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Abstract

There is evidence that epigenetic changes occur early in breast carcinogenesis; we hypothesized
that early life exposures associated with breast cancer would be associated with epigenetic
alterations in breast tumors. In particularly, we examined DNA methylation patterns in breast
tumors in association with several early life exposures in a population-based case-control study.
Promoter methylation of E-cadherin, p16 and RAR-/ genes was assessed in archived tumor
blocks from 803 cases with real time methylation-specific PCR. Unconditional logistic regression
was used for case-case comparisons of those with and without promoter methylation. We found no
differences in the prevalence of DNA methylation of the individual genes by age at menarche, age
at first live birth, and weight at age 20. In case-case comparisons of premenopausal breast cancer,
lower birth weight was associated with increased likelihood of E - cadherin promoter methylation
(OR =2.79, 95% Cl, 1.15-6.82, for < 2.5 vs 2.6-2.9 kg); higher adult height with RAR-£,
methylation (OR =3.34, 95% ClI, 1.19-9.39, for = 1.65 vs <1.60 m); and not having been breast
fed with p16 methylation (OR = 2.75, 95% CI, 1.14-6.62). Among postmenopausal breast
cancers, birth order was associated with increased likelihood of p16 promoter methylation. Being
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other than first in the birth order was inversely associated with likelihood of =1 of the 3 genes
being methylated for premenopausal breast cancers, but positively associated with methylation in
postmenopausal women. These results suggest that there may be alterations in methylation
associated with early life exposures that persist into adulthood and affect breast cancer risk.

early life exposure; breast cancer; epidemiology; epigenetics; promoter methylation

Introduction

There is evidence that fetal and early life exposures play a critical role in development of
breast cancer in adulthood (1). The development of the breast is a progressive process,
initiated in the embryonic period, continuing throughout childhood particularly during
puberty, with terminal differentiation during the first full-term pregnancy (2, 3). Age at
menarche and age of first live birth are well-established risk factors for breast cancer. Other
exposures related to the in utero environment including infant birth size (birth weight and
birth length), mother’s age at delivery, birth order, and mother’s pre-eclampsia may also
affect risk (4-6). There is some evidence suggesting an inverse association of exposure to
breast milk in infancy with breast cancer risk (7, 8). Childhood and adolescent body mass
index (BMI) also appear to be inversely associated with breast cancer risk (9, 10). Moreover,
there is a consistently positive association between height and breast cancer (1, 11). The
biological mechanisms underlying the observed associations are not clear; one possible
mechanism is that there are epigenetic alterations resulting from these exposures which play
arole in breast carcinogenesis.

Commonly found in human neoplasias, epigenetic alterations in response to early life
exposures may influence the risk of adult diseases (2, 12, 13) , including cancer. Both global
hypomethylation and gene-specific promoter hypermethylation are prominent features of
breast tumors (14). The E-cadherin, p16, and RAR/, genes are tumor suppressor genes
involved in key cellular processes including cell cycle regulation, cell-to-cell interaction,
hormone- and receptor-mediated cell signaling, apoptosis and angiogenesis (15). Promoter
methylation of these genes occurs frequently in breast cancer cell lines and breast tumors
(16-18). A recent animal study reported that in utero and lactational exposure to
environmental contaminants decreased expression of p16 gene and slightly increased
methylation of CpG sites in the promoter region of p16 in prepubertal female offspring rats
(19). In addition, there is both in vivo and in vitro evidence that prenatal and early postnatal
nutrition can influence patterns of DNA methylation and cause changes in gene expression
in the offspring (12, 13). In a study from the Netherlands, individuals periconceptionally
exposed to famine during the Dutch Hunger Winter of 1944-45 were found to have
persistent hypomethylation of IGF2 compared with their unexposed, same-sex siblings (20).
To our knowledge, there are no studies of the associations of early life exposures with DNA
methylation in breast tumors.
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To better understand the relationship of early life exposures with gene-specific promoter
hypermethylation in breast tumor, we evaluated DNA promoter methylation status of E-
cadherin, p16, and RAR/ genes in breast tumors in a population-based study.

Materials and Methods

Study population

Briefly, the Western New York Exposures and Breast Cancer Study (WEB Study) was a
population-based case-control study, including female residents of Erie and Niagara counties
in western New York State who were diagnosed with primary, histologically confirmed,
incident breast cancer between 1996 and 2001, and were 35-79 years of age. This report
includes data from cases only. Among 1,638 eligible cases, 1,170 (72%) participated. All
participants provided informed consent, and the protocol was approved by the Institutional
Review Boards of all the participating institutions.

Extensive in-person interviews and self-administered questionnaires were administered to
participants, including queries regarding demographics factors, family history of breast
cancer, medical history, alcohol drinking and smoking history, physical activity and other
breast cancer risk factors. Information on menstrual and reproductive history included age at
menarche, outcome and duration of each pregnancy, and age at each live birth. Participants
were also queried regarding their birth weight and whether they were breastfed by their
mother or not. Additionally, participants were asked to recall their body weight for each
decade of their lives from age 20 until 12—-24 months prior to diagnosis for cases. Current
height was measured by trained interviewers according to a standardized protocol.
Participants provided information on the age of their mother at the time of their birth and on
their place in the birth order in their families. Data included information on menstruation
and menopausal status. Women were considered postmenopausal if their menses had ceased
permanently and naturally, or if they had undergone any of the following conditions: a
bilateral oophorectomy, a hysterectomy without removal of the ovaries and were older than
50, or radiation or other medical treatment which resulted in permanent cessation of their
menses and were older than 55.

Information on tumor size, histological grade, and cancer stage was abstracted from medical
records by trained research nurses using a standardized protocol. Estrogen receptor (ER)
status was determined by a single pathologist, by immunohistochemical analysis as
described previously (21)

Tumor block promoter methylation determination

Archived tumor blocks were successfully obtained from 920 (78.6%) of all participant breast
cancer cases. Tumor samples were microdissected from fixed microscope slides. Bisulfite
modification was performed on 2ug of tumor DNA isolated from the dissected tissue in
accordance with methods described elsewhere (21, 22). Promoter methylation of E-
cadherin, p16, and RAR-/, was determined by the fluorescence-based version of
methylation-specific PCR using real time PCR amplification of bisulfite converted DNA in
an ABI 7900HT real time PCR system as previously described (21, 22). Briefly, each
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reaction contained 5 pl of Tagman Universal Master Mix, 4.5 ul of bisulfite-treated DNA
and 0.5 pl of a 60x assay by design premix containing the primers and probes that were
designed for each respective gene (Applied Biosystems, Carlsbhad CA); primers and probes
sequences were published previously (21). As a control to check for modified viable DNA,
we used an assay for the ACTB gene with primers and probes specifically designed for CpG
free sites within the gene sequence, thus amplifying the modified DNA regardless of the
methylation status. If the ACTB result was negative (i.e. no amplification signal was
detected), the DNA was not used in subsequent assays, and re-modification was attempted;
the other 3 genes were assayed only if ACTB was positive. Each individual DNA sample
was assayed in triplicate for each gene for quality control purposes. Additionally, as a
positive control, universally methylated DNA (CpGenome; Norcross, GA) was used along
with water blanks as a negative control. We had successful promoter methylation results for
803 cases.

Statistical analysis

Results

Early life characteristics of participating cases with and without promoter methylation of
each specific gene were compared using ANOVA for continuous variables and the 2 test
for categorical variables. Birth weight was classified into three categories: <2.5kg, 2.6—
3.9kg, and >3.9kg. Maternal age at delivery was categorized into three groups <25 years,
25-30 years, and =30 years. Tertile distributions among cases were used to categorize data
on age at menarche and adult height. Age at first birth was classified into three groups <23
year, 23-30 years, and =30 years among parous cases. Weight at age 20 year was divided
into two groups with a cutoff based on the median in controls.

Unconditional logistic regression was used for case-case comparisons of those with and
without promoter methylation to evaluate odds ratios (ORs) and 95% confidence intervals
(95% Cls) for the associations of early life exposures with the likelihood of promoter
methylation. All analyses were adjusted by age, education level, and race. Because we had
previously found an association of methylation with ER status (21), we also adjusted for ER
status. Potential confounding effect by PR status and other known risk factors of breast
cancer, including family history of breast cancer, were further examined, and no appreciable
confounding was observed. We also found that maternal age at delivery did not modify the
effect of both birth weight and birth order, and adjusting it categorically produced similar
results. Those results are not shown. We evaluated associations stratifying on menopausal
status. All statistical tests were based on two-sided probability. Statistical analyses were
conducting using SAS, Version 9.2 (SAS Institute, Cary, NC).

We previously reported case control associations between early life exposures and breast
cancer (10). Analyses here were limited to case-case comparisons in relation to DNA
methylation.

Demographic characteristics of cases with and without promoter methylation of E -
cadherin, p16, and RAR-/, genes have been shown in detail elsewhere (22). Briefly, there
were no differences in the methylation frequency by age at diagnosis, race, education,
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menopausal status, age at menopause, and recent body mass index (BMI). Table 1 shows
comparisons of cases with and without promoter methylation of the three genes for early life
exposure factors. After adjusting for current age, cases with promoter methylation of E -
cadherin gene were younger age at first birth than those without methylation of this gene.
There were no differences in other early life exposure factors comparing cases with or
without methylation of E - cadherin, p16, or RAR-5 genes.

Likelihood of promoter methylation in premenopausal breast tumors by early life exposures
are shown in Table 2. There was increased likelihood of tumors with E — cadherin
methylation among those with lower birth weight (<2.5 kg) compared to average birth
weight (2.6-3.9 kg) (OR = 2.79, 95% ClI, 1.15-6.82). Compared to those who had been
breastfed, there was increased likelihood of methylation for p16 gene in premenopausal
tumors of cases who had not been breastfed (OR = 2.75, 95% Cl, 1.14-6.62). There was a
reduction of likelihood of p16 methylation among participants reporting maternal age at
delivery between 25-30 years compared to those with earlier maternal age at delivery (OR =
0.41, 95% ClI, 0.18-0.90). Additionally, adult height was associated with increased
likelihood of RAR-/%, methylation, the adjusted OR and 95% CI for the comparison of the
highest compared to the lowest tertile was 3.34 (95% Cl, 1.19-9.39). There was no
association of birth order of the participant in her family, her own age at menarche, age of
first live birth, or weight at age 20 with the likelihood of promoter methylation of E —
cadherin, p16, or RAR-/% gene in premenopausal breast tumors.

Table 3 shows results among postmenopausal women. There was greater likelihood of p16
promoter methylation associated with being other than first born in the birth order (OR =
1.78, 95% Cl, 1.17-2.70). Age at first live birth between 23-29 years was associated with
reduced likelihood of E — cadherin methylation, while age at first live birth = 30 years was
not associated with likelihood E — cadherin methylation. There were no association of the
likelihood of RAR-% methylation with any of the early life exposures; case-case
comparisons were generally close to the null.

In addition, we investigated the associations of those early life exposure factors with the
likelihood of promoter methylation in at least one of the three genes in tumors stratified on
menopausal status (Table 4). Among premenopausal cases, adult height was associated with
increased likelihood of tumors with promoter methylation of at least one gene (OR = 2.88,
95% Cl, 1.25-6.61, for the highest vs lowest tertile). Among premenopausal cases, being
other than first born was associated with reduced likelihood of promoter methylation of at
least one gene (OR = 0.38, 95% CI, 0.19-0.77); while a positive association between birth
order and likelihood of promoter methylation in at least one gene (OR= 1.77, 95% ClI, 1.23-
2.55, for being other than first born compared to first born) was observed among
postmenopausal breast cases. Additionally, among postmenopausal breast cases, there was
an inverse association between age at first live birth and likelihood of promoter methylation
in at least one gene (OR = 0.51, 95% ClI, 0.27-0.97, for age at first live birth =30 vs <23
years). Other early life exposures were not associated with the likelihood of promoter
methylation in at least one of the three genes in tumors both pre- and postmenopausal
women.
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Discussion

To our knowledge, this study is the first to assess associations of early life exposures with
promoter methylation in breast tumors in a large population-based study. We found positive
associations between lower birth weight and E — cadherin promoter methylation, between
not having been breastfed and p16 promoter methylation, and between adult height and
RAR-/ methylation in premenopausal breast tumors. Among postmenopausal cases, being
other than first born was positively associated with the likelihood of p16 promoter
methylation. The likelihood of promoter methylation of the individual genes, E - cadherin,
pl16, or RAR-/ did not differ by maternal age at delivery, age at menarche, age of first live
birth, and weight at age 20 year in either strata of menopause. While none of the exposures
we studied was consistently associated with alterations of all three of the genes studied, our
findings suggested changes in methylation for individual genes in association with particular
exposures.

Unlike most organs where most development occurs during embryogenesis and the early
postnatal period, development of the breast occurs from the in utero period, to infancy
through puberty (2); breast tissue is not fully differentiated until after the first full-term
pregnancy (2, 3). Therefore, prenatal and early life exposures might influence susceptibility
to breast cancer in adulthood. Most previous studies found a positive association between
higher than average birth weight and risk of premenopausal breast cancer (4-6, 9). However,
results from several studies also suggested increased breast cancer risk associated with lower
than average birth weight (<2.5 kg or 5.5 pounds), particularly in young women (4, 23, 24).
Birth weight, a proxy for intrauterine environment, has been linked with maternal hormones
and other maternal exposures, including nutrition, alcohol and tobacco smoking.

There is evidence that early life exposures may impact methylation in tissues. Recent studies
reported a significant correlation between global LINE-1 methylation in cord blood and low
birth weight (25). Maternal smoking during pregnancy is strongly associated with increased
risk of low birth weight (26), and has been found to be inversely associated with genomic
DNA demethylation in adulthood (27). Results from the Children’s Health Study showed
that children exposed to prenatal tobacco smoke had significantly increased promoter
methylation of AXL and PTPRO genes (28). Poor maternal nutrition or reduced intake of
micronutrients during gestation could also contribute to low birth weight (20, 29); animal
studies have shown histone modification and aberrant DNA methylation of different genes
in rats exposed to intrauterine under-nutrition (30). In the current study, we observed an
association between lower birth weight and increased likelihood of E — cadherin promoter
methylation in premenopausal breast tumors. These data support the hypothesis that prenatal
environment/ development may lead to aberrant DNA methylation, and further influence
adult disease risk.

We found that not having been breastfed was significantly associated with increased
likelihood of p16 promoter methylation in premenopausal breast tumors. Some studies have
found an inverse association between being breastfed in infancy and premenopausal breast
cancer risk (7, 10, 31), while others have not (32-34). A protective effect associated with
breastfeeding in infancy may be partly related to exposure to growth factors, enzymes and
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hormones in breast milk (35). Early introduction of cow milk proteins (complementary
feeding) has been proposed to induce intestinal mucosa inflammation and increase gut
permeability (36). Inflammation has been found to alter the DNA promoter methylation
pattern and critical gene regulation in several studies (37, 38). The mechanism by which
early life exposure to breast milk and/ or complementary feeding may influence breast
cancer risk in adulthood is still unclear. Further studies, including animal studies, are needed
to examine the association of not being breastfed in infancy with aberrant DNA methylation.

Several previous studies found inverse associations of birth order and breast cancer risk,
either overall or among premenopausal women (4, 39). Hormonal levels varying according
to parity may explain the potential associations, estrogen levels appear to be lower during
successive pregnancies compared to first pregnancies (4). There is growing evidence that
higher estrogen or xenoestrogen exposure during early life could induce aberrant DNA
methylation (13, 40). In the current study, we found reduced likelihood of promoter
methylation of at least one gene with being other than first born among premenopausal
women, possibly related to this difference in estrogen exposure. However, the possible
explanation for different finding for postmenopausal women is not known.

Adult height is due in part to childhood nutrition and health (41). Childhood malnutrition
can influence DNA methylation, impacting nutrients involved in one-carbon metabolism (2).
Hughes et al (42) found that individuals exposed to famine during early life (adolescence
and early adulthood) had decreased risk of developing a CpG island methylator phenotype
(CIMP) colorectal tumor later in life, and the degree of hypermethylation was inversely
associated with early life exposure to energy restriction. Height is also influenced by genetic
factors (43). We found that greater adult height was associated with increased likelihood of
RAR-/ promoter methylation in premenopausal tumors; findings did not appreciably change
with adjustment for maternal height (data not shown).

As for any study of this kind, our results need to be considered in the context of the strengths
and weaknesses of the data. The strengths of our study include the population-based study
design, a relatively large sample of archived tumor tissues, measurement of anthropometric
factors by trained interviewers, and detailed information on possible confounders and
disease characteristics. However, several limitations should be considered. While the
number of tumor blocks available for our study was large, the statistical power in some
subgroups of our study remained limited, reducing our ability to identify weak associations.
Another concern was that our inability to obtain paraffin-embedded tumor tissues for all
breast cancer cases may have led to a selection bias; however, cases with and without breast
tumor tissue had similar distributions of early life exposure factors. Additionally, there were
similar distributions of early life exposure factors between cases with tumor tissue but no
methylation results and cases with tumor tissue and methylation results. There may have
been errors in self-reported early life exposures. There is evidence that there is not much
bias in recall of reproductive history in case-control studies of breast cancer (44). In our
study, participant’s birth certificates were also collected for 80 women as a validation of
self-reported birth weight; reports by the study participants were well correlated with birth
certificate data (r = 0.62) (10). Furthermore, our previous results on associations of breast
cancer risk with perinatal exposures have been consistent with other studies (1, 10). It is
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unlikely that recall of early life exposures would be related to gene promoter methylation;
these case-case comparisons may be affected by misclassification but are not likely affected
by biased recall. There may be confounding of other unmeasured factors. In particularly, we
did not have information on maternal or paternal education. Further studies in other
populations are needed to confirm our findings and to elucidate the underlying biological
mechanisms.

There are some concerns with limitations of the measurement of methylation. We examined
methylation for three genes that are known to be frequently methylated in breast tumors and
are known to be significant in three important pathways in breast carcinogenesis. However,
we clearly are limited by the study of a small number of genes. Expansion of our findings to
a large number of genes or imprinted genes will be important. Furthermore, the
methodology used in our study was limited to examination of a single CpG island in the
promoter regions. It is assumed that these single regions are sentinels for gene silencing and
methylation of other CpG islands, especially in tumors; but it is possible that in some
women, these genes are hypermethylated in CpG sequences that we did not study. Finally,
we used real-time methylation-specific PCR to assess promoter methylation that can
increase the specificity of the PCR by interrogating more than one CpG. More specifically,
we used a fluorescence-based version of the methylation-specific PCR technique because of
its increased throughput by eliminating the need for gel electrophoresis (45). This method
has been found to be 10 times more sensitive than the classic methylation-specific PCR
method and able to detect methylated sequences from an excess of 10,000-fold
unmethylated alleles (45). Although we are aware of the limitation of this technique given
its qualitative nature compared with other quantitative methods, such as pyrosequencing and
the fact that it interrogates a limited number of CpG sites, we have followed stringent
quality control criteria to ensure confidence in results. Moreover, recent findings showed
that results from methylation-specific PCR are highly correlated with other quantitative
methods. By using the highly specific real time methylation-specific PCR, it is likely that
our results would be reproduced by other methods (46).

Results from our study support the hypothesis that perinatal and early life exposures may
impact DNA methylation thereby influencing development of breast cancer in later life.
Replication in other populations and the exploration of methylation of a larger number of
sites are necessary to better understand this finding of potential significance in
understanding the mechanism for exposures in early life and breast cancer risk.
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