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Abstract

Objective—Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation 

technique to modify neural excitability. Using multi-array tDCS, we investigate the influence of 

inter-individually varying head tissue conductivity profiles on optimal electrode configurations for 

an auditory cortex stimulation.

Approach—In order to quantify the uncertainty of the optimal electrode configurations, multi-

variate generalized Polynomial Chaos (gPC) expansions of the model solutions are used based on 

uncertain conductivity profiles of the compartments skin, skull, gray matter, and white matter. 

Stochastic measures, probability density functions, and sensitivity of the quantities of interest are 

investigated for each electrode and the current density at the target with the resulting stimulation 

protocols visualized on the head surface.

Main results—We demonstrate that the optimized stimulation protocols are only comprised of a 

few active electrodes, with tolerable deviations in the stimulation amplitude of the anode. 

However, large deviations in the order of the uncertainty in the conductivity profiles could be 

noted in the stimulation protocol of the compensating cathodes. Regarding these main stimulation 

electrodes, the stimulation protocol was most sensitive to uncertainty in skull conductivity. 

Finally, the probability that the current density amplitude in the auditory cortex target region is 

supra-threshold was below 50%.

Significance—The results suggest that an uncertain conductivity profile in computational 

models of tDCS can have a substantial influence on the prediction of optimal stimulation protocols 

for stimulation of the auditory cortex. The investigations carried out in this study present a 
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possibility to predict the probability of providing a therapeutic effect with an optimized electrode 

system for future auditory clinical and experimental procedures of tDCS applications.

1. Introduction

Transcranial direct current stimulation (tDCS) is a non-invasive method, which modulates 

cortical excitability in the human brain [1]. The standard tDCS electrode configuration 

consists of two relatively large electrodes attached to the scalp, with the active electrode 

(anode) to be placed above the presumed target region. Computer simulation studies of the 

induced current flow pattern in detailed MRI-derived finite element (FE) head models 

demonstrated that the cortical current flow pattern is rather broad with often maximal 

stimulation in non-target brain regions [2, 3]. In order to overcome these limitations of 

standard electrode configurations, algorithm-based current flow optimization approaches 

using multiple electrodes have been developed [4, 5]. The aim of current flow optimization 

approaches is to optimize the focality, orientation, and/or intensity of current density at a 

target location while minimizing current density in non-target brain regions. In general, a 

point electrode model (PEM) is used to simulate the stimulation electrodes, i.e. they are 

identified by a point on the head surface. An alternative approach is to use a complete 

electrode model (CEM), which incorporates shunting effects and contact impedances 

between the electrode and the head model resulting in non-uniform current density 

distributions at the electrode-head-interface [6, 7, 8]. Recently performed computer 

simulations on tDCS have shown that main differences between CEM and PEM are situated 

locally around the electrodes but are only subtle in brain regions [9]. Taking into account 

Helmholtz reciprocity, the reported results were in agreement with a simulation study 

comparing PEM and CEM for source analysis and reconstruction in electroencephalography 

(EEG) modeling [10]. Both studies suggest that the application of PEM in the current study 

allows for a sufficiently accurate modeling of the current density within brain regions 

compared to CEM. Nevertheless, optimization procedures strongly rely on accurate and 

detailed MRI-derived individual head models. While a guideline for efficient yet accurate 

volume conductor modeling in tDCS has been presented [2], the influence of inter-

individually varying conductivity profiles is rather unclear.

The electrical conductivity of the skull, skin, and brain tissue are based on experimental data 

and are subject to uncertainty in literature [11, 12, 13, 14]. This uncertainty arises from 

difficulties associated with the measuring process such as electrode polarization at low 

frequencies, changes in the conditions of the tissue samples postmortem, and inter-

individual variations. In general, determining the influence of uncertain model parameters 

on the stimulation protocol utilizes stochastic methods, such as Monte Carlo simulation 

(MCS), which allow for the investigation of the model output statistics by computing a large 

number of model realizations [15]. Since the deterministic model is computationally 

expensive, MCS is often not practicable. To reduce the number of required model 

realizations, the generalized polynomial chaos technique (gPC) is applied, which determines 

a simply evaluable surrogate model by using the deterministic model as some kind of a 

“black-box”. The method was already successfully applied in previous studies regarding 

bio-electrical applications [16, 17] and is enhanced in this study to allow for a more accurate 

computation of the model output statistics based on the approach proposed in [18]. The gPC 
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expansions of the quantities of interest can be used to compute their sensitivity on the 

uncertain conductivity of each brain tissue type as well as sensitivity arising out of their 

interactions. This global sensitivity analysis is carried out using Sobol’ indices, which 

describe the conditional variances of the quantities of interest [19].

This study aims at the uncertainty quantification of the optimal electrode configuration of a 

multiple electrode setup for auditory cortex stimulation, which will allow for an assessment 

of the robustness of the optimal electrode configuration. Based on the uncertainty in the 

conductivity of skin, skull and brain tissue, a multi-variate gPC expansion will be used to 

compute the stochastic measures, probability density functions, and sensitivity of the 

quantities of interest. These measures will allow for a recommendation on the optimal 

configuration of the stimulation electrodes as well as “risk margins” for the used stimulation 

intensities.

2. Methods

2.1. Modeling Transcranial Direct Current Stimulation

For this study, a high-resolution realistically-shaped hexahedral finite element head model 

of a healthy 26-year-old male subject is generated from T1- and T2-weighted magnetic 

resonance images [2]. Segmentation into tissue compartments skin, skull, cerebrospinal fluid 

(CSF), gray matter, and white matter is performed using FSL [20]. The mesh generation is 

carried out by using the freely-available software SimBio-VGRID ‡ (see Wagner et al [2] 

for further details).

For modeling the current density vector fields, the quasi-static approximation to Maxwell’s 

equations is applied. This leads to a Laplace equation ∇·σ∇Φ = 0 with inhomogeneous and 

homogeneous Neumann boundary conditions at the electrode surfaces and at the remaining 

model surface, respectively [2]. This partial differential equation is referred to as the tDCS 

forward problem in the following. The finite element method (FEM) yields a sparse linear 

equation system Ku = b with K ∈ ℝN×N being the FE stiffness matrix, u ∈ ℝN being the 

solution vector comprising the electric potential at the discretized nodes of the volume 

conductor model, and b ∈ ℝN being the right-hand side vector with non-zero values only at 

the discretized boundary nodes of the electrode surfaces. Linear ansatz functions for the 

corresponding components uk, k = 1, …, N of the solution vector u are used to approximate 

the electric potential Φ in the volume conductor model. An algebraic multigrid 

preconditioned conjugate gradient solver is used to solve the large sparse equation system in 

a geometry-adapted hexahedral FE model with approximately N = 2.2 million degrees of 

freedom [2]. For the solution of the equation system, we used a residual error of 10−7. The 

resulting current density distribution J = σ∇Φ is computed using the solution vector u.

An electrode array consisting of 74 fixed electrode locations (the locations of an extended 

10/10 EEG system) is used for auditory cortex stimulation. The auditory target was chosen 

in this study, because of its potential clinical relevance for tinnitus treatment. Experimental 

studies on human patients were able to demonstrate that anodal stimulation of the left 

‡The SimBio-Bgrid mesh generator http://vgrid.simbio.de/
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temporoparietal cortex resulted in a reduction of tinnitus [21, 22]. Figure 1 shows a three 

electrode setup for auditory cortex stimulation with a total current of 1mA injected to the 

anode and two negative currents of 0.5mA injected to the cathodes. The stimulation setup 

has thus not been optimized.

For the optimization of the stimulation protocols, the full multi-channel tDCS electrode 

array is used. In order to estimate the tDCS influence matrix A = [A1, ⋯, AS−1] ∈ ℝ3N×(S−1) 

the first electrode is selected as a reference, resulting in 73 pairs of surface electrodes. For 

each pair, the boundary condition consists of a unit current applied to electrode i and a 

negative unit current applied to the reference electrode. The FEM yields a solution Φi to the 

tDCS forward problem and the matrix Ai = σ∇Φi is computed via fast Fortran routines 

implemented in SimBio § (see [2] for further details).

2.2. Optimization Scheme

The optimized stimulation protocols are computed by using the alternating direction method 

of multipliers (ADMM) [23]. The constrained optimization problem is formulated by

(1)

with s ∈ ℝS−1 and sref being the optimized stimulation protocol at the non-reference 

electrodes and the resulting stimulation at the reference electrode, respectively, e ∈ ℝ3N 

being the target vector with non-zero entries only at the target, ε ∈ ℝ3N with entries εi = 

0.001 Am−2 for i = 1, …, 3N being the threshold vector and β = 0.001. Since the product of 

the tDCS influence matrix A with the stimulation protocol s describes the optimized current 

flow field in the volume conductor model, the term ∫Ω 〈As, e〉 dx is maximal when the 

induced current density distribution is parallel to the target vector e.

In order to fulfill safety of stimulation and to minimize the current density in non-target 

regions, the state constraint |As| ≤ ε is introduced with ε set larger in the target region than in 

non-target regions. Secondly, the condition ‖s̃‖1 ≤ 4, which describes the L1–norm of s̃, 

limits the total current. The total current is defined as the sum of all positive currents, 

applied in the stimulation protocol to 2 mA, in line with [4]. For all optimizations, the 

software package MATLAB® ‖ is used.

§SimBio: A generic environment for bio-numerical simulations www.simbio.de, www.mrt.uni-jena.de/simbio.
‖www.mathworks.com
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For appropriate estimation of the target location and orientation e, the auditory cortices of 

the subject are localized in combined 74-channel EEG and 274-channel MEG experiments. 

To localize the auditory N1 component and to obtain its orientation correctly, a source 

analysis of simultaneously measured auditory evoked fields (AEF) and potentials (AEP) is 

performed by using the following experimental setup: 350 Hz sinusoidal tones with 800 ms 

duration and a stimulus onset asynchrony of 3.5 – 4.5 s in order to avoid habituation, overall 

120 trials, are presented. After pre-processing, a two-dipole fit (one dipole in each 

hemisphere) for the rising flank of the N1 component from the averaged and combined AEF 

and AEP is computed by using the neuroimaging software CURRY ¶. By combining the 

AEF and AEP, the orientation of the auditory cortex target vector was mainly radial to the 

cortical surface.

2.3. Uncertainty Quantification Using Polynomial Chaos

The uncertainty in the model parameters results in an uncertainty in the quantities of interest, 

e.g., the optimal stimulation amplitude for each electrode. The quantification of the 

uncertainty in these quantities is carried out using the generalized Polynomial Chaos 

technique (gPC). This method expands a model output Y into a series of multi-variate 

orthogonal basis functions ψ(ξ):

(2)

The basis functions depend on the standard uniformly distributed random variables ξ = (ξ1, 

…, ξM), which are also connected to the random model parameters X = (X1, …, XM) by a 

transformation depending on their probability distributions. For uniformly distributed 

random variables, the optimal choice of basis functions ψ(ξ) is formed by the product of 

Legendre Polynomials, whose degrees in each dimension are stored in a multi-index α(i) 

[15]. The coefficients cj depend on the response of the model output Y on the random model 

parameters X and can be computed by projecting the truncated equation (2) on each basis 

function. The resulting integral is solved using numerical integration, which requires the 

evaluation of the model output at a number N of quadrature nodes [24]. In general, tensor 

grid quadrature rules are applied, which result in an exponential growth of the required 

quadrature nodes with the number M of random model parameters. To reduce this “curse of 

dimensionality”, Smolyak sparse grids SG(L,M) can be directly applied to the integral 

formulation of the coefficients, which are explained in detail in previous studies where they 

were already used for the uncertainty quantification in the modeling of deep brain 

stimulation [16, 17, 25]. The sparsity of these grids depends on the underlying quadrature 

rule and can be increased by using nested grids where the level L determines the maximum 

number of nodes in each dimension to be n(l) = 2l + 1, l = 1, …, L. This non-intrusive 

method integrates all coefficients exactly for basis functions satisfying the condition ‖α(i)‖1 

≤ p with the expansion order p = L, which determines also the number of basis functions P at 

which (2) is truncated [16].

¶www.compumedicsneuroscan.com
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This strict condition is required to ensure the exclusion of aliasing errors for higher order 

polynomial degrees, resulting in a loss of their orthogonal property as presented in [18]. The 

authors of the mentioned study proposed an alternative approach, which overcomes this 

limitation and allows for an optimal use of the quadrature nodes to integrate higher order 

polynomial degrees called sparse pseudo-spectral approximation method (SPAM). Instead 

of directly applying the integral formulation of the coefficients to the sparse grid SG(L,M), 

gPC expansions (2) for each tensor-product sub-grid of the used sparse grid are computed. 

The algorithm, which linearly combines the sub-grids to the sparse grid formulation, is used 

to compute the linear combination of the previously computed gPC expansions. Therefore, 

SPAM allows for expansion orders p in each dimension up to an optimal degree d(p) = 2p−1 

without increasing the number of required quadrature nodes. To ensure its functionality, the 

implemented MATLAB version of this method was validated using several multi-variate 

analytical test functions based on those used in [18].

2.4. Modeling of the Tissue and Skull Conductivities

The upper and lower resistivity values for the skin, gray and white matter compartments 

were selected to be identical to those used in [12, Table 6.2], who used upper and lower 

bounds of approximately ±50% of the mean resistivity to investigate changes in 

neuromagnetic fields due to variations in the resistivity. The upper and lower conductivity 

values for the skull compartment were set to the minimum (1.6 mS m−1, [26]) and maximum 

(33.0 mS m−1, [27]) value out of 11 different conductivity parameters used in a 

computational study on the reconstruction of epileptic activity by combined EEG and MEG 

source analysis [28]. Table 1 presents an overview of the conductivity values (σ = r−1 with r 

being the resistivity of the compartment) with the mean of each compartment computed with 

respect to its upper and lower values that were used in this study. The relative deviation is 

determined between the minimum (maximum) value and the mean value and normalized to 

it. Figure 2 shows the effect on the current density in the target area for different values of 

white matter conductivity with the remaining parameters set to their respective mean values 

(note especially the resulting different orientation components at the target).

Baumann et al [29] measured the conductivity of the human CSF compartment at body 

temperature to be 1.79 S m−1 (averaged over 7 subjects, with a standard deviation of less 

than 2.4 %). Based on the values in Table 1, the conductivity of skin, skull, gray and white 

matter was modeled as uniformly distributed random variable. The use of uniform 

probability distributions accounts for the lack of data on these conductivity values in 

literature and models a ”worst-case” scenario, in which each conductivity value within the 

upper and lower boundaries is equally probable. In case of uniformly distributed model 

parameters, a simple linear transformation can be applied to map the model parameters X 
onto the random variables ξ and vice versa.

2.5. Global Sensitivity Analysis Using Sobol’ Indices

For the quantification of uncertainty in the model outputs, it is not only of interest how large 

this uncertainty is, but also which uncertain model parameters contribute in which manner to 

it. In addition to the sensitivity to each single model parameter, the sensitivity arising from 

the multivariate influence of the model parameters may result in interaction effects, which 
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are not apparent by only evaluating the isolated uni-variate effects. These global sensitivities 

can be described by conditional variances i, …, j), which determine the sensitivity of a 

model output to the model parameters Xi, …, Xj as well as their interactions. The relative 

conditional variances, which are normalized to the total variance of a model output, are 

called Sobol’ indices:

(3)

The Sobol’ indices form a Sobol’ decomposition of the variance of a model output, which is 

unique in case of an orthogonal basis [19] and can be simply derived from evaluating the 

coefficients of a multivariate gPC expansion [17]. To investigate if all uncertain model 

parameters have to be considered in the uncertainty quantification process, the effect of each 

model parameter is identified in a first screening to examine if its influence is comparatively 

small. For this purpose, the first order Sobol’ indices derived from the uni-variate gPC 

expansions for each random model parameter are used.

3. Results

Based on the results of the first screening of the model response determined by the uni-

variate gPC expansions and the first order Sobol’ indices, the possibility to reduce the 

number of crucial random model parameters for the multi-variate gPC expansions were 

identified. The quantities of interest for the investigation of the appropriate expansion orders 

of the gPC expansions were chosen to be the stimulation amplitudes at those stimulation 

electrodes with a mean value greater than 100 µA as well as on the components of the 

current density at the stimulation target. An expansion order of p = 4 was required to reduce 

the relative error in the variance of the quantities of interest below 1 %. For those uni-variate 

gPC expansions, the effect of each tissue conductivity on the amplitudes at the chosen 

stimulation electrodes was determined (see Figure 3). The effect is defined as normalized 

relative standard deviation of the quantity of interest with respect to that of the model 

parameters. The largest effects on the stimulation amplitudes were noticeable for skull, gray 

matter, and white matter conductivity with a large variation among the chosen stimulation 

electrodes. Regarding the effect on the current density, the largest effects were on the z-

component for gray matter and white matter conductivity, while those for skin and skull 

conductivity were similar in all components (see Figure 4). Especially for the white matter 

compartment, the effect on the current density was prevalent on the z-component, while the 

effect on the x- and y-components was comparatively small. These variations and the 

magnitudes of each effect on the stimulation amplitudes as well as on the components of the 

current density necessitated for a consideration of all four model parameters in the 

computation of the multi-variate case. Based on the convergence results of the uni-variate 

gPC expansions, the multi-variate gPC expansion was computed up to an expansion order p 

= 4, which required the evaluation of the deterministic model at a number of 401 parameter 

samples.

To estimate the probability density functions of the stimulation protocol and the current 

density at the target, Monte Carlo simulation (MCS) for 1 million random samples was 
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applied on the determined multi-variate gPC expansion. Figure 5 displays the stimulation 

protocols consisting of the lower 2.5% quantile, the mean value, and the upper 97.5% 

quantile of the probability density function for each electrode (upper row) and the 

probability density function of the three main stimulation electrodes T8, FC6 and FT8 for 

the expansion order p = 3 and p = 4 (lower row). The mean value is depicted by a solid 

black line and the percentage values show the deviation of the lower and upper quantiles to 

the mean value. As can be seen in the Figure, the probability density functions are sharp and 

show a good agreement for expansion orders p = 3 and p = 4, while minor differences can be 

seen especially at the peaks of the probability density functions. This result suggests that an 

expansion order of p = 3 was sufficient to approximate the statistics of the investigated 

quantities of interest. Moreover, the probability density function of electrode T8 was fairly 

symmetric, whereas an asymmetric behavior can be seen for the FC6 and FT8 electrodes. 

This asymmetric behavior was mutually opposed for both electrodes, resulting in larger 

deviations for larger stimulation amplitudes for electrode FC6 and smaller stimulation 

amplitudes for electrode FT8. With deviations up to 127.4 % and 55 %, the values for the 

lower and upper quantiles for electrodes FC6 and FT8 showed substantially larger 

deviations to the mean values as compared to electrode T8.

As can be seen in Figure 5 (upper row), the stimulation protocols for the auditory target 

showed great focality and are mainly comprised of three electrodes, an anodal stimulation 

(i.e. positive stimulation) at electrode location T8 and two cathodal stimulations (i.e. 

negative stimulation) at electrode locations FC6 and FT8. Moreover, in order to minimize 

the current density in non-target regions, the optimization algorithm injected weaker 

compensating currents at neighboring electrodes, especially at electrodes TP8, F8, F6 and 

FC4.

The probability density function of the current density norm showed an asymmetric 

behavior with a smaller deviation of the lower 2.5% quantile compared to that of the upper 

97.5% quantile (see Figure 6). To ensure that the chosen expansion order was sufficient to 

accurately approximate the behavior of the uncertainty in the current density norm, the 

probability density function was also computed for a lower expansion order. The evaluation 

of the lower and upper quantile resulted in an uncertain interval for the current density norm 

ranging from less than half to more than twice the mean value.

To compare the influence of the uncertainty in the tissue conductivities on the stimulation 

protocol of the main anode and cathode electrodes, the lower quantile, upper quantile, and 

mean value of the stimulation amplitudes applied to these electrodes with a mean greater 

than 200 µA were computed (see Figure 7). While the uncertainty in the stimulation 

amplitude of the main anode T8 showed an almost symmetric behavior with a deviation of 

approximately 14% and 13% for the lower and upper quantile, respectively, the stimulation 

amplitudes at the compensating main cathodes FC6, FT8, and TP8 revealed an asymmetric 

behavior with comparatively large deviations. With decreasing stimulation amplitudes of the 

compensating electrodes, these deviations decreased as well, but were still larger than those 

for the main anode T8.

Schmidt et al. Page 8

J Neural Eng. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The investigation of the Sobol’ indices for the sensitivity analysis of the stimulation 

amplitudes of the three main electrodes revealed that the stimulation protocol for each 

electrode is not necessarily influenced by the uncertain brain tissue conductivities in the 

same extent. In Table 2, the first order Sobol’ indices as well as the higher order Sobol’ 

indices with values larger than 1% are shown. The first order indices represent the 

sensitivity of the stimulation amplitude at the specified electrodes with respect to each single 

uncertain tissue conductivity. Beyond that, the higher order indices allow for an 

investigation of interaction effects, where only the combination of multiple uncertain 

parameters results in an uncertain stimulation amplitude. While the stimulation amplitudes 

at the two main cathodes were most sensitive to uncertainty in the skull conductivity, those 

at the main anode was influenced at most by the uncertain conductivity of skull as well as 

white matter in a similar intensity (see Table 2). Furthermore, the stimulation amplitude at 

the anode showed a sensitivity to the combined uncertainty in the conductivity of skin and 

skull as well as skull and gray matter. The sum of the first order and listed second order 

Sobol’ indices for the specified anode and cathodes are larger than 97.5 %, which suggests 

that the uncertainty in the resulting stimulation protocol can be described almost entirely by 

those random parameter combinations.

4. Discussion

The objective of this study was to investigate the influence of inter-individually varying 

conductivity profiles on optimal electrode configurations for an auditory cortex stimulation 

using a multi-array transcranial direct current stimulation (tDCS). A realistic five-

compartment finite element head model was generated and the alternating direction method 

was used for numerical realization of the considered optimization problem (1). In order to 

quantify the uncertainty of the optimal electrode configurations, a multi-variate generalized 

Polynomial Chaos (gPC) expansion was used and the stochastic measures, probability 

density functions and sensitivity of the quantities of interest were investigated. Moreover, 

the lower 2.5 % quantile, the mean value, and the upper 97.5 % quantile of the probability 

density function of the optimal electrode configurations and the resulting stimulation current 

throughout the head domain were computed and visualized using the software package 

SCIRun+.

To obtain a sufficient accuracy in the investigated quantities of interest, uni-variate gPC 

expansions for each uncertain model parameter were computed to control the approximation 

error in each dimension. The number of required model realizations for the uni-variate 

expansions as well as those for the multi-variate expansion resulted in a total number of 465 

deterministic samples. For the estimation of the probability density functions of the quantity 

of interests, Monte Carlo Simulation (MCS) with 1 million random samples applied to the 

computed gPC expansions was used. A computation of the uncertainty in these quantities 

using, for example, the classic MCS directly on the computationally expensive deterministic 

model would have required a comparatively large number of random model realizations to 

provide a sufficient accuracy [15]. Considering the computation time for one model 

realization of approximately 80 min (approx. 60 min for the 73 forward problems to 

+http://www.sci.utah.edu/cibc-software/scirun.html
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compute the matrix A in equation (1) and 20 min for the inverse optimization), the use of 

MCS for the uncertainty quantification would have taken an excessive amount of computer 

resources and time. Therefore, the applied gPC method allowed for a computation of the 

uncertainty in the stimulation protocol and the current density at the target in a reasonable 

time by distributing the computational load on common workstations.

For the auditory target vector, a large variability of the effect of each tissue conductivity on 

the stimulation amplitudes of the electrodes can be noted (see Figure 3), which is in 

agreement with the stochastic measures of the multi-variate gPC expansions of the 

stimulation protocol visualized in Figure 7. Both Figures show a trend of larger deviations of 

likely higher stimulation amplitudes compared to their respective mean values. Since all 

mean effects were between 0.20 and 0.43 with maxima between 0.46 and 0.91, the 

investigation of the effect based on the uni-variate gPC expansions did not allow for the 

exclusion of one random parameter by treating it as deterministic. A similar effect 

characteristic was noticeable for the investigation of the current density (see Figure 4). 

However, the effect regarding white matter conductivity showed a different behavior, with a 

dominant effect in its z-component. A possible explanation for this behavior is given in the 

following paragraph.

As can be seen in Figure 1, the auditory target vector was located on a gray matter gyrus. 

The distance to the nearest white matter region into the z-direction was below 2 mm. The z-

coordinate of the target vector was thus oriented along the vertical axis and oriented from 

the white matter compartment to the gray matter compartment. When decreasing the white 

matter conductivity while keeping the conductivity values of the other compartments 

constant, stronger current densities were noticeable in the gray matter compartment, in line 

with Wagner et al [2]. This implies that in case of a low white matter conductivity, weaker 

currents were flowing from the gray matter into the white matter, resulting in very weak 

current densities in this compartment. Because the z-component of the auditory target vector 

was pointing from white matter to gray matter and most of the target current density was 

conducted through the gyrus when considering a low white matter conductivity, the 

orientation of the current density at the target changed substantially, leading to a very weak 

z-component. Therefore, the higher the white matter conductivity, the less current density 

was noticeable in the gyrus, resulting in an increased z-component of the target current 

density. Because the distance of the target vector to the nearest white matter element into the 

x- and y-direction was larger than 10 mm, the x- and y-components of the target vector 

remained nearly identical when decreasing the white matter conductivity. This demonstrates 

that for the white matter compartment the effect on the current density was dominated by the 

z-component, while the effect on the x- and y-components was comparatively small (see 

Figure 2).

The current density distribution and focality in the head model also depends on the modeling 

of the stimulation electrodes. In this study, we used point electrode models (PEM), which 

assume the stimulation electrodes to be neutral elements on the head surface. This approach 

does not account for the non-uniform current density profile in the proximity of the 

stimulation electrodes [6, 7, 8]. Recently performed computer simulations confirm the 

difference between both electrode models at the interface between the stimulation electrodes 
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and the head model, but have shown only subtle deviations of the current density within the 

brain region [9]. Referring to these results and similar results reported in a computational 

study on EEG simulation [10], it is expected that due to the comparatively higher current 

density maxima for PEM, the application of CEM might allow for a larger total stimulation 

current. However, it is not expected that the CEM will significantly change the overall 

results of this study.

Comparing the deviations in the uncertain model parameters in Table 1 with those of the 

current density norm in Figure 6, the results suggest that uncertainty in tissue conductivity 

should be considered when predicting optimal stimulation protocols in computational 

models of tDCS, especially when assuming the magnitudes of uncertainty as considered in 

this study. A similar statement can be objected for the corresponding uncertain stimulation 

protocol with comparative deviations in the stimulation amplitudes of the compensating 

main cathodes. However, it should be noted that the deviations in the stimulation amplitude 

of the main anode, which excites the target at most, were comparatively small and can be 

considered to be tolerable with regard to the prescribed level of uncertainty in tissue 

conductivity. In this context, depending on the orientation (either radially inwards or 

outwards) of the target cortical area underneath the stimulating electrode, an anodic 

stimulation might lead to both excitation or inhibition, as shown by [30, 31].

An important question raised in many tDCS experiments is whether a weak direct current 

stimulation can have therapeutic effects or not. Francis et al [32] were able to demonstrate 

that an electric field of about 140 µV mm−1 is able to enhance the firing rate of neurons. 

Considering the mean gray matter conductivity value of 0.44 S m−1 in this study, the current 

density amplitude should thus be greater than 0.062 A m−2 in order to have therapeutic 

effects. As the mean value of the probability density function of the current density norm 

was approximately 0.041 A m−2 (Figure 6), the probability that the current density 

amplitude in the target region is supra-threshold [32] is below 50 %. This might be due to 

the fact that the auditory target vector was located on a deeper part of the gyrus and 

relatively large upper and lower bounds of approximately ± 50% of the conductivity values 

were considered. In order to obtain greater probability for an effective and well-targeted 

stimulation, the total current applied to the electrodes might be enlarged. Because the current 

density amplitude is linear, a total current of approximately 3.1 mA would ensure that, with 

a probability of greater than 50 %, the current density norm at the target is greater than 0.062 

A m−2. Clinical studies might be performed in order to investigate the influence of larger 

input currents with regard to patient safety and the effects of stimulation.

The stimulation protocol for each electrode is influenced to a different extent by the 

conductivity variations of each considered tissue compartment (see Table 2). In addition, the 

sensitivity of the stimulation amplitudes for each electrode will most likely depend on the 

location of the chosen stimulation target as well. Therefore, it was not possible to reduce the 

number of considered uncertain parameters for the investigation of the entire stimulation 

protocol. The major influence on the stimulation amplitudes of the main anode and cathodes 

is pooled in the first order Sobol’ indices, representing the solely influence of each uncertain 

parameter. Stochastic interaction effects of the conductivity of the neighboring 

compartments skin and skull as well as skull and gray matter were especially noticeably for 
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the stimulation amplitude of the main anode T8, but also with a smaller extent for the main 

cathodes FC6 and FT8. The results suggest that almost the entire uncertainty of the 

stimulation protocol of the main electrodes can be described by the first order and the 

mentioned second order interaction effects of the uncertain conductivities, which further 

suggests that higher order interaction effects of these model parameters are negligible in the 

stochastic model. This information can be useful for future studies to reduce the parameter 

space dimension by considering less uncertain model parameters and to divide the parameter 

space in distinct parameter subspaces, which would further reduce the computational 

expense and, therefore, the computation time for the evaluation of the uncertain stimulation 

protocol. Furthermore, the determined interaction effects of the uncertain conductivities on 

the stimulation protocol in this study, especially for the main anode, propose that a multi-

variate modeling and quantification of the uncertainty in the stimulation protocol is 

inevitable. This result and the level of uncertainty determined in the stimulation protocol 

based on the levels of uncertainty for the tissue conductivities assumed in this study, require 

for an inclusion of parametric uncertainties in the optimization of the stimulation protocol 

and the use of multi-variate stochastic methods, which will require more sophisticated 

approaches regarding robust optimization techniques. However, it should be noted that the 

levels of uncertainty assumed in this study in the conductivity of the considered parameters 

reflect a ”worst-case” scenario with the maximum range of literature values used to model 

the uncertain conductivities of the respective compartments. In practice and with patient-

individual information on the electrical properties of the different tissue types, the resulting 

uncertainty in the predicted stimulation protocol may be smaller. Despite the known 

challenges in the measurement of the electrical properties of biological tissue and the 

variations in literature data [11, 12, 13, 28], quantification of the uncertainty in the 

predictions derived from computational models concerning bio-electrical applications is still 

scarce. Nowadays, the detailed and systematic investigation of uncertainty in computational 

models becomes of larger interest for various bio-electrical applications. In previous studies, 

uncertainty in the prediction of the therapeutic effect in deep brain stimulation in 

dependence of the electrical properties of brain tissue and the parameters of the electrode-

tissue-interface was investigated in a volume conductor model of the human brain [16, 25]. 

Geneser et al [33] investigated the impact of uncertain rate coefficients in Markovian ion 

channel models on the macroscopic electrical current through these channels. Regarding the 

computational modeling of the electroencephalography (EEG) forward problem, which is 

closely related to the modeling approach for the optimization of the stimulation protocol in 

tDCS presented in this study, a recent study investigated the influence of uncertain 

conductivity and the sensitivity on the sensorial response of the EEG electrodes with respect 

to uncertainty in the conductivity of brain tissue as well as in the location and the moment of 

the source dipole [34]. In addition, a correlation analysis was performed, suggesting that for 

sources in the cerebrum and cerebellum, sensors located temporally were highly correlated, 

whereas sensors in occipital and lower frontal region were comparatively less correlated, 

despite their close locations. The study models the uncertainty in brain tissue conductivity in 

a simplified manner as the fraction of skull and brain tissue conductivity in a three-layered 

spherical head model. This approach introduces a stochastic dependence of both tissue 

conductivities, which might differ from real dependencies. Since literature data on these 

information is scarce, we assumed the considered uncertain biological tissue conductivities 
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to be mutually independent. In addition, a realistic head model is used in this study 

representing the anatomy of the human brain, allowing for a detailed evaluation of the 

effects of the uncertain conductivity of each compartment on the optimized stimulation 

protocol as well as the current density at the target. To the authors’ knowledge, this study 

presents the first detailed and profound investigation of the uncertainty and sensitivity in an 

optimized stimulation protocol for tDCS with respect to the variations in the conductivity of 

the compartments of the human head.

Uncertainty in the parameters of computational models describing bio-electrical applications 

do not only arise from the varying electrical properties of biological tissue, but may also be 

based on uncertain geometry parameters as well as varying locations and orientations of the 

targets and sources of interest. Regarding uncertain locations and orientations of sources in 

the electrocardiographic (ECG) forward problem, Swenson et al [35] used the gPC method 

in combination with a sampling based on sparse Smolyak grids to predict changes in heart 

location and orientation on body-surface ECG potentials. The advantage of such a non-

intrusive formulation of the gPC method is that the underlying deterministic model 

describing the bio-electrical application can remain unchanged. However, there are also 

computational studies investigating models of bio-electrical applications, where an intrusive 

formulation of the gPC method, which requires a modification of the model equations, is 

feasible, as for example a study on the effect of uncertain conductivity on ECG potentials of 

the human thorax [36].

The guideline for efficient yet accurate volume conductor modeling in tDCS [2] was used to 

identify the most important tissue compartments to be investigated. In this study, we only 

focused on the five most important isotropic tissue compartments skin, skull, cerebrospinal 

fluid (CSF), gray matter and white matter for tDCS [2], while for the sake of substantial 

reduction of computational complexity, skull compacta and spongiosa modeling and white 

matter anisotropy modeling were excluded. The approach to model the skull as one 

compartment without dividing it into compacta and spongiosa is in agreement with results 

from a computational study, which investigated the influence of the detailed modeling of the 

skull compartment [28]. Detailed investigations of the combined effects of anisotropy and 

uncertainty in white matter conductivity in the presented model will be carried out in future 

studies by using common modeling approaches based on the linear relationship between the 

diffusion of water molecules and electric conductivity in the neuron fibers [37, 38].

Because the conductivity value of the human CSF at body temperature is well-known [29], 

the corresponding compartment was modeled as a deterministic model parameter. 

Nevertheless, a proper modeling of the CSF compartment is important to obtain realistic 

current density distributions, as clearly shown in [2]. The importance of modeling CSF has 

recently also been shown experimentally using MRI and visual paradigms in EEG, where 

the brain shift and the resulting small changes in the thickness of the CSF layer, induced by 

changing the subject’s position from prone to supine, were shown to have a significant effect 

on the EEG [39].

The results and conclusions of this study are based on the investigation of one target vector 

for one-hemispheric auditory cortex stimulation. While the determined auditory target in this 
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study had a deeper location and was therefore difficult to stimulate (see Figure 2, where the 

maximum stimulation is more superficial and not at the deeper target side), the stimulation 

of more lateral targets will be more successful (see also [4]). For superficial targets, where 

no white matter is located between the target and the stimulation electrodes, the white matter 

conductivity is expected to be far less important [2]. In such cases, this compartment might 

be excluded from the multi-variate gPC expansion, reducing drastically the number of 

required model realizations and, therefore, the computational amount of work for the 

sensitivity investigation and increasing the stability of the simulation results [40]. In a future 

study, we thus plan to quantify the uncertainty of the optimal electrode configurations for a 

superficial target vector and investigate the differences in the stochastic measures, 

probability density functions and sensitivity of the quantities of interest.

Even more importantly, the first order Sobol’ indices depicted that the probability density 

function of the stimulation protocols at the two main cathodes and at the main anode were 

most sensitive to uncertainty in the skull conductivity (see Table 2). In order to reduce the 

large deviations in the stimulation protocol of the compensating cathodes, a skull 

conductivity calibration method using simultaneously acquired somatosensory evoked 

potential and field measurements might be used [14, 28, 41, 42] to individually estimate the 

skull conductivity parameter of a subject. In this case, the calibrated skull conductivity value 

can be used as a deterministic model parameter, which further strongly reduces the number 

of required parameter samples for the computation of the multi-variate gPC expansions and 

might also reduce the uncertainty of the stimulation protocols at the main anode and 

cathodes.

5. Conclusion

In this study, the influence of inter-individually varying conductivity profiles on optimal 

electrode configurations as well as the sensitivity of the conductivity parameters to the target 

intensity for a target source in auditory cortex and thus deeper location was investigated. In 

order to quantify the uncertainty of the optimal electrode configurations, a multi-variate gPC 

expansion was used and the stochastic measures, probability density functions and 

sensitivity of the quantities of interest were investigated. Using this expansion, we 

demonstrated that, for a standard 10/10 EEG system with 74 electrodes, the optimized 

stimulation protocols were mainly comprised of three electrodes, an anode at electrode 

location T8 and two cathodes at electrode locations FC6 and FT8. With deviations below 15 

%, the lower and upper quantiles for the anode at location T8 showed only minor changes to 

the mean values, while substantially higher deviations up to 127.4% and 55% can be seen 

for the cathodes at locations FC6 and FT8. The investigation of the sensitivity of the 

conductivity parameters to the target intensity revealed that the largest effects were on the z-

components of the target current density for gray matter and white matter, while those for 

skin and skull were similar in all components. Regarding the effect on the optimized 

stimulation protocol, the stimulation amplitudes were most sensitive to skull conductivity. 

Finally, with a probability greater than 50 %, the optimized stimulation protocol for the 

deeper auditory target induced sub-threshold current density amplitudes at the target region.
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Figure 1. 
Current density for auditory cortex stimulation for a three electrode setup with a total current 

of 1 mA. The left Figure demonstrates current density as a vector field on a coronal slice 

through the head model. The auditory target vector e is indicated by a black cone. The right 

Figure shows the three electrode stimulation protocol and the corresponding volume 

rendering of the current density on the brain surface.
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Figure 2. 
Current density for auditory cortex stimulation for different values of white matter 

conductivity 220 mS m−1 (low), 445 mS m−1 (mean), 670 mS m−1 (high). The conductivity 

of the other compartments is set to their respective mean values.
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Figure 3. 
Minimum (green), Mean (blue), and maximum (red) of the effect of each uncertain 

conductivity on the stimulation amplitudes for the chosen main stimulation electrodes.
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Figure 4. 
Effect of each uncertain conductivity on the x- (green), y- (blue), and z-component (red) of 

the current density.
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Figure 5. 
Lower quantile, mean, and upper quantile of the uncertain stimulation protocol. For the main 

anode and the two main cathodes, the estimated probability density functions for 1 million 

random samples are shown using a gPC expansion of order p = 3 (blue) and p = 4 (green).
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Figure 6. 
Estimated probability density function of the current density norm for the expansion orders p 

= 3 (blue) and p = 4 (green).
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Figure 7. 
Lower quantile, upper quantile and mean of the amplitudes (> 200 µA) of the stimulation 

electrodes.
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Table 1

Mean, lower and upper boundary, and relative deviation of the conductivity values for the used tissue types.

Tissue type Conductivity [mS m−1]

Min Mean Max Rel. Deviation

Skull 1.6 17.3 33.0 90.8%

Skin 280.0 575.0 870.0 51.3%

Gray matter 220.0 445.0 670.0 50.6%

White matter 90.0 190.0 290.0 52.6%
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Table 2

Sensitivity of the stimulation amplitudes of the main electrodes with respect to the uncertainty in each tissue 

type and their stochastic interactions for the conductivity of skin σskin, skull σskull, gray matter σgm, and white 

matter σwm.

Sensitivity on Stimulation Amplitude

Parameter T8 [%] FC6 [%] FT8 [%]

σskin 5.9 7.7 4.0

σskull 28.9 79.8 70.1

σgm 16.2 6.9 13.0

σwm 27.2 0.5 3.1

σskin, σskull 12.0 3.5 6.6

σskull, σgm 7.3 1.2 2.8

∑ 97.5 99.5 99.6
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