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Abstract
The intestinal lumen is a host place for a wide range 
of microbiota and sets a unique interplay between 
local immune system, inflammatory cells and intestinal 
epithelium, forming a physical barrier against microbial 
invaders and toxins. Bacterial translocation is the 
migration of viable or nonviable microorganisms or 
their pathogen-associated molecular patterns, such 
as lipopolysaccharide, from the gut lumen to the 
mesenteric lymph nodes, systemic circulation and other 
normally sterile extraintestinal sites. A series of studies 
have shown that translocation of bacteria and their 
products across the intestinal barrier is a commonplace 
in patients with liver disease. The deterioration of 
intestinal barrier integrity and the consulting increased 
intestinal permeability in cirrhotic patients play a pivotal 
pathophysiological role in the development of severe 
complications as high rate of infections, spontaneous 
bacterial peritonitis, hepatic encephalopathy, hepatorenal 
syndrome, variceal bleeding, progression of liver injury 
and hepatocellular carcinoma. Nevertheless, the exact 
cellular and molecular mechanisms implicated in the 
phenomenon of microbial translocation in liver cirrhosis 
have not been fully elucidated yet.
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Core tip: Intestinal barrier function is impaired in patients 
with cirrhosis and this derangement seems to be 
associated with liver disease severity. This phenomenon 
is multifactorial and the exact pathophysiological 
mechanisms which are implicated in this deterioration 
have not been fully elucidated yet. The disruption of 
intestinal barrier integrity and the subsequent increased 
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intestinal permeability in cirrhotic patients promote 
bacterial translocation and play a major role in the 
development of severe clinical complications affecting 
natural history of liver disease and patients’ survival.
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INTRODUCTION
Cirrhosis and portal hypertension associated com­
plications are a common cause of mortality worldwide. 
Increased intestinal permeability and subsequent 
bacterial translocation to the mesenteric lymph nodes 
and extraintestinal sites are well established in these 
patients[1,2]. Endotoxemia seems to be a key factor and 
results in a cascade of immunomodulatory, cellular 
and molecular events. Potential mechanisms that can 
promote BT are intestinal bacterial overgrowth (IBO) and 
gut flora disturbances, increased intestinal permeability 
via the paracellular and intracellular route and local as 
well as systemic immune dysfunction[3-7]. Cirrhosis is 
also associated with increased oxidative stress in the 
systematic circulation, the intestinal and liver tissue, 
which in turn acts as a harmful agent to the intestinal 
epithelial cells, affects apoptosis and cellular proliferation, 
deteriorates the expression of tight junction (TJ) proteins 
and favors bacterial translocation[8-12]. Endotoxemia 
plays a critical role in the exacerbation of host and 
acquired immune responses, activation of cells to release 
cytokines, which can promote intestinal and liver tissue 
damage[13-16]. Furthermore, bacterial translocation (BT) 
is associated with severity of liver disease and provokes 
serious clinical events and complications[17].

THE INTESTINAL BARRIER STRUCTURAL 
AND FUNCTIONAL ELEMENTS
The intestinal tract represents the body’s largest interface 
between the host and the external environment. The 
complexity of its function is obvious when thinking that 
the intestine has to serve simultaneously two distinct 
functions; the absorption and transport of necessary 
nutrients from the intestinal lumen into the circulation 
and the internal milieu in general and, on the other 
hand, the prevention of the penetration of harmful 
entities including microorganisms, luminal antigens and 
proinflammatory factors. The latter function is known as 
barrier function. Gut barrier function depends on both 
the immune barrier, composed of locally acting factors, 
such as the secretory IgA, intramucosal lymphocytes, 
Payer’s nodules, mesenteric lymph nodes and of the 

systemic host defense, the latter represented mainly 
by the reticuloendothelial system, the biological barrier-
made up of normal intestinal flora responsible for 
colonization resistance - the mechanical barrier as well, 
consisted of the closed-lining intestinal epithelial cells and 
by the capillary endothelial cells. All these components 
of gut barrier integrity can be majorly affected by liver 
cirrhosis[12,18,19].

The intestinal mechanical barrier in cirrhosis
The intestinal mucosal barrier consists of the mucus 
layer and intestinal epithelial cells. The epithelium 
prevents translocation of pathogens via transcellular and 
paracellular route[20]. The enterocytes are connected to 
each other by junctional complexes consisting of TJs, 
adherens junctions, desmosomes, and gap junctions 
forming a selective physical barrier that regulates 
paracellular transport[21,22]. The main transmembrane 
protein families in tight junctions are members of the 
occludin, claudins, and junctional adhesion molecules, 
which are linked to the actin cytoskeleton regulating 
paracellular movement of micromolecules, bacteria and 
macromolecules such as lipopolysaccharide[22-24]. TJs 
regulate transport via two distinct pathways: a charge 
selective, claudin-based pores that are 4 Å in radius for 
small ions and uncharged molecules, and a second one 
pathway, regardless of molecules charge and size[25,26]. 
Liver cirrhosis induces prominent changes in enterocytes’ 
tight junction proteins, representing a cellular mechanism 
for intestinal barrier disruption and hyperpermeability[19,27]. 
In cholestatic liver injury, increased myosin light-chain 
kinase activation and diminished expression of occludin 
and zonula occludens-1 (ZO-1) have been reported in 
colonic epithelium with a concomitant increased intes­
tinal permeability[4]. Reduced expression of duodenal 
occludin and Claudin-1 has been found in patients with 
cirrhosis compared to controls. Also, these alterations 
were more apparent in decompensated patients as 
compared to compensated ones. Negative regression 
was proved between occludin and claudin-1 expression, 
Child-Pugh score, the size of esophageal varices and 
serum endotoxin levels. These data support the view 
that there is a dynamic relationship between portal 
hypertension, bacterial translocation and TJs expression 
in intestinal epithelial cells[19]. In patients with nonalcoholic 
steatohepatitis and alcoholic decompensated cirrhosis, 
increased Claudin-2 was proved and could comprise 
a pivotal factor inducing intestinal barrier disruption. 
Conflicting are the findings about TJ proteins ZO, occludin 
and claudin-1 and the gap junction protein Connexin 
expression[28]. In cirrhosis, one of the main contributing 
factors to TJ alterations is the increased production 
of tumor necrosis factor-a (TNF-a) by monocytes in 
mesenteric lymph nodes[29,30]. TNF-a increases miR-122a 
expression in Caco-2 enterocytes and in vivo in a mouse 
model. miR-122a binds to the noncoding region three 
prime untranslated region of occludin mRNA and impacts 
on occludin mRNA downregulation and subsequent 
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occludin diminished expression, as well as upregulates 
claudin-2 and -8 expression but does not induct any 
alteration of claudins-1, -3, -5. Moreover, a linear 
relationship between TNF-a induced reduction of occludin 
and a higher inulin flux has been observed, indicating an 
increased Caco-2 permeability to inulin[31].

Histopathological changes of intestinal mucosa: 
Specific ultrastructural alterations of intestinal mucosa 
have been observed in cirrhotic patients that may 
be related to increased BT. In a case control study of 
cirrhotic patients using electron microscopy, dilated 
extracellular space between adjacent enterocytes, more 
prominent in the lower portion of the intestinal epithelial 
cells and reduced number of shorter and thicker microvilli 
were observed[32]. In experimental models of cirrhotic 
rats the intestinal mucosa was presented with atrophic, 
shorter, fractured villi and infiltration of inflammatory 
cells into the lamina propria and the muscular layer. The 
glandular epithelia resembled as irregular structures 
after the loss of their cylindrical shape. Excessive villi 
swell and loose structure of mucous membrane were 
correlated positively to endotoxemia[33].

Mucus: The mucus layer overlying the intestinal 
mucosa provides a first line defense mechanism against 
harmful antigens, and prevents bacteria and their 
byproducts from invading the microvillus environment. 
Mucus consists of glycoproteins secreted by goblet cells 
called mucins. Mucin (MUC) secretion is affected by 
transcription factors [nuclear factor-κB (NF-κB)], growth 
factors, lipopolysaccharide (LPS), microbes presence, 
inflammatory cytokines[34,35]. NF-κB is activated during 
gastrointestinal tract inflammation and binds to specific 
sites in the promoter of MUC2[36]. Chronic alcohol feeding 
increases the mucus content in the small intestine in 
rats. Furthermore, increased mucus thickness has been 
observed in the duodenum of alcoholic patients as a 
concomitant protective modification[37,38]. Increased 
MUC2 and MUC3 mRNA expression has been found in 
the ileum of rats with liver cirrhosis compared to those 
without cirrhosis[2]. Intestinal mucus modulates bacterial 
adherence to the intestinal mucosal surface and is 
associated with a loss of intestinal barrier function[39].

Intestinal oxidative stress: Oxidative stress is 
a mediator of intestinal mucosal barrier damage in 
patients with liver cirrhosis, affecting intestinal epithelial 
cell apoptosis and proliferation, and enhances BT and 
endotoxemia[12]. Portal hypertension results in intestinal 
mucosa hypoperfusion and hypoxia, which exacerbate 
oxidative damage in the gut mucosa by the increased 
xanthine oxidase activity and oxygen free radicals 
release[11]. Xanthine oxidase found in the liver and 
intestinal mucosa catalyzes the oxidation of hypoxanthine 
to xanthine, the conversion of xanthine to uric acid and 
is an important source of free radicals in the intestinal 
epithelium. Increased xanthine oxidase and decreased 
xanthine dehydrogenase activity have been observed 

in the intestinal mucosa and enterocyte mitochondria in 
the state of liver cirrhosis. Oxidative stress causes tissue 
damage at the subcellular level by lipid peroxidation 
affecting mitochondrial function. Reactive oxygen species 
break down the cellular membrane stability and induct 
cell death by lipid peroxidation in the cirrhotic rats[9,11]. 
Increased levels of malondialdehyde, a product of the 
lipid peroxidation, have been found in ileal and cecal 
mucosa in cirrhotic rats with ascites when compared to 
control rats, and in cirrhotic rats with BT compared to 
those without BT[8,40]. Experimental cirrhotic rats received 
pentoxifylline treatment, a regimen which exerts anti-
inflammatory and antioxidant effects, appeared to 
have lower malondialdehyde levels in the cecal mucosa 
compared to placebo-treated ones. Pentoxifylline 
administration attenuates bacterial overgrowth, BT 
to cecal lymph nodes and impacts on elimination of 
spontaneous bacterial peritonitis[40]. Free radicals can 
also affect viscosity of the mucus in the gastric mucosa, 
enhance bacterial adherence ability to the epithelial 
cells and facilitate the translocation across the mucosa, 
resulting in complications such as spontaneous bacterial 
peritonitis (SBP)[10,41].

The intestinal immunological barrier in cirrhosis
Gut-associated lymphoid tissue alterations: The 
host innate immune system is the first line defense 
mechanism which is activated against bacteria and 
other toxins. The intestinal immune system consists of 
the gut-associated lymphoid tissue, which comprises 
four lymphoid compartments: Peyer’s patches, lamina 
propria lymphocytes, including dendritic cells (DCs), 
intraepithelial lymphocytes and mesenteric lymph nodes, 
which are implicated in both the adaptive and innate 
immune defense mechanism[42]. The interaction between 
the host immune system and the microbiota inducts 
the activation of the intestinal immune system and the 
gut-associated lymphoid tissue that in turn modifies the 
microbiota environment[43]. DCs induce the development 
of Th1/Th17 T cells, regulatory T cells and promote 
TNF-a production[44]. Dendritic cells of the lamina propria 
induct tight junction alterations and sample microbes 
from the intestinal lumen[45]. An increased count of 
activated monocytes, dendritic cells and T lymphocytes 
in the intestinal mucosa and mesenteric lymph nodes 
(MLNs) coincided with specific alterations of cytokine 
expression in the intestinal mucosa as well as increased 
phagocytosis by intestinal dendritic cells in cirrhosis as 
a response to intestinal bacteria and other pathogens. 
Increased activated macrophages in the duodenal 
lamina propria, augmented intestinal permeability and 
altered intestinal tight junction protein expression have 
been demonstrated in patients with decompensated 
cirrhosis[28,31,46-48]. In response to BT, intestinal epithelial 
cells release chemokines, which exert chemoattractant 
effects and induce the recruitment of DCs to the mucosa 
as well as in MLNs[47]. IgA is one of the most important 
molecules in the regulation of intestinal homeostasis. 
Peyer’s patches and isolated lymphoid follicles are 
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cytokines[62]. The increased proinflammatory cytokine 
production (TNF-a, IFN, IL-6) and reduced anti-
inflammatory cytokines (IL-10), in state of liver cirrhosis, 
by intestinal immune cells, affect the intestinal epithelial 
barrier integrity disrupting the epithelial tight Junctions 
and favour the increase of bacterial translocation[29,33,63,64]. 
Insulin-like growth factor Ⅰ therapy in cirrhotic rats has 
been found to promote portal pressure, bacterial trans­
location and endotoxemia reduction through diminished 
TNF-a expression[65].

The intestinal biological barrier in cirrhosis
Gut microbiota alterations: Intestinal bacterial 
overgrowth is common in cirrhosis and it has been 
shown to be particularly frequent in those with more 
severe liver disease and in those with a prior history 
of SBP and/or hepatic encephalopathy[66-71]. Reduced 
gastric acid secretion, intestinal dysmotility, lack of bile 
salts and reduced antimicrobial peptides killing capacity 
as well as portal hypertension have been recognized as 
contributory factors to IBO[3,72,73]. Changes in the gut 
microflora favor bacterial translocation and promote 
endotoxemia in patients with cirrhosis and experimental 
models of cirrhosis[67,74,75]. A direct relationship between 
the density and composition of cecal bacteria and the 
number of viable bacteria of this strain, present in MLNs, 
has been demonstrated in mouse models[76]. Intestinal 
bacterial overgrowth promotes the development of SBP 
by increasing bacterial translocation. Aerobic bacteria in 
cecal stool are increased in cirrhotic rats with bacterial 
translocation with or without spontaneous bacterial 
peritonitis compared to cirrhotic rats without bacterial 
translocation and SBP[72]. The impaired motility of the 
small intestine is a common feature in cirrhosis and may 
be a crucial factor in the pathophysiology of intestinal 
bacterial overgrowth, increased intestinal permeability 
and subsequent bacterial translocation[77]. The small 
intestinal transit is delayed in cirrhotic rats and the cecal 
aerobic bacteria count is higher compared to healthy 
controls[78].

CLINICAL IMPLICATIONS
Liver injury
Intestinal inflammation and bacterial translocation play 
a major role in the progression of liver fibrosis via TLR2, 
the receptor for products from Gram-positive bacteria 
such as peptidoglycan which in turn promotes a cascade 
of signals on monocytes in the lamina propria and tumor 
necrosis factor receptor type Ⅰ (TNFRⅠ) on intestinal 
epithelial cells. TLR2-/- mice have shown significantly 
less positive mesenteric lymph node cultures and lower 
endotoxin levels in the systematic circulation as a 
marker of bacterial translocation compared to wild type 
mice. TNFRⅠ-/- mice are protected from liver fibrosis 
by a decreased collagen α (I) gene expression and 
deposition of extracellular matrix proteins, suggesting 
that TNFRⅠ on intestinal epithelial cells enhances the 
paracellular leakage and favors bacterial translocation 

implicated in commensal-specific IgA production that 
aids to prevent the commensals from invading the gut 
mucosa[49]. Mice deficient in the toll-like receptors (TLR)-
adapter molecule MyD88 on B cells lack commensal-
specific immunoglobulin-response that results in 
impaired epithelial integrity and enables commensal 
bacteria to function as highly pathogenic organisms[50]. 
A pronounced reduction in CD27+ memory B-cells count 
and functional capacity as well as a reduced ability to 
recruit T-cells, have been observed in cirrhotic patients. 
These B-cell defects may explain the susceptibility to 
bacterial infection. Also blockade of TLR4 and TLR9 
signaling abrogates the activation of normal donor B-cells 
by cirrhotic plasma, suggesting a role for bacterial 
translocation in cirrhosis[51]. T cells are critical in host 
defense against the translocation of enteric bacteria since 
their depletion has been correlated with augmented BT 
and spreading of bacteria to extraintestinal sites and 
MLNs[37,52,53].

Antimicrobial peptides: Deficiency in antimicrobial 
peptides (AMPs) leads to disruption of the mucosal 
barrier, a shift in the bacterial composition, bacterial 
overgrowth and increase in BT. Antimicrobial peptides, 
also called host defense peptides, are part of the 
innate immune response and act as broad spectrum 
antibiotics killing Gram negative and Gram positive 
bacteria, viruses and fungi. AMPs include defensins, 
cathelcidins, lysozyme, resistin-like molecules and 
lectins. Defensins have a broad range of antimicrobial 
activity by binding to the microbial cell membrane and 
forming pore-like membrane defects. Human a-defensins 
that are expressed by neutrophils and Paneth cells 
located at the base of Lieberkuhn crypts, in response 
to bacteria and LPS exposure, regulate and maintain 
microbial balance in the intestinal lumen[54-56]. Reduced 
expression of Paneth cell defensins and diminished 
in vitro antibacterial activity of a-defensins against 
Enterobacteriacea have been observed in ascitic cirrhotic 
rats with BT to MLNs[57]. Regenerating islet derived 
proteins RegIII, produced by Paneth cells via activation 
of TLRs by pathogen-associated molecular patterns, bind 
to cell wall peptidoglycans of Gram-positive bacteria, 
and maintain a physical barrier between the epithelial 
cell surface and intestinal microbes[58,59]. Chronic alcohol 
intake has been shown to diminish RegIII expression in 
the small intestine of mice as well as in humans[3]. IgA 
antibodies released into the intestinal lumen, bind and 
aggregate bacteria, preventing mucosal adherence and 
colonization[60]. Reduced fecal IgA content as well as 
diminished secretion of mucosal IgA into the jejunum 
have been reported, suggesting a potential relationship 
between IgA, BT and development of infections in 
cirrhosis[37,61].

Cytokine alterations in cirrhosis and immune 
dysfunction: Endotoxemia as a result of intestinal 
barrier dysfunction, triggers the activation of the innate 
immune system and the release of proinflammatory 
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and liver fibrogenesis[46]. LPS leads to host immune 
activation and enhances plasma sCD14 as a response. 
In patients with severe fibrosis higher plasma levels 
of sCD14 and more hepatic CD14+ cells have been 
documented compared to patients with minimal fibrosis. 
LPS-mediated activation of both circulating monocytes 
and hepatic Kupffer cells induces liver fibrosis and 
progression to end-stage liver disease[79]. Seki et al[80] 
demonstrated that the intestinal bacterial microflora and 
a functional TLR4 are required for hepatic fibrogenesis. 
Hepatic stellate cells (HSCs) are the target through 
which TLR4 ligands such as lipopolysacharide promote 
fibrogenesis. In quiescent HSCs, TLR4 activation 
triggers chemokine secretion, induces chemotaxis of 
Kupffer cells, downregulates the transforming growth 
factor (TGF)-b, sensitizes HSCs to TGF-b - induced 
signals and allows unrestricted activation by Kupffer 
cells. LPS-induced HSCs sensitization to TGF-b leads 
to collagen production and deposition and seems to be 
mediated by a MyD88-NF-kB-dependent pathway[80].

Hepatocellular cancer
The majority of hepatocellular cancer (HCC) cases are 
generated in the state of chronic liver inflammation. 
Increased intestinal permeability, bacterial translocation 
and LPS accumulation activating the NF-kB pathway, 
suggest a hallmark of chronic liver disease and con­
tribute to hepatic inflammation, proinflammatory 
cytokines TNF-a, IL-6 and IL-1 release, oxidative damage 
and fibrosis. The deterioration of normal equilibrium in 
the intestinal microbiota and NF-kB activation through 
upregulation of TNF-a exert promotional properties 
in HCC development[81]. Decreased hepatocarcinoge­
nesis has been found in mice lacking IKK-b, a kinase 
required for NF-kB activation, in both hepatocytes and 
hematopoietic-derived Kupffer cells, suggesting that 
IKK-b orchestrates inflammatory crosstalk between 
hepatocytes and Kupffer cells and promotes liver cancer 
induction[82]. Infusion of LPS, which is an agonist of 
Toll-Like Receptor, increases hepatocarcinogenesis, 
tumor number and size in experimental animal model 
of mice intoxicated with DEN/CCl4. In advanced liver 
disease HCC development is mediated by TLR4-
dependent secretion of growth factors such as epiregulin 
hepatomitogen by hepatic stellate cells, leading to 
EGFR and HER2 activation during the first stages of 
carcinogenesis, whereas it reduces hepatocyte apoptosis 
by NF-kB nuclear translocation[83-85]. TLR4 deficiency 
and antibiotic-induced gut sterilization decrease hepatic 
proliferation and fibrogenesis and could prevent HCC 
in patients with chronic liver injury, suggesting that the 
intestinal microbiota and TLR4 overexpression represent 
a possible molecular mechanism for the induction of 
HCC promotion[84]. These data suggest that disturbances 
of intestinal microflora, endotoxemia, and subsequent 
TLR4 mediated hepatic stellate cell activation might 
provide a dynamic interplay between endotoxemia, 
hepatic fibrosis and HCC promotion by increasing growth 
factors[83,85,86]. The hepatic expression of the glutathione 

S-transferase placental form, a marker for cellular 
alteration in the early stage of HCC development, has 
decreased in rats treated with probiotic MIYAIRI 588 
compared to the choline deficient amino acids - diet-
fed rats. The number and the size of the HCC lesion 
reduction in the MIYAIRI 588-treated rats have been 
correlated with endotoxemia elimination and increased 
ZO-1 and occludin expression, suggesting that bacterial 
translocation enhancement may constitute a promoting 
factor in hepatocarcinogenesis[87].

Hepatic encephalopathy
Intestinal dysbiosis and bacterial infections are 
precipitating factors for the induction of hepatic ence­
phalopathy overt or subclinical. In previous studies 
cognitive impairment was recorded in 42% of cirrhotics 
without infection, in 79% of those with infection and 
without SIRS and in 90% of septic patients[88,89]. 
Altered flora, increased endotoxin levels, and excessive 
inflammation (IL-6, TNF-a, IL-2, and IL-13) have been 
found in cirrhotics with HE compared with those without 
hepatic encephalopathy (HE)[90]. Streptococcus salivarius 
is more prominent in cirrhotic patients with minimal 
hepatic encephalopathy (MHE) in comparison to those 
without HE, and is significantly associated with ammonia 
concentration[91]. Bacterial overgrowth with abundance 
of Gram-negative [Escherichia coli (E. coli)] and Gram-
positive (Staphylococcus spp.) has been associated with 
cirrhosis complicated with MHE[92]. A higher incidence 
of previous hepatic encephalopathy episodes has been 
revealed in patients with TLR4 D299G and/or T399I 
polymorphisms, which are associated with intestinal 
barrier dysfunction, compared to wild-type patients (78% 
vs 20%)[93].

Gastrointestinal bleeding
Bacterial infection might increase the risk of variceal 
hemorrhage[94,95]. Cirrhotic patients with impaired 
intestinal permeability, high lipopolysaccharide binding 
protein and IL-6 levels represent a higher risk of variceal 
bleeding[96]. Bacterial infection is responsible for early 
rebleeding[95]. In a prospective study by Bernard et 
al[97], early rebleeding, defined as recurrence of bleeding 
within 7 d after admission, was observed in 43.5% of 
patients with bacterial infection compared to 9.8% in 
those without infection. Furthermore, the mean number 
of blood units transfused and the 4-wk mortality were 
significantly higher in patients with infection[97]. Bacterial 
infection was independently associated with failure to 
control bleeding in a previous study[98]. Patients with 
hepatocellular carcinoma and variceal bleeding tend to 
have a greater rebleeding rate due to a higher infection 
rate. Antibiotic prophylaxis can prevent infection and 
rebleeding, improving survival rate as well as decreasing 
the amount of blood transfused in patients with acute 
gastroesophageal variceal bleeding following endoscopic 
treatment[99,100]. A retrospective study suggested that 
administration of antibiotics prior to endoscopy or up 
to 8 h following endoscopy, if this is initially missed, 
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reduces rebleeding and improves 28-d survival[101,102].

Hepatopulmonary syndrome
Bacterial translocation and subsequent endotoxemia 
in cirrhotic rats may be a pathogenetic mechanism 
implicated in hepatopulmonary syndrome (HPS) pro­
gression. Endotoxin mediated stimulation of Kupffer 
cells via mitogen-activated protein kinase pathway 
upregulates TNF-a production and constitutes a key 
step in the induction of hepatopulmonary syndrome[103]. 
In cirrhotic rats endotoxemia, severity of liver disease 
and portal vein pressure are strongly correlated with 
the expression of eNOs, inducible nitric oxide synthase 
(iNOS), HO-1, histological changes in lung tissue, such as 
an increased number of dilated capillaries, infiltration of 
phagocytes and neutrophils and play a central role in the 
development of hepatopulmonary syndrome by inducing 
NO and CO[104]. In cirrhotic rats treated with norfloxacin, 
elimination of Gram-negative bacterial translocation, 
reduced count of pulmonary microvessels containing 
more than 10 macrophages, decreased expression and 
activity of lung iNOS have been observed, suggesting 
that bacterial translocation may be a major mechanism 
for the pathogenesis of HPS[105].

Hepatorenal syndrome
Hepatorenal syndrome is a specific type of renal failure 
that affects individuals suffering from liver cirrhosis[106].
Hepatorenal syndrome (HRS) is due to constriction 
of the blood vessels of the kidneys and dilation of the 
splachnic vessels which supplies the intestine[107]. Portal 
hypertension in cirrhosis has been associated with 
circulatory disturbances, arterial splanchnic vasodilatation 
and subsequent reduction in systemic vascular resistance, 
which results in reduced blood volume. Compensatory 
mechanisms such as vasoconstrictor systems and sodium 
retention in the kidneys are activated. However, increased 
cardiac output and hyperdynamic circulation, in advanced 
cirrhosis are insufficient to retain ideal intravascular 
effective volume resulting in hypoperfusion of kidne­
ys[108,109]. The markedly decreased renal blood flow in 
decompensated cirrhosis, leads to hepatorenal syndrome 
that is frequently triggered from infections[110-112]. Patients 
with SBP without shock who exhibit high proinflammatory 
response are at high risk of developing kidney failure[111]. 
Renal failure occurs in approximately one third of patients 
with cirrhosis and bacterial infections and is irreversible 
or progressive in two-thirds of patients with treatment 
of infection only. The presence of a nosocomial infection, 
the absence of infection resolution with antibiotics and 
the peak count of neutrophil leukocytes in blood have 
been demonstrated as significant predictive factors 
of irreversibility of HRS[112-115]. Cirrhotic patients with 
culture-negative, non-neutrocytic ascites and bacterial 
DNA presence in ascitic fluid have a significantly higher 
TNF-a level in serum and ascitic fluid and a major 
risk of HRS compared to those without bacterial DNA, 
suggesting that bacterial translocation, subsequent 
inflammation and bacterial DNA presence are implicated 

in HRS induction[17]. Supportive to previous data are 
the results of Kalambokis et al[116] study, according to 
which intestinal decontamination with rifaximin therapy 
improves systemic circulation and renal function in 
patients with advanced alcoholic cirrhosis. Additionally, 
gut sterilization reduces CO and plasma renin activity, 
and inducts systemic vascular resistance increase. 
Rifaximin administration significantly improves the 
glomerular filtration rate and natriuresis while attenuates 
endotoxemia and reduces IL-6 and TNF-a production, 
suggesting that the prevention of infection in cirrhotic 
patients with renal failure seems to be a beneficial 
approach[116,117].

Infections
The intestinal permeability index (IPI) is increased 
in patients with advanced liver cirrhosis and active 
gastrointestinal hemorrhage, especially in those with 
proven or possible infections. IPI is an independent 
factor for the prediction of infection incidence in cirrhotic 
patients, suggesting that intestinal barrier dysfunction 
inducts bacterial translocation and affects the patient 
susceptibility to infections[118]. Patients with a bacterial 
infection suffer from a more severe liver disease with 
lower serum albumin and prolonged prothrombin time 
compared to cirrhotics without signs of infection[119]. 
Rimola et al[120] demonstrated that decompensated 
cirrhotics with a depressed reticuloendothelial system 
phagocytic activity have a higher risk of bacteremia 
affecting the survival rate.

Spontaneous bacterial peritonitis
Spontaneous bacterial peritonitis is a common com­
plication of cirrhosis. Bacterial contamination of ascites 
fluid leading to SBP is caused by bacterial translocation. 
In cirrhotic rats identical bacterial species are cultivated 
in both mesenteric lymph nodes and ascitic fluid[121]. 
Among the patients with liver cirrhosis and culture-
negative, non-neutrocytic ascites has been documented 
that the presence of ascitic bacterial DNA coincides 
with a higher relative risk of spontaneous bacterial 
peritonitis, suggesting a distinct association of SBP 
with impaired intestinal barrier function and increased 
bacterial translocation[17]. Patients with decompensated 
cirrhosis carrying Nucleotide-binding oligomerization 
domain containing 2 (NOD2) risk alleles (1007fs, G908R, 
R702W) which have been linked with impaired intestinal 
barrier or a history of prior SBP are at significant risk 
for development of spontaneous bacterial peritonitis 
and bacterascites[122,123]. It remains controversial 
whether proton-pump inhibitors use increases bacterial 
translocation and the risk of SBP[124-126]. On the other 
hand, treatment with b-blockers may prevent spontane­
ous bacterial peritonitis[127].

MORTALITY
Patients with liver cirrhosis and bacterial DNA in 
ascites as molecular evidence of intestinal bacterial 
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translocation have an increased risk of death compared 
to those without bacterial DNA[17]. NOD2 gene variants 
in patients with advanced liver cirrhosis linked to 
impaired mucosal barrier function may be genetic risk 
factors for death. NOD2 risk alleles and spontaneous 
bacterial peritonitis are independent predictive factors 
of death[122,123]. In a prospective study of fifty-three 
patients with cirrhosis, univariate Kaplan Meier analysis 
showed that Child-Pugh group, serum bilirubin, serum 
albumin, plasma endotoxin, and prothrombin time were 
associated with mortality[67].

CONCLUSION
In conclusion, intestinal barrier function is impaired in 
patients with cirrhosis and this derangement seems to be 
more pronounced in advanced cirrhosis. The disruption 
of mucosal barrier integrity is multifactorial, depends on 
a series of cellular and immune-mediated events, and 
affects the natural history of liver disease and patients’ 
survival as illustrated in the Figure 1. Therefore, there 
is an open field for clinical investigations intending new 
customized treatment interventions at a molecular level 
and the modification of bacterial translocation events.
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