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Abstract

Since their inception in the 1980's, oligonucleotide-based (ON-based) therapeutics have been 

recognized as powerful tools that can treat a broad spectrum of diseases. The discoveries of novel 

regulatory methods of gene expression with diverse mechanisms of action are still driving the 

development of novel ON-based therapeutics. Difficulties in the delivery of this class of 

therapeutics hinder their in vivo applications, which forces drug delivery systems to be a 

prerequisite for clinical translation. This review discusses the strategy of using lipid nanoparticles 

as carriers to deliver therapeutic ONs to target cells in vitro and in vivo. A discourse on how 

chemical and physical properties of the lipid materials could be utilized during formulation and 

the resulting effects on delivery efficiency constitutes the major part of this review.

Graphical Abstract

1 Introduction

Nucleic acid-based macromolecules have paved a new avenue for the development of 

therapies to treat a wide spectrum of inherited and acquired diseases. The broad potential of 
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this class of therapeutics arises from the precision and effectiveness of the intervention of 

cellular protein expression levels. This intervention results from the introduction of 

exogenous genes for expression products or regulatory non-coding RNAs to suppress the 

target gene expression. The development of nucleic acid therapeutics has also shifted the 

conventional drug development paradigm by skipping the tedious and time-consuming drug 

screening process for particular therapeutic targets. Drugs are instead designed completely 

based on the genetic sequence of the target gene, which the Human Genome Project has 

helped to reveal. However, these therapeutics face a principal barrier to clinical translation: 

delivery.

The composition and physicochemical properties of nucleic-acid based therapeutics leave 

them susceptibile to nuclease-mediated degradation. In addition, high molecular weight and 

negative charges make nucleic acids impermeable to the cellular membrane. Therefore, an 

efficient delivery system is a requirement for therapeutic efficacy. To address 

pharmaceutical issues such as stability, cellular uptake, and targeted delivery, a series of 

delivery carriers have been developed. Particularly for cell-targeted delivery, nanosized 

carriers are the most investigated systems. These carriers can enter certain cell populations 

with specificity by recognizing the biomarkers on the cell surface.

Despite their identical building blocks, the biological activities and mechanisms of action of 

nucleic acid-based therapeutics are diverse. Based on the length and structure of these 

biological polymers, nucleic acid therapeutic agents are divided into several categories: (1) 

double stranded plasmid DNA with linear or circular forms that are generally used for a 

“gain of function” purpose by introducing exogenous genes; (2) single-stranded messenger 

RNA that are mainly used for a more direct source of gene products; (3) double-stranded 

RNAs such as small interfering RNAs (siRNAs) or micro RNAs (miRNAs) that are 

exploited in gene regulation by down-regulating the expression of target genes; and (4) 

oligonucleotides, defined as short, single-stranded DNA or RNA that have a wider range of 

biomedical applications than their predecessors.

It is important to note that the last decade has been labeled as the age of siRNA, as scientists 

have been excited about the elegance of siRNA-mediated gene silencing that was discovered 

by Fire and Mello in 1998 [1]. Moreover, the 2006 Nobel Prize in Physiology and Medicine 

given to these two scientists boosted enthusiasm for the development and clinical translation 

of siRNA based therapeutics. Due to the appealing nature of siRNA, much of the attention 

has been driven toward the development of siRNA-based therapies. However, ON-based 

therapies could not be replaced by siRNA therapy owing to its much broader biological 

applications.

Generally, six major classes of ON-based therapeutics with diverse functionalities are 

currently under investigation: (1) DNA-based ONs that are designed to hybridize with target 

mRNA transcripts and block translation [2-4]; (2) triple-helix-forming ONs that are 

designed to be inserted into double-stranded DNA and inhibit transcription elongation [5]; 

(3) ribozymes or RNA ONs with a broad spectrum of biological and catalytic activities[6-8]; 

(4) Anti-miR molecules, which are ONs designed to specifically block the activity of 

endogenous miRNA to regulate gene expression [9-11]; (5) CpG-containing ONs that are 
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intended to boost the immune response as adjuvants [12-14]; and (6) splice-switching ONs 

that are able to control pre-mRNA splicing patterns [15-17].

Despite differences in their mechanisms of action, these six types of molecules share similar 

physicochemical characteristics and molecular weights. Therefore, once the delivery system 

is established on one of these classes of ONs, any class of these ON-based therapeutics are 

readily adapted. An increased efficiency of delivering ONs into the cells after systemic 

administration can be achieved by incorporating the therapeutics into liposomes. Ever since 

Loke et al. reported one of the earliest liposome-mediated ON delivery studies [18], a 

number of groups have reported using liposomal ON formulations to interfere withbiological 

cell activities. The intent of this review is to act as an overview of encapsulation strategies 

for ONs in lipid nanoparticles and to analyze the critical issues in delivering ON-based 

therapeutics using lipid-based nanoparticles, which are the most investigated delivery 

system in the field.

2 Barriers to efficient ON delivery

The pursuit of efficient delivery of ONs has not ceased since it began in the 1980s. Chemical 

modifications and carrier-assisted delivery have been the two primary strategies that are 

used to achieve successful delivery as biological studies have unraveled the critical 

intracellular and extracellular barriers to ON delivery. These findings provide a theoretical 

basis that supports the rational design and engineering of carriers so that those barriers can 

be circumvented or overcome by the functional modalities in the carrier.

There are some extensive reviews that discuss these delivery barriers in detail [19-23]. In 

brief, nanoparticle-mediated ONs, after intravenous injection, will have to maintain colloidal 

stability before entering target cells. The high concentration of serum proteins tend to adsorb 

onto the surface of the nanoparticles causing premature release of encapsulated therapeutics. 

Moreover, the adsorption of complements in the blood will enhance the clearance of the 

nanoparticles by the reticuloendothelial system (RES) residing in the liver and spleen. This 

leads to a shorter blood circulation half-life and low bioavailability of the administered 

therapeutics. The nanoparticles that escape RES capture must extravasate the endothelium of 

the blood vessels to access the parenchymal cells of the target tissue or the cancer cells in 

the tumors. Particularly in tumors, the crowded extracellular matrix and accumulated 

interstitial fluid pressure due to the lack of functional lymphatics hinder the passive 

diffusion of the nano-scale particles into the deeper areas of the tissue.

Once the nanoparticle accesses the periphery of the target cell, the remaining intracellular 

obstacles to successful delivery are just as challenging as the extracellular barriers (Figure 
1). Nano-sized carriers are still too large for passive diffusion into the cells. The 

nanoparticles therefore have to enter the cells via endocytosis, pinocytosis or phagocytosis 

pathwayswhich often leave the nanoparticles in endosomal compartments. Entrapment of the 

nanoparticles in endosomes is another critical intracellular barrier that dramatically reduces 

the bioavailability of the therapeutics. The payload in the nanoparticles must also be 

released from the carrier to provide therapeutic effect once the nanoparticles reach the 

cytosol of the target cells. If the ON functions by working on the DNA transcriptional level, 
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it must also cross the nuclear membrane to access genomic DNA via active transport or 

passive diffusion during cell mitosis.

3 Lipid nanoparticles mediated ON delivery

As ON molecules are susceptible to degradation by nucleases, encapsulation in lipid 

nanoparticles keeps these agents intact and biologically active after administration. Lipid 

nanoparticles represent one of the best optimized and characterized drug delivery systems 

that have shown extended blood circulation profiles. The encapsulation strategy also endows 

the ON with the physicochemical properties of the carrier, and therefore converts the 

pharmacokinetic behavior of the ON to that of the lipid nanoparticles. The blood circulation 

time is especially important for tumor-targeted ON delivery, as the increased circulation 

half-life allows the therapeutics to accumulate in the tumor tissue through a tumor's leaky 

vasculature. The addition of targeting ligands on the carrier can achieve delivery selectivity 

and enhance cellular uptake. Numerous methods have been reported to formulate ONs into 

lipid nanoparticles that can be generalized based on the physicochemical properties of the 

lipids used in the formulation (Table 1).

3.1 Cationic liposomes

Cationic liposomes are frequently used for nucleic acid delivery studies due to the multiple 

cationic groups presented on the surface of the liposomes [24-29]. These cations naturally 

interact with polyanionic nucleic acids and form lipoplexes. Generally, cationic lipids are 

classified into three major categories based on the head group structure [30]: 1) monovalent 

lipids such as N (1-(2,3-dioleyloxy) propyl)-N,N,N-trimethylammonium chloride (DOTMA) 

[31] and 1,2-dioleyl-3-trimethylammonium-propane (DOTAP) [32]; 2) multivalent lipids 

such as dioctadecylamidoglycylspermine (DOGS) [33] and 3) cationic lipid derivatives such 

as 3β-(N-(N',N'-dimethylaminoethane)-carbamoyl) cholesterol (DC-Chol) [34]. The 

hydrophobic chains of the lipids also provide the liposomes with different features. It has 

been demonstrated that the myristoyl (C14) chain is optimal for transfection compared to 

C16 and C18 chains [35, 36]. Longer chains increase the phase transition temperature and 

reduce the fluidity of the lipid membrane, which is unfavorable for lipid membrane fusion 

and ion-pair formation. For the same reason, unsaturated alkyl chains with considerably 

higher lipid fluidity often lead to a higher transfection efficiency compared to saturated alkyl 

chain lipids [37].

Although numerous cationic lipids with distinct structures and high delivery efficiency have 

been synthesized in laboratories across the world, the lack of systematic investigation makes 

it difficult to generalize the structure-activity correlation of the cationic lipids. Akinc et al. 

have taken an empirical and combinatorial chemistry approach to develop a library of 

around 1,200 lipid-like compounds for the delivery of nucleic acid therapeutics. All the 

compounds were synthesized based on one-step conjugation addition of alkyl-acrylates or 

alkyl-acrylamides to primary or secondary amines [24]. The compound library was used to 

deliver siRNA to HeLa cells as a screening process. It is deduced from the result that the top 

performance compounds share some structural similarities such as (1) amide linkages, (2) 

more than two alkyl tails, (3) an 8-12 carbon chain tail and (4) one tail that is not substituted 

by amine reactants and contains one secondary amine[24]. It is also noteworthy that some 
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top performance compounds are not structurally similar to any of the conventional, effective 

lipids. Although their research goal mainly targets the delivery of siRNA therapeutics, they 

also tested the delivery efficiency of 2'-O-Methyl ON targeting miRNA122. After three 

consecutive injections of 5mg/kg ON, the protein expression levels regulated by the 

miRNA122 were significantly elevated in the liver, suggesting successful delivery of the 

ON. The approach to establish a carrier compound library and screen the effective 

compounds for nucleic acid delivery expanded the dimensions of available delivery 

solutions while also providing the parameters for rational design of novel carrier 

compounds.

A similar one-step synthesis approach was adapted by Love et al. who built an epoxide-

derived lipidoid library using a rapid ring-opening reaction between amine substrates and 

epoxide [48]. The resulting compounds are amine-containing alcohols with nonpolar 

hydrocarbon tails. One of the top compounds, namely C12-200, demonstrated a potency two 

magnitudes higher than the top compound (LNP01) screened by Akinc et al. regarding the 

hepatocyte-targeted siRNA delivery efficiency. The C12-200 formulated nanoparticles were 

able to knockdown Factor VII expression by 50% in the liver at a dose of 0.01mg/kg via tail 

vein injection. The knockdown duration lasted up to 20 days when dosed at 0.1mg/kg. This 

high siRNA delivery efficiency was attributed to the special cellular entry pathway that the 

nanoparticle harnessed. The C12-200 nanoparticle entered the cells via micropinocytosis 

rather than the classic endocytic pathway. This effectively avoided the lysosomal 

degradation of its cargo, overcoming a major barrier to gene delivery. Later, Dong et al. took 

a similar approach and created a compound library by reacting amino acids or lysine-based 

dipeptides with aldehydes, acrylates or epoxides [49]. Out of this library, the lead compound 

cKK-E12 could silence the Factor VII in mouse livers with an ED50 of approximately 

0.002mg/kg, a five-fold increase compared to C12-200. Moreover, this compound showed a 

500-fold increase in specificity for gene silencing in hepatocytes compared to endothelial 

cells or immune cells. The development of these three libraries has demonstrated improved 

efficacy and specificity for the siRNA delivery system. Although these two publications 

have not shown any application in ON delivery, the strategy of one-step synthesis and 

screening can be used to develop novel materials with high specificity and potency for the 

delivery of ON.

Formulation—Two decades ago Capaccioli et al. demonstrated that cationic liposomes can 

facilitate cellular uptake and enhance the stability of ONs in cell culture [50]. Electrostatic 

interaction between the cationic lipid headgroup and the backbone of nucleic acids is the 

main driving force for the encapsulation of ONs in cationic liposomes. The conventional 

methods for preparation of these lipoplexes is direct mixing between cationic liposomes and 

anionic ON solutions, or rehydration of a thin-layer lipid membrane with ON solutions. The 

dispersion of cationic lipid/ON complexes in the aqueous solution often results in 

heterogeneous complexes, sometimes still referred to as cationic liposomes, but more 

accurately called lipoplexes. Lipoplexes can encapsulate nucleic acid cargos up to 90% of 

the input dose.

The physicochemical properties of lipoplexes not only depends on the composition and 

structure of the lipids, but also varies as a result of the ON sequence. Meidan et al. observed 
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that the maximal level of DOTAP liposome neutralization by the homo-polyA ON is much 

lower than that for homo-polyT or homo-polyC. Therefore, DOTAP/polyA lipoplexes are 

much more positively charged [51].

As was mentioned, lipoplexes are formed by mixing preformed liposomes with ON solution 

or by rehydration of a lipid film with ON solution. The size and polydispersity of lipoplexes 

formed with either method depends largely on the operator's mixing speed. This affects 

reproducibility and hinders the industrialization of this delivery system. To address the 

issue, microfluidics technology can be employed in lipoplex formulation. A microfluidics 

system provides a more homogenous solvent environment and allows rapid mixing of the 

lipid and nucleic acids so that the hydrophilic portions of the complexes formed can more 

easily stabilize the system [52]. Yu et al. have reported the characterization of ON-

lipoplexes formed using a 3-inlet microfluidic chip-based device [53]. In their study, an ON 

solution and preformed cationic liposome composed of DOTAP/Egg Phosphatidylcholine 

(EPC)/Cholesterol/1-O-(2P-(w-methoxypolyethyleneglycol) succinoyl)-2-N-

myristoylsphingosine (Cer-PEG2000) (45:18:35:2) were injected into the chip in different 

channels with the same rate (50-1100 μl/min). The lipoplexes formed with this method 

showed relatively lower polydispersity compared to those formed by bulk mixing. It is 

unfortunate, however, that the author did not compare the gene silencing activity of the 

lipoplexes prepared with different formulations. In addition, testing lipoplex formation in 

this manner might not be the most novel way to test a microfluidics system, since 

microfluidic devices are already expected to address the uncontrolled aggregation due to a 

heterogeneous solvent environment.

3.1.1 Structure of Lipoplexes—Neither the mechanism of action nor the resulting 

lipoplex structures formed by mixing nucleic acids and cationic liposomes have been 

completely elucidated. Investigators have used electron microscopy to observe the diverse 

structures of lipoplexes, including string-like structures[54], oligolamellar structures [55] 

and tube-like structures [56]. Joachim et al. combined in situ optical microscopy and x-ray 

diffraction to study lipoplexes formed with cationic liposomes (DOTAP/DOPC, 1:1 mol 

ratio) and linear or plasmid DNA (Figure 2A). Regardless of the DNA structure, the 

complexes consisted of a higher order multilamellar structure with DNA sandwiched 

between cationic bilayers. This multilayer lipid/DNA/lipid structure is formed as a result of 

polyanionic DNA screening the charge between two cationic lipid membranes [57].

Despite the difference in structure and molecular weight, the lipoplexes formed between 

ONs and cationic liposomes are quite similar to that of lipoplexes composed of plasmid 

DNA. In addition to the experiments performed by Joachim et al., Weisman et al. studied the 

lipoplexes formed by cationic liposomes (DOTAP/Cholesterol) and 18-mer anti-bcl2 ONs 

using cryo-electron microscopy and small-angle x-ray scattering. The electron microscopic 

images showed that the addition of ONs into the cationic liposomes induced both liposome 

aggregation and the formation of a multilamellar structure (Figure 2B and 2C). The 

aggregation of liposomes was due to the removal of the electrostatic repulsion by ON 

molecules whose negative charges act as bridges between the membranes. The only 

structural difference between lipoplexes formed by large molecular weight DNA or ONs is 

the lack of intervkesicle fusion in the lipid/ON lipoplexes [58].
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Remaut et al. published their finding regarding nuclease protection in PEGylated cationic 

liposomes versus non-PEGylated ones. By monitoring the degradation rate of 

phosphodiester ONs loaded in DOTAP/DOPE lipoplexes in the presence of DNAse, it was 

demonstrated that non-PEGylated cationic liposomes provided stronger protection compared 

with PEGylated liposomes when complexed with ONs. This is due to thePEG chain on the 

liposomes prohibiting the fusion of the lipid membrane and therefore not trapping the ONs 

between the lipid bilayers. The surface adsorption of ONs to PEGylated liposomes allows 

direct exposure to the nuclease which leads to a fast degradation rate [59].

3.1.2 Intracellular Release Mechanism—Evidence has widely indicated that cationic 

liposomes deliver nucleic acids into cells predominately through an endocytosis pathway 

[60, 61] rather than fusion with the plasma membrane as suggested by some reports [62, 63]. 

Zelphati et al. demonstrated that cationic charges on liposomes are required for efficient ON 

delivery. In their study, the majority of the cationic liposome/ON lipoplexes entered into 

cells via an endocytic pathway. The inclusion of neutral lipids such as DOPE or cholesterol 

in the cationic liposomes reduces the optimal ratio (+/−) for high delivery efficiency, 

although the formulation did not affect the delivery efficiency. [64]. Later, Zelphati et al. 

measured fluorescence resonance energy transfer between fluorescein-labeled ONs and 

rhodamine-labeled cationic liposomes to study the release mechanism of cationic liposome-

loaded ONs [65]. It was demonstrated that the release of ONs is mainly by displacement and 

is independent of ionic strength or pH. The displacement could be triggered by highly 

negatively-charged, linear, and water soluble molecules such as heparin and dextran sulfate, 

but not DNA or albumin. It was also shown that anionic phospholipids efficiently induced 

the release of ONs from cationic liposomes, occurring within the time scale of an endocytic 

event. Therefore, it is hypothesized that the release of ONs in the endosomes is realized in 

several steps (Figure 3): (1) the interaction between the cationic lipoplexes and the 

endosome membrane allowing the flip-flop of anionic lipids that are predominantly located 

on the cytoplasmic side of the membrane. (2) The lateral diffusion of anionic lipidsinto the 

cationic lipoplexes, forming ion-pairs with cationic lipids in the lipoplexes. (3) The 

displacement and release of the ON into the cytoplasm [65].

3.1.3 Stealth cationic liposomes—The critical issue that hinders the in vivo application 

of cationic lipoplexes is the fast serum clearance and major distribution in the lung, liver and 

spleen after intravenous administration [26, 27]. As mentioned above, anionic serum 

proteins tend to adsorb onto cationic liposomes, destabilizing the lipoplexes and resulting in 

early release of the therapeutics. The adsorption of complements on the lipoplexes also leads 

to clearance by the scavenger cells that reside in the spleen and liver. As stated by Allen 

TM: “If you want to be invisible, look like water” [66]. This strategy of coating cationic 

liposomes with neutral hydrophilic polymers has been proven to be the most successful 

resolution to this issue and has been adapted by various liposomal and non-liposomal drug 

delivery systems to date.

Polyethylene glycol (PEG) is the most widely used hydrophilic polymer in the drug delivery 

field owing to its low immunogenicity and cytotoxicity. Surface coating with this kind of 

neutral polymer screens the charges of the delivery systems. The carriers therefore 
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demonstrate better colloidal stability as a result of low charge and surface steric hindrance 

that prevents the adsorption of serum proteins. The most conventional way to modify the 

surface of cationic liposomes is through incubation of liposomes with micelles composed of 

lipid-PEG conjugates. During incubation, the lipid chain of the amphiphilic molecules will 

insert into the lipid bilayer with the PEG chain sticking out. This method of PEGylation is 

called “post insertion”. PEGylated liposomes have an extended blood circulation half-life, 

which was reported by a landmark publication by Klibanov et al in 1990 [67]. Extended 

circulation time is particularly important for the tumor-targeted delivery of ON therapeutics, 

as it increases the chance of the liposome to extravasate from the tumor's leaky endothelium 

and accumulate in the tumor [68].

The development of liposome-based delivery systems for nucleic-acid based therapeutics 

often face charge-related dilemmas, such as low encapsulation efficiency (<10%) of cargo in 

neutral or anionic liposomal formulations and unfavorable pharmacokinetic and toxicity 

issues in cationic liposomal formulations [69]. The dilemma is resolved from two aspects: 

(1) by developing formulation methods that increase the encapsulation efficiency of the 

nucleic acid; or (2) by developing conditionally charged cationic liposomes to minimize the 

charge related issues.

3.2 Neutral liposomes

As an alternative approach to avoid cationic liposome related issues such as poor PK 

profiles and cytotoxicity, neutral liposomes are employed as carriers to load ONs [41, 70, 

71]. Commonly used neutral lipids are phosphatidylcholine (PC), phosphatidylethanolamine 

(PE), and cholesterol. Neutral lipids have been demonstrated as effective helper lipids when 

incorporated in cationic liposomes to achieve higher transfection efficiency. Neutral 

liposomes have also been investigated as independent carriers for the delivery of nucleic 

acids. In contrast to cationic lipids, neutral lipids lack the positive charges that promote 

attractive interaction with nucleic acids to efficiently encapsulate ON into the liposomes. It 

is due to this same reason, however, that neutral liposomes show less interaction with serum 

proteins and hence possess higher serum stability. Early studies once implicated that the 

fusion between liposome and plasma membrane allows the contents to enter the cells [72]. 

Later research indicated that the fusion does not happen without exogenous perturbations 

such as polyethylene glycol treatment [73] or some viral fusion protein [74] that promotes 

this process. Nowadays, it is generally believed that the endocytic pathway is the dominant 

way for the liposomes to enter the cells. Straubinger et al. have demonstrated that the acidic 

endosomal environment is a critical factor that causes the leakage of liposomal contents into 

the cytoplasm [75]. In their observation, more charged and larger molecules seem to escape 

to the cytoplasm at a slower rate, which could account for the entrapment of nucleic acids in 

the endosomal compartment. To address this issue, DOPE is often included in the neutral 

liposomal formulation to enhance the transfection efficiency. It is believed that the acidic 

endosomal compartment could induce DOPE to transform to an inverted hexagonal 

phase which more readily fuses with the anionic lipid layer and destabilizes the endosome 

membranes [76]. This disruption allows the entrapped nucleic acid molecules to efficiently 

escape to the cytoplasm.
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3.2.1 Formulations—The lack of driving forces such as electrostatic or hydrophobic 

interactions results in a low encapsulation of ONs in neutral liposomes with a conventional 

thin-film lipid rehydration protocol. One of the strategies to increase encapsulation 

efficiency of ONs is chemical modification which makes the therapeutics more lipophilic. 

Lopez-Berestein and colleagues have demonstrated the effective encapsulation of P-ethoxy 

ONs in neutral liposomes composed of DOPC [39, 40]. The P-ethoxy ONs can be easily 

incorporated into liposomes with the film rehydration method with an efficiency up to 95% 

[39]. The mechanism of high encapsulation is unknown. The alternative strategy is to 

harness the strength of formulation technologies to increase the encapsulation efficiency.

3.2.1.1 Minimal volume entrapment: Minimal volume entrapment (MVE) liposomes are 

prepared by thin-layer lipid hydration and sonication in highly concentrated ON solutions 

[77]. In order to enhance the encapsulation efficiency, the hydrated ON/liposome and free 

ONs could be further mixed with free liposomes and sonicated. This preparation method has 

resulted in a relatively high encapsulation efficiency in cardiolipin/phosphatidylcholine/

cholesterol (0.5:10:7) liposomes with 50%-60% encapsulation of the initial input [77]. The 

inclusion of negatively charged lipid cardiolipin in the formulation adds a repelling force 

between the lamellar layers and thus increases the entrapment volumes of the liposomes. 

Although high encapsulation efficiency was achieved with the MVE technology, the neutral 

liposomes only rendered limited benefits regarding the intracellular accumulation of the 

ONs compared with free ONs and are cell line dependent. An eighteen fold increase of 

intracellular accumulation of ONs was observed in lymphoma MOLT-3 cells compared with 

free ON treated cells, whereas only a fourfold increase was observed in SKVLB cells [78].

3.2.1.2 Reverse-Phase Evaporation: Liposomes prepared by reverse-phase evaporation are 

prepared by direct hydration of the lipid from an organic solvent [45, 79]. The lipids are 

dissolved in a partially water-miscible solvent such as ether or mixtures of chloroform and 

methanol. Aqueous solutions with ONs are mixed with the organic solvent/lipids to form an 

emulsion, offering a large interface for lipid and ONs to interact. The liposomes are then 

formed by removal of the organic solvent under liquid nitrogen or a rotary evaporator. This 

method can generate relatively smaller unilamellar liposomes with high entrapment volumes 

[80]. Neutral liposomes containing dipalmitoylphosphocholine/cholesterol/dipalmitoyl-DL-

α-phosphatidyl-L-serine (4:3:4) could encapsulate as much as 20% of the input dose of ONs 

[81].

3.2.1.3 Detergent Dialysis: Detergent dialysis liposomes are prepared by co-solubilizing the 

lipids and ONs in an aqueous solvent in the presence of detergent, followed by removal of 

the detergent by dialysis [82]. The thin-layer lipid film is rehydrated by the buffer system 

containing ONs and the appropriate detergent to generate a micellar structure. Non-ionic 

detergents with a high critical micellar concentration such as octylglucoside are employed so 

that they do not interact with nucleotides or lipids and can be easily removed through 

dialysis [83]. However, this formulation method usually results in a low entrapment 

efficiency of ONs with only about 10% encapsulation in dioleylphosphatidylethanolamine/

cholesterol/oleic acid liposomes [46].
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3.3 Ionizable Lipids

Although the use of neutral liposomes as ON carriers often leads to extended serum 

clearance time, the delivery efficiency is often inferior to that of cationic liposomes due to 

the lack of endosomal disruption capacity. To address this dilemma, an ideal liposome 

would be one that (1) carries a positive charge during the nucleic acid loading, (2) loses its 

charge after administration and before entry into the cells and (3) regains its positive charge 

after entering the endosomal compartment for the formation of ion-pairs between the 

endosomal membrane and the carrier lipid. The “smart” lipid will have to be protonated or 

deprotonated based on the environmental conditions. pH is one of the parameters that can 

distinguish these conditions. pH-sensitive ionizable lipids have therefore been developed to 

accommodate the need to deliver siRNAs [24, 84-86] and ONs [69, 82, 87]. Generally, two 

important factors are considered in the rational design of ionizable lipids: (1) the pKa value 

of the head group which determines the pH condition at which the lipid gets protonated or 

deprotonated; and (2) the lipid capacity to induce the hexagonal HII phase structure when the 

ionized lipid interacts with membrane lipids [88].

Semple et al. have adapted the medicinal chemistry approach which uses a structure-activity 

relationship as the guideline to direct rational lipid design. The design was based on the 

putative mechanism of action that ionizable cationic lipids disrupt the endosome through 

ion-pair formation with anionic lipids in the endosomal membrane. A lipid head group pKa 

of <7.0 achieves better encapsulation at acidic pH and neutral surface charge at 

physiological pH. A series of derivatives were developed based on the ionizable cationic 

lipid 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA) which is highly effective at 

delivering siRNA in rodents and non-human primates [86, 89]. The derivatives were 

synthesized by changing the hydrocarbon chains, the linker, and the headgroup of 

DLinDMA. By adjusting the number of cis double bonds in the chain, it was determined that 

a linoleyl lipid containing two double bonds per hydrocarbon chain was the most potent. By 

introducing chemical structures that were expected to exhibit different levels of chemical or 

enzymatic stability and different hydrophobicities, it was determined that alkoxy-containing 

lipids showed higher activity than ester-containing lipids. This is probably due to the fast 

hydrolysis rate in vivo. The distance between the head group and the linker can affect pKa of 

the molecules as well as the charge presentation. For example, Insertion of a methylene 

group into DLin-K-DMA makes a four times more potent lipid (DLin-KC2-DMA) [88]. By 

adjusting the size, acid-dissociation constant and number of ionizable groups, it was 

determined that the dimethylamino groups in the DLinDMA show the highest activity 

compared to piperazino, morpholino, trimethylamino and bis-dimethylamino groups. The 

rational approach, as opposed to a library-based screening process, has systematically 

explored how changing functional elements in the lipid structure affect delivery efficiency.

In follow-up studies, Jayaraman et al. maintained the unsaturated dilinoleyl chain and 

modified the head groups to investigate the structure-activity correlation [90]. A pKa-

activity relationship emerged based on the Factor VII silencing study performed in vivo. The 

compound (DLin-MC3-DMA) with the highest delivery potency (ED50=0.03mg/kg) 

contained a head group of pKa=6.44. This pKa allowed the lipid nanoparticles to display 

minimal charges during blood circulation (pH 7.4) and reach maximum charges in the acidic 
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endosome (pH 5.5). Unfortunately, this trend has its limitations and may not apply to other 

cationic lipid systems. In an effort to increase the biocompatibility of these lipid 

nanoparticles, Maier et al. incorporated the ester bond as a biodegradable feature in the lipid 

structure [91]. The lipid nanoparticle comprised of such lipids demonstrated rapid 

elimination rates in plasma and tissue while maintaining its delivery potency.

3.3.1 Formulation—Ionizable lipids show the properties of cationic lipids and neutral 

lipids at different pH conditions. This feature has been well harnessed to encapsulate nucleic 

acids. In 2001, Semple et al. reported a formulation that prepares “stabilized antisense-lipid 

particles” (SALP) [69]. In this formulation, the ionizable lipid dioleoyldimethylammonium 

chloride (DODAC), the neutral lipid distearoylphosphatidylcholine (DSPC), cholesterol and 

PEG-CerC14 were solubilized in an ethanol solution while the ONs were dissolved in 100% 

ethanol. The lipid mix stock (DSPC/Cholesterol/DODAP/PEG-CerC14, 25:45:20:10) was 

then slowly added to the ONs in pH 4.0 acetate buffer at 65°C. The mixture was dialyzed 

against acetate buffer to remove the ethanol followed by dialysis against HEPEs buffer to 

neutralize the pH and remove surface-adsorbed ON. This formulation could encapsulate up 

to 70% of the input dose. The lipid nanoparticles were typically 110±30 nm in diameter. 

Since this work is mostly done commercially, the formulation process is conducted in a way 

that can be scaled up to an industrial level.

3.4 Lipid Composite Nanoparticle

As nanotechnology for biomedical applications progresses, a series of novel materials with 

distinguished biological and physicochemical properties have been developed. While there 

may never be one omnipotent carrier material that can overcome all extracellular and 

intracellular barriers in vivo while realizing delivery selectivity, several materials of diverse 

functionalities and physicochemical properties may be incorporated into a single nano-

formulation to overcome these numerous barriers. This approach allows the use of materials 

that have low transfection capacity, to tackle other challenges during the transfection process 

in vivo. Formulations that adhere to this multicomponent strategy are thus referred to as 

composite nanoparticles. Lipid composite nanoparticles are some of the most investigated 

formulations due to the versatility of the lipids used. Virtually all of the physicochemical 

properties of each material are considered when preparing a reproducible and well-

controlled fabrication protocol.

Li et al. formulated ONs into a core-membrane structured lipid nanoparticle [47] based on 

the lipid-polycation-DNA (LPD) formulation that was developed by Gao et al. [92]. The 

defined structure of the nanoparticle was achieved by a multiple-step, self-assembly 

procedure. ONs were complexed by the cationic polypeptide protamine to form a negatively 

charged polyplex. The charge of this polyplex allowed for a cationic lipid surface coating. 

The lipid nanoparticles were then further stabilized by post-insertion of DSPE-PEG. The 

core structure supported the lipid coating of the cationic liposome, allowing up to 20% (mol 

%) of the DSPE-PEG to be inserted in the membrane. Although the PEGylated LPD showed 

compromised cellular uptake compared with non-PEGylated cationic LPD, the presence of a 

targeting ligand could increase the delivery efficiency and selectivity of the system [47]. A 
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similar formulation was also reported by Junghans et al. to deliver a c-myc antisense ON to 

U937 cells [93].

Ko et al. reported a similar core-membrane formulation for brain-targeted ON delivery [94]. 

The core of the nanoparticle is the polyplex formed by polyethylenimine and ONs. The 

PEI/ON core was adjusted to bear a positive charge so that anionic liposomes (1-

Palmitoyl-2-Oleoyl-sn-Glycero-3-Phospho-rac-91-glycerol (POPG)/POPC/cholesterol/

DSPE-PEG2000 3.7:3:3:0.3 mol ratio) would spontaneously coat the polyplex and form a 

similar LPD structure. To realize brain-targeted delivery, the distal end of PEG was 

conjugated with a monoclonal antibody against the transferrin receptor on the blood-brain 

barrier. This targeting ligand was meant to carry the nanoparticle through the blood-brain 

barrier via transcytosis [95]. The formulation has shown mildly extended blood circulation, 

with 10% of the injected dose remaining in the blood 60 minutes after intravenous injection 

and 0.3% of the dose accumulated in the brain per gram of brain tissue. As an alternative 

strategy to induce lipid coating, which is normally induced by electrostatic interaction 

between the polyplex and liposomes, Yang et al. reported the use of hexadecenal-PEI as a 

condensing agent to complex with ONs [96]. The resulting polyplexes have hexadecenal 

chains at the surface of the complex which induce and stabilize the liposome coating. It was 

demonstrated that the hexadecenal-PEI conjugate with pH-sensitive aldehyde groups 

increased the stability of the nanoparticle and thus resulted in higher protection of ONs in 

the presence of serum [96].

McMahon et al. fabricated an artificial high density lipoprotein nanoparticle using a 5nm 

gold nanoparticle template [97]. The gold nanoparticle was mixed with Apolipoprotein A-I 

which subsequently stabilized the lipid mix on the surface of the gold nanoparticle, forming 

a lipid layer. The cholesterylated ONs were then loaded on the surface of the nanoparticle by 

insertion of the hydrophobic part into the lipid membrane of the artificial lipoprotein 

nanoparticle. The final particle with ONs loaded is around 30nm. The nanoparticle was used 

to deliver anti-miR210 ONs to the PC-3 cells and caused an 80% reduction in cellular 

miR-210 levels [97]. Since the nanoparticle has shown serum stability and its capacity to 

protect ONs despite the payload being attached to the surface of the carrier, it holds potential 

to deliver ONs to the liver because Apolipoprotein A-I is a natural ligand for hepatocytes.

4 Therapeutic Applications of ONs

4.1 Cancer

Antisense ONs are the most extensively studied therapeutics in ON-based anti-cancer drugs. 

Over 90 clinical trials have been conducted to evaluate the anti-cancer efficacy of ON-based 

therapeutics [98]. However, the majority of the trials are in phase I/II, which are only for 

toxicity evaluation and dose escalation studies. Only a few of the drugs were tested in phase 

III clinical trials, which used chemically modified ONs administered without carriers. 

Unfortunately, there are still no ON-based drugs that have been approved by the FDA for 

the treatment of cancer. The development of liposome assisted ON therapeutics is still in its 

infancy regarding clinical translation. So far, there are only three kinds of liposomal ONs 

tested in clinical phase I trials. Since 2001, the National Cancer Institute has initiated a 

phase I trial in patients with advanced oral squamous cell carcinoma using a DC-Chol 
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liposome to deliver EGFR antisense ON. NeoPharm Inc. has finished three phase I clinical 

trials to test the efficacy and maximum tolerated dose for a cationic lipoplex formulation 

loaded with anti-raf1 ON [99]. Bio-Path has exploited neutral liposomes to deliver antisense 

ON against growth factor receptor bound protein-2, which have been evaluated in phase I 

for the treatment of leukemia.

Compared to the number of clinical trials that test liposomal ON based therapeutics, more 

preclinical trials are conducted to evaluate the anti-cancer efficacy in tumor bearing animal 

models. ProNAi Therapeutics has developed a liposome-based ON formulation that 

demonstrated anti-tumor efficacy in vivo [100]. The therapeutic ON is a 24-mer, chemically 

unmodified DNA nucleotide sequence, which is designed to be complementary to a non-

coding, non-transcribed region of the BCL-2 gene. The hybridization of DNA led to the 

inhibition of transcription of BCL-2 and growth inhibition in cancer cells. In order to 

achieve systemic delivery, the ON, namely PNT100, was encapsulated in a series of so-

called amphoteric liposomal formulations with similar technology to that reported by 

Semple et al. [69]. These formulations included pH-sensitive cationic, anionic, fusogenic 

and bilayer-stabilizing lipids. A formulation composed of 1-palmitoyl-2-oleoyl-sn-glycero-3 

phosphocholine (POPC)/ 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)/ 

cholesteryl hemisuccinate (CHEMS)/ cholesteryl-4-[[2-(4-morpholinyl)ethyl]amino]-4-

oxobutanoate (MOCHOL) (6:24:23:47 mol ratio) was selected based on the antitumor 

activity tested in a PC-3 tumor-bearing animal model when used in combination with 

docetaxel. Since the formulation was developed for clinical evaluation, sophisticated 

optimization studies were conducted to test the dosing schedules, dose-escalation, and the 

resulting pharmacokinetics, pharmacodynamics, and immune response [100].

Griveau et al. reported the use of neutral solid lipid nanoparticles in an oil/water 

microemulsion system formed by polyethylene glycol hydroxystearate (surfactant) and 

lecithin (surfactant)-stabilized triglycerides (oil) [101]. The microemulsion was prepared 

above the phase inversion temperature of the oil by vigorous mixing, and the nanoparticles 

were formed when the temperature was dropped below the phase inversion temperature. The 

surface of the nanoparticles was post-inserted with DSPE-PEG chains that were 

functionalized with an arginine and lysine papillomavirus-derived peptide. This allows the 

adsorption of ONs on the surface of nanoparticles, but has two inherent defects. Firstly, 

surface-loaded ONs are directly exposed to serum nucleases that could cause payload 

degradation. Secondly, charge-based loading of ONs could be easily displaced by negatively 

charged proteins in the serum, causing early release of the payload. The author attempted to 

resolve the first issue by using nuclease-resistant locked nucleic acid ONs with methylene 

bridges connecting the 2’ oxygen and 4’ carbon of the ribose, but the second issue remained 

unsolved. This nanoparticle has demonstrated delivery of anti-miR210, anti-miR221 and 

anti-miR21 to glioblastoma UM87 cells in vitro in a proof of concept study. Structurally 

similar lipid nanoparticles have been developed by Siddiqui et al. to co-deliver doxorubicin 

and antisense ONs against glucosylceramide synthase (GCS), an enzyme related to drug 

resistance [102]. The nanoparticle was tested in an NCI/ADR-RES ovarian cancer cell line. 

The delivery of ONs against GCS reversed the drug resistance status and sensitized the cells 

to the doxorubicin treatment.
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4.2 Immunotherapy

ONs containing unmethylated CpG dinucleotide motifs are recognized by the innate immune 

system through the pattern recognition receptor Toll Like Receptor 9 (TLR9) located inside 

the endosome [103]. Activation of TLR9 will elicit strong cellular and humoral immune 

responses against a variety of antigens [104]. Although CpG ON is licensed as a clinical 

adjuvant, it is a well-established adjuvant that can be used as a stand-alone agent or vaccine 

adjuvant for the treatment of cancer [105] or infectious disease [106-108]. In contrast to the 

delivery of ONs which often require intravenous administration to access target sites, 

delivery of CpG-containing ONs is insensitive to the route of administration and 

pharmacokinetic profiles. Even the presence of low dose lipid nanoparticle-encapsulated 

CpG could be efficiently taken up by immune cells (mostly macrophages, dendritic cells) 

and induce an immune response regardless of intravenous or subcutaneous administration 

[109]. Therefore, the therapeutic efficacy of CpG ON delivery stems mostly from the 

protection of ONs by lipid nanoparticles as well as the enhanced uptake of CpG ONs by the 

immune cells.

It is also interesting to note that some lipid formulations could further boost the immune 

response elicited by the CpG motif in the ON as demonstrated by Bramson et al. They 

reported that the intravenous administration of naked mitogenic ON (INX-6295) or SALP-

formulated INX-6295 could both activate the expansion and boost the cytolytic activity of 

natural killer (NK) cells in the liver of immune-competent mice. Moreover, a weakly 

mitogenic ON (INX-6300) could also elicit such effects when formulated in SALP, whereas 

the INX-6300 or SALP alone had no effect. The result indicated the formulation of SALP, 

combined with ON, may activate an additional pathway for immunostimulation regardless 

of the CpG motif. The formulation and ON-based therapy could synergistically work to 

provide a successful platform for the development of novel therapeutics for immunotherapy 

[110]. Inex Pharmaceuticals Corporation has since adapted this SALP technology as an 

adjuvant and have attempted to conjugate antigenic proteins to this adjuvant formulation as a 

vaccine therapy [111].

4.3 Liver metabolic disorders

The liver plays an important role in carbohydrate, lipid, and protein metabolism. Therefore 

many metabolic disorders can be corrected by directly delivering therapeutics to 

hepatocytes. The liver has sinusoidal blood vessels with fenestrated endothelium, allowing 

delivered nanoparticles to access the hepatocytes as long as they are not captured by Kupfer 

cells. The liver anatomy therefore provides a great chance to develop liver-targeted nano-

formulations for medical intervention of many metabolic disorders.

Hatakeyama and Harashima reported the delivery of anti-miRNA122 to the hepatocytes 

using a pH-sensitive multifunctional envelope-type nano device (MEND). This lipid based 

formulation was composed of an ionizable lipid, namely YSK05, which contained one 

tertiary amine that confers the pH-sensitive property and a long, unsaturated carbon chain to 

achieve a cone-shaped lipid structure [112]. That cone-shaped structure could facilitate 

endosomal escape and promote transfection efficiency. Anti-miRNA oligos were 

encapsulated into the ionizable lipid using a similar approach to that reported by Semple et 
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al. [69]. Briefly, YSK05, cholesterol and 1,2-dimyristoyl-sn-glycerol-methoxypolyethylene-

glyco 2000 ether (PEG-DMG) (70:30:3 mol ratio) was solubilized in 90% (V/V) t-BuOH 

solution. The lipid was mixed with ONs in the presence of citrate buffer (pH 4.0) with 

vigorous agitation. The t-BuOH was removed by ultrafiltration and the buffer was 

exchanged with PBS (pH 7.4) [113]. The anti-miRNA encapsulation efficiency in the 

system was measured as up to 90% of the input dose. Three injected doses of YSK05-

MEND loaded with anti-miR122 resulted in 90% downregulation of miR122. It is notable 

that this downregulation continued until 12 days after the first injection. The therapeutic 

effect, which is the decline of serum cholesterol levels, lasted until day 18. However, the 

longevity of the anti-miRNA effect is probably due to the chemical modification of ONs 

with 2-O-Me and phophorothioate linkages which allowed the anti-miRNA to be stable in 

the hepatocytes for two weeks [113].

4.4 Pulmonary diseases

Lipid nanoparticles have also been used to deliver ON therapeutics to treat respiratory 

disease. The anatomical structure of the lung, allows delivery of therapeutics via the 

intravenous or pulmonary pathway. Ma et al. have attempted to use the LPD formulation to 

systemically deliver ONs against intercellular adhesion molecule-1 (ICAM-1) as a therapy 

to suppress lung inflammation. Three kinds of PEG-free lipid coatings were used to coat the 

protamine/ON polyplex. These included DOTAP alone, DOTAP/cholesterol (1:1 mol ratio) 

and DOTAP/DOPE (1:1 mol ratio). The biodistribution study indicated that DOTAP/DOPE-

coated LPD nanoparticles showed the highest lung accumulation (23%). It was also 

demonstrated that the delivery of CpG-free ONs in the cationic LPD formulation did not 

induce pro-inflammatory cytokines such as TNF-α, IL-1 and IFN-γ. This suggested that the 

cationic liposome-related immunostimulatory activity was mostly related to the CpG motif 

of the cargo. The systemic delivery of anti-ICAM-1 ONs using LPD nanoparticles 

efficiently suppressed the ICAM-1 mRNA that is induced by endotoxin, which suggested 

that the system could be adapted to treat pulmonary disease [114]. However, a failure has 

also been reported by Griesenbach et al., who tested the capacity of a cationic lipid 

Genzyme lipid 67 (GL67) to deliver siRNA and ONs to the airway epithelium [115]. GL67 

is a “gold-standard” agent for lung gene transfer and was considered an opportunity to treat 

cystic fibrosis. However, no consistent target gene downregulation by either siRNA or 

antisense ON was observed after intranasal instillation of the lipoplex. In order to extend the 

drug exposure time, they used a catheter-mediated perfusion system to administer lipoplexes 

to the nasal cavity. This approach resulted in the transfection of nasal airway epithelial cells 

using ONs, but not siRNA. In contrast, when an antisense ON against the epithelial sodium 

channel, a therapeutic target of cystic fibrosis, was delivered using GL67 liposomes, no 

transfection or function was detected. Based on the high transfection efficiency in vitro by 

GL67 liposomes, the failure of in vivo transfection is most likely due to the incompatibility 

of the liposome formulation for pulmonary delivery. Stenton et al. delivered antisense ONs 

against the SKY gene encapsulated in aerosolized DOTAP/DOPE lipid nanoparticles. The 

tyrosine kinase SKY is involved in the signaling pathway of allergic asthma. Treatment of 

rats with a nebulized liposome formulation inhibited mRNA and protein expression in 

alveolar macrophages [116]. The therapeutic efficacy of this formulation was also evaluated 

in two animal models of diseased airway inflammation. It was demonstrated that the 
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treatment suppressed the inflammation and reduced immune cell infiltration in the airway 

[117].

4.5 Infectious disease

ON-based therapeutics are proven to be promising in treating infectious disease [118, 119]. 

The use of antisense ONs as an antiviral agent was first demonstrated in 1978 by Zamecnik 

and Stephenson when they observed that a 13-mer ON could block Rous sarcoma virus 

replication [120]. Since then, ON-based agents have been widely tested as anti-viral agents 

in different viral diseases in vitro or in vivo, such as Hepatitis B [121, 122], human 

papillomavirus [123, 124] , human immunodeficiency virus [71, 125-129], and influenza 

virus [130-134]. Antisense ONs are usually developed based on some defined viral elements 

including structural, translational, and assembly elements. Therefore, inhibition of viral 

translation, replication or assembly is expected to have some critical therapeutic effect for 

treating viral infection. Due to the safety concerns, most of these studies were performed in 

cell culture and the pharmacokinetics of ON-based antiviral agents still remains an issue in 

drug development.

5 Conclusion and Future Directions

Ever since researchers came to realize that lipid nanoparticles could be utilized as effective 

delivery systems for nucleic-acid based therapeutics such as DNA, RNA and siRNA, an 

explosion of studies have been conducted to seek the optimal materials and formulations to 

achieve higher delivery efficiency. Early studies mainly focused on transfection in cell 

culture, which mechanistically unraveled the critical intracellular barriers to transport of 

nucleic acids from the cellular membrane to the cytoplasm or nucleus. Novel cationic lipids 

were synthesized with the intention to overcome these barriers. However, transfection 

mediated by these cationic lipids was only observed in local administration sites or in the 

“first-pass” organs such as the lung and liver after systemic administration. This was 

followed by the development of stealth liposomes and ionizable liposomes with higher 

serum stability and extended circulation time, which are required for liposomes to circulate 

long enough to access disease sites. This progress clearly paved the way for the successful 

clinical translation of the technology.

In retrospect, clinical trials of ON-based therapy rarely exploited liposomal carriers for 

enhanced delivery, although many liposomal formulations have shown great potential in the 

pre-clinical trials. Instead, these studies focused on chemical modifications to increase 

serum stability and cellular permeability of the molecules. An extremely high dose of the 

therapeutics needed to be administered in order to achieve efficacy, which was often 

accompanied with adverse effects owing to non-targeted delivery. One of the most important 

reasons for this phenomenon is probably the difficulty of large scale production of liposomal 

ON with good manufacturing practice (GMP) standards. These formulations are often 

synthesized via multiple compositions and certain preparation procedures, which pose 

obstacles to commercial manufacture and clinical translation.

Despite these hurdles, the recent success of rational lipid design and library-based screening 

has demonstrated a model approach that could streamline the process of novel material 
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synthesis and testing. It is anticipated that a myriad of sophisticated lipids will emerge in the 

near future with high delivery efficiency, tissue-targeting specificity, controlled-release 

properties, and biocompatibility. From a manufacturing perspective, exploitation of a 

microfluidics system for nanoparticle preparation ensures upscale manufacturing with 

minimal batch to batch variation. These sophisticated technologies and approaches will 

significantly boost the progression of ON-based therapies, potentially making them 

mainstream drugs that could match or even exceed the achievements of small molecule 

drugs.
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Figure 1. 
Schematic illustration of trafficking of lipid nanoparticles based antisense-ON delivery to 

the cells.
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Figure 2. 
Schematic pictures of the local arrangement in the interior of the lipid/DNA complex (A); 

Cryo-TEM images of fusion of DOTAP/Cholesterol (1:1) liposomes induced by the addition 

of ONs. Black arrowheads indicates membrane junctions and white arrowheads in dicates a 

paired membrane. Scale bar: 50nm (B); Schematic model of lipoplex formation (C). Figure 

2A was adapted from ref (45) and Figure 2B and 2C was adapted from ref (46) with 

permission.
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Figure 3. 
Schematic illustration of the uptake pathway of the cationic lipid/ON lipoplex and the 

mechanism of ON endosomal release. Adapted from ref (53) with permission.
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