulation of fractions:

A1: Convert a whole number to a fraction

A2: Separate a whole number from a fraction
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A3: Simplify before subtracting

A4: Find a common denominator

A5: Borrow from whole number part

A6: Column borrow to subtract the second numerator from the first

A7: Subtract numerators

A8: Reduce answers to simplest form

We believe that K is overspecified given that there are only 17 items. Nevertheless, we are 

able to find some approximate matching between this prespecified matrix and ours. 

Attributes one in Table 11 roughly corresponds to attribute four in Table 12, attribute two in 

Table 11 to attribute five in Table 12, and attribute three in Table 11 to attribute two in 

Table 12.

We also estimate the Q-matrix using SCAD. The estimated Q-matrices are given in Tables 

13 for K = 3 and 4. The estimates are not as interpretable as those by the L1 penalty, 

although SCAD has better performance in the simulation study. We believe that this is 

mostly due to the lack of fit of the DINA model. This is an illustration of the difficulties in 

the analysis of cognitive diagnosis. Most models impose restrictive parametric assumptions 

such that the lack of fit may affect the quality of the inferences. Thus, the performance in 

simulations does not extrapolate to real data analysis. We also emphasize that the estimated 

Q-matrix only serves as a guide of the item-attribute association and strongly recommend 

that researchers verify or even modify the estimates based on their understanding of the 

items.

5.2 Example 2: Social anxiety disorder data

The social anxiety disorder data is a subset of the National Epidemiological Survey on 

Alcohol and Related Conditions (NESARC) (Grant et al., 2003). We consider participants’ 

binary responses (Yes/No) to thirteen diagnostic questions for social anxiety disorder. The 

questions are designed by the Diagnostic and Statistical Manual of Mental Disorders, 4th ed 

and are displayed in Table 14. Incomplete cases are removed from the data set. The sample 

size is 5226. To understand the latent structure of social phobia, we fit the compensatory 

DINO model for K = 2, 3, and 4.

We first consider the L1 penalty and fit the two-dimensional DINO model. The estimates Q̂, 

ŝ, and ĝ are summarized as Case K = 2 of Table 15. In addition, the correlation between the 

two attributes is 0.47. We further explore the latent structure by considering the three-

dimensional DINO model. For the result, Q̂, ŝ, and ĝ are summarized as Case K = 3 of Table 

15. A similar latent structure as Q̂ in Case K = 3 of Table 15 is considered in an item 

response theory model based confirmatory factor analysis (Iza et al., 2014), where the item-

attribute structure is prespecified. In their study, the three (continuous) factors are 

interpreted as “public performance”, “close scrutiny”, and “interaction”, which correspond 

roughly to those in Case K = 3 of Table 15. Finally, the four-dimensional DINO model is 

considered. The results are summarized as Case K = 4 in Table 15. According to the 

corresponding Q̂, the third group (items 9 – 13) based on three-dimensional model splits into 
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two attributes. Furthermore, item 6 “writing when someone watches” becomes associated 

with attribute three. Furthermore, we estimate the Q-matrix via SCAD. The estimates are 

summarized in Tables 16 that are similar to those of the L1 penalty.

We observe that the estimated slipping parameters are relatively large for some items (such 

as items 6, 9, 12 and 13) and their guessing parameters are small. These are the low 

prevalence items that are unlikely to be present even among the abnormal populations. On 

the other hand, if someone responds positively to that item, he/she is very likely to possess 

the corresponding disorder (attribute). This is reflected by the small guessing parameters.

6 Concluding remarks

This paper considers the estimation of Q-matrix that is a key quantity in the specification of 

diagnostic classification models. The results are two-fold. First, we present theoretical 

identifiability results of the Q-matrix for two stylized diagnostic classification models, the 

DINA model and the DINO model. A set of sufficient conditions is provided, under which it 

is theoretically possible to reconstruct the matrix based on only the dependence of the 

response patterns. The development of the theory is by means of the maximum likelihood 

estimation (MLE). Unfortunately, MLE, though consistent (under conditions), is not 

practically implementable due to the unaffordable computational overhead. Thus, the second 

objective is to present a computationally feasible estimator for Q. We formulate the Q-

matrix estimation to a latent variable selection problem and employ the regularized 

maximum likelihood as the main tool. The L1 penalty and the SCAD penalty are considered. 

For the optimization, we combine the expectation-maximization algorithm and the 

coordinate decent algorithm. Both are well studied numerical methods for optimization. The 

estimation procedure is applicable to most diagnostic classification models and is not limited 

to the DINA or the DINO model.

The performances of the two penalty functions are compared via simulation studies, in 

which SCAD penalty yields better results. However, in the analysis of the fraction 

subtraction data, SCAD yields results that are difficult to interpret, while the L1 penalty 

produces more interpretable Q-matrices. We believe that this is mostly due to the lack of fit 

of the DINA model. This data set in part illustrates the complications in the real data 

analysis for diagnostic classification models. Although the theory and estimation procedure 

do not require a prior knowledge of Q, we strongly recommend researchers should try to 

combine their knowledge in the subject matter and our inference tools. That is, our estimated 

Q-matrix serves as a guideline for the item-attribute association. Further refinement (such as 

choosing the regularization parameter or the penalty function) should rely on understanding 

of the items.

Throughout the discussion, the number of attributes (K) is assumed to be known. A natural 

extension is to estimate K simultaneously with other parameters. This can be done by 

introducing an additional penalty function added to the likelihood function. We leave this 

topic for future study.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 2

Proportion of entries correctly specified by Q̂ for the L1 regularized estimator averaging over all independent 

replications.

N = 500 N = 1000 N = 2000 N = 4000

K = 3 98.1% 99.6% 100.0% 100.0%

K = 4 97.7% 98.9% 99.6% 100.0%
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Table 5

Proportion of entries correctly specified by Q̂ (CR(Q̂)) for the SCAD estimator averaging over all independent 

replications.

N = 500 N = 1000 N = 2000 N = 4000

K = 3 99.9% 100% 100.0% 100.0%

K = 4 97.6% 99.9% 100.0% 100.0%
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Table 8

Proportion of entries correctly specified by Q̂ for the L1 regularized estimator averaging over all independent 

replications.

N = 500 N = 1000 N = 2000 N = 4000

ρ = 0.05 98.5% 99.7% 100.0% 100.0%

ρ = 0.15 99.2% 99.8% 100.0% 100.0%

ρ = 0.25 99.4% 99.9% 100.0% 100.0%
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Table 10

Proportion of entries correctly specified by Q̂ (CR(Q̂)) under the SCAD penalty averaging over all 

independent replications.

N = 500 N = 1000 N = 2000 N = 4000

ρ = 0.05 99.7% 100.0% 100.0% 100.0%

ρ = 0.15 100.0% 100.0% 100.0% 100.0%

ρ = 0.25 100.0% 100.0% 100.0% 100.0%
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Table 14

The content of 13 items for the social anxiety disorder data.

ID Have you ever had a strong fear or avoidance of

1 speaking in front of other people?

2 taking part/ speaking in class?

3 taking part/ speaking at a meeting?

4 performing in front of other people?

5 being interviewed?

6 writing when someone watches?

7 taking an important exam?

8 speaking to an authority figure?

9 eating/drinking in front of other people?

10 having conversations with people you don’t know well?

11 going to parties/social gatherings?

12 dating?

13 being in a small group situation?
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