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Abstract

Traumatic brain injury (TBI) is a major cause of death and disability. The current front-line 

imaging modality for TBI detection is CT, which reliably detects intracranial hemorrhage (fresh 

blood contrast 30-50 HU, size down to 1 mm) in non-contrast-enhanced exams. Compared to CT, 

flat-panel detector (FPD) cone-beam CT (CBCT) systems offer lower cost, greater portability, and 

smaller footprint suitable for point-of-care deployment. We are developing FPD-CBCT to 

facilitate TBI detection at the point-of-care such as in emergent, ambulance, sports, and military 

applications. However, current FPD-CBCT systems generally face challenges in low-contrast, 

soft-tissue imaging. Model-based reconstruction can improve image quality in soft-tissue imaging 

compared to conventional filtered backprojection (FBP) by leveraging high-fidelity forward model 

and sophisticated regularization. In FPD-CBCT TBI imaging, measurement noise characteristics 

undergo substantial change following artifact correction, resulting in non-negligible noise 

amplification. In this work, we extend the penalized weighted least-squares (PWLS) image 

reconstruction to include the two dominant artifact corrections (scatter and beam hardening) in 

FPD-CBCT TBI imaging by correctly modeling the variance change following each correction. 

Experiments were performed on a CBCT test-bench using an anthropomorphic phantom emulating 

intra-parenchymal hemorrhage in acute TBI, and the proposed method demonstrated an 

improvement in blood-brain contrast-to-noise ratio (CNR = 14.2) compared to FBP (CNR = 9.6) 

and PWLS using conventional weights (CNR = 11.6) at fixed spatial resolution (1 mm edge-

spread width at the target contrast). The results support the hypothesis that FPD-CBCT can fulfill 

the image quality requirements for reliable TBI detection, using high-fidelity artifact correction 

and statistical reconstruction with accurate post-artifact-correction noise models.
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1. Introduction

Traumatic brain injury (TBI) is a major cause of death and disability, with ∼2.2 million 

TBI-associated Emergency Department visits reported in the United States in 2010, and 

increasing by 70% during the period 2001-2010.1 In the current clinical landscape, multi-

detector CT (MDCT) is the front-line modality for diagnosis of fresh bleeds in acute TBI, 

providing reliable detection of fresh blood (contrast 30-50 HU, size 1-10 mm). While 

MDCT is well suited to the Emergency Department, a system with reduced cost, greater 

portability, and small footprint suitable to the point-of-care in sports, military, ambulance, 

urgent care, and ICU theatres could offer significant benefit to early detection and proper 

direction of therapy. Flat-panel detector (FPD) cone-beam CT (CBCT) has emerged in the 

past decade for a variety of specialty diagnostic applications, including imaging of the 

breast,2 musculoskeletal extremities,3 and head and neck.4 However, current FPD-CBCT 

systems face major challenges to low-contrast soft tissue imaging performance, including 

higher noise, and a higher level of artifacts compared to MDCT.

Advanced model-based reconstruction (MBR) demonstrates major improvement in image 

quality over conventional 3D filtered backprojection (FBP) in FPD-CBCT imaging of the 

soft tissue.5 First, MBR makes better use of the measurements by incorporating a more 

sophisticated forward model of factors such as measurement noise, spectral effects, and 

complex system geometries. Moreover, the regularization terms in MBR allow incorporation 

of a wide spectrum of additional information to further improve image quality, ranging from 

general image roughness to incorporation of patient- specific prior images. Specifically in 

FPD-CBCT imaging of TBI, artifact corrections are essential to the challenging task of TBI 

detection; however, such corrections impart non-negligible noise amplification (e.g., 

increasing noise by more than a factor of 2) in FBP as shown in Fig. 1.6 Potential solutions 

include sinogram denoising by adaptive filtering techniques7 or by minimization of a cost 

function for the optimal sinogram.8

Alternatively, we approach the problem with a MBR framework. Specifically, we extend a 

penalized weighted least-squares (PWLS) image reconstruction framework to include the 

effect of the two dominant artifact corrections (scatter and beam hardening) in FPD-CBCT 

imaging of TBI. We first model the underlying variations in the measurement noise 

characteristics through each correction, and then design novel weighting in PWLS to 

compensate for such variations. Huber regularization was used to maximize TBI 

detectability. Previous analogous work includes Zhu et al, who studied the change in 

measurement noise characteristics in scatter correction and built a PWLS image 

reconstruction objective with quadratic regularization, showing promising improvements in 

chest CT.9 In this work, experiments were performed on a CBCT test-bench using an 

anthropomorphic head phantom emulating intra-parenchymal hemorrhage in acute TBI. 

Measurement data with the two dominant corrections and all four corrections in Fig. 1 were 

used to compare the image quality of the proposed PWLS method, FBP, and PWLS using 

the traditional weights (i.e., raw measurements).
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2. Methods

2.1 PWLS and artifact corrections

In this work, we consider a scenario where raw measurements are corrected for x-ray scatter 

and beam hardening before entering PWLS reconstruction.

As shown in Fig. 2, y, ys, ls, and lbh denote a vector of the raw measurements, scatter-

corrected measurements, scatter-corrected line integrals, and beam-hardening-corrected line 

integrals, respectively, g is a vector of measurement-dependent gains, and μ̂ is a vector 

representing the reconstructed image. We formulate the PWLS objective function as

(1)

where the matrix A denotes the linear projection operator, l is a vector of all line integrals, 

W is the diagonal weighting matrix with the ith diagonal element Wi the inverse of the 

variance of li, R(μ) is a Huber regularization term that penalizes first-order neighbor spatial 

differences in the image volume. Assuming Poisson noise in the measurements (i.e., no 

correction), the PWLS weights are originally chosen simply to be the raw measurements 

( ).10 This weighting mechanism less heavily weights line integral errors associated 

with rays that pass through more dense objects and have lower signal-to-noise ratio, thereby 

reducing noise in the reconstructed image. We refer to the PWLS using these original 

weights as PWLS-O. However, the Poisson noise assumption no longer holds in the artifact-

corrected measurements.

2.2 Modeling variance change in scatter correction

Most scatter correction algorithms essentially subtract an estimate of the scatter fluence 

from the raw measurements, estimated by either experimental measurements (e.g., beam 

blockers11 or primary fluence modulators12) or simulations (e.g., analytical13 or Monte 

Carlo models14). We denote S̄, P̄, and ny as the mean scatter, mean primary, and Poisson 

noise in the raw measurements y, and we assume y ∼ Poisson (S̄ + P̄) and thereby ny = y − S̄ 

− P̄. The scatter-corrected line integrals can be written with a first-order Taylor 

approximation:

(2)

One could also consider two additional sources of noise: 1) error between the true mean 

scatter S̄ and the scatter estimate S; and 2) variation associated with the gain g. These two 

noise sources are ignored in the current work, as they tend to be small compared to the 

measured quantum noise, given accurate scatter correction (e.g., the high-fidelity Monte 

Carlo correction14 in Fig. 1) and gain correction. The variance of the scatter-corrected line 

integrals can then be written as:
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(3)

Given the variance of the uncorrected line integrals, the ratio of the two sources of variance 

is written as follows:

(4)

This represents a dramatic variance change for measurements with high SPR (with SPR as 

high as 9 in the skull base, giving a 100-fold change in variance).

2.3 Modeling variance change in beam hardening correction

Beam hardening correction may include correcting water-induced artifacts (“water” 

correction) and / or bone-induced artifacts (“bone” correction).15,16 In this preliminary 

work, the variance change due to water correction is first studied. While water correction 

alone substantially reduces cupping artifacts in the brain, bone correction could further 

reduce artifacts such as dark banding between bones, and modeling the variance change in 

bone correction is the subject of ongoing future work. Water correction can be regarded as a 

remapping of measured line integrals based on the calibration of the beam hardening 

response in water from either experimental measurements or an analytical model. The 

remapping can be modeled as a polynomial function (with coefficients αm) and the beam-

hardening-corrected line integrals could then be written as:

(5)

Again, the small noise associated with the calibration estimate and gain correction are 

ignored. The variance of the beam-hardening-corrected line integrals can then be written as:

(6)

In our experiments, (6) yields an additional factor of up to 1.2 in variance changes of the line 

integrals.

2.4 Proposed PWLS method using corrected weights: PWLS-C

Considering the analysis above for scatter and beam hardening corrections to the raw 

measurements as in Fig. 2, the variance after both corrections is:
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(7)

Using the relationship between the PWLS weights and the variance, the corrected PWLS 

weights can be derived as:

(8)

by first replacing var(y) with ȳ (assuming Poisson noise in the raw measurements) and then 

approximating ȳ by y. Essentially, PWLS with corrected weights (denoted PWLS-C) adjusts 

the weights according to the variance changes imparted by artifact corrections, while PWLS-

O weights the corrected-measurements according to the variance before corrections. One 

could perform the same analysis for scenarios other than in Fig. 2 (e.g., beam hardening then 

scatter correction, iterations of two corrections, etc.). Since the proposed objective function 

is convex and differentiable, it is solved via the ordered-subsets separable quadratic 

surrogates algorithm,17 which permits highly parallelizable image updates.

3. Results and Breakthrough Work

Imaging studies emulating intra-parenchymal hemorrhages were performed on a CBCT test-

bench with a FPD (PaxScan 4343R, Varian, Palo Alto, CA) as shown in Fig. 3(a). A 580 

mm source-to-axis distance (SAD) and an 800 mm source-to-detector distance (SDD) were 

used to resemble a typical configuration for compact head CBCT system18. A custom 

anthropomorphic head phantom was carefully prepared. The phantom was first filled with a 

gelatin mixture to provide contrast equivalent to brain. Ventricle models were then prepared 

from wax with contrast equivalent to cerebrospinal fluid and placed in the gelatin mixture 

within the central cranial vault. Finally, rows of plastic spheres were placed in the gelatin 

mixture with diameters ranging from 1.5 mm to 12 mm encompassing a pertinent range of 

imaging tasks for detection of intra-parenchymal hemorrhages in acute TBI. The preparation 

resulted in a gelatin-plastic contrast closely simulating that of brain to fresh blood (∼50 

HU). The head phantom was scanned at 100 kVp, 0.4 mAs per projection with 720 

projections (0.5° angular step), and 0.556 × 0.556 mm2 pixel size. The raw projections were 

first corrected for scatter using a high-fidelity Monte Carlo correction,14 corrected for beam 

hardening using standard water correction,15 and then reconstructed using three methods: 

FBP, PWLS-O, and PWLS-C with 0.5 × 0.5 × 0.5 mm3 voxel size. Both PWLS methods 

used matched separable footprint projectors and backprojectors, and FBP used voxel-driven 

interpolating backprojector. To illustrate the different weighting mechanism in PWLS-O and 

PWLS-C, the ratio of the original weights to the corrected weights for an example projection 

(lateral) is shown in Fig. 3(b). Substantial variation in the weights can be seen throughout 

the head, with particularly large changes in the skull base (maximum ratio ∼400) where 

scatter and beam-hardening effects are most pronounced. Note that this image also shows 

the approximate variance changes through artifact corrections.

Dang et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2015 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Both FBP and PWLS methods carry a tradeoff between spatial resolution and noise via a 

given parameterization-namely, the cutoff frequency of the smoothing kernel for FBP and 

the regularization control parameter βR for PWLS. Therefore, images reconstructed by 

different methods were compared by first matching either spatial resolution or noise for fair 

comparison. Specifically, image noise was calculated as the standard deviation of the voxel 

values in a ROI (19 × 19 voxels) in a flat region of the brain (Fig. 3(c)) adjacent to a 

simulated structure of interest (simulated bleed; see Fig. 3). The axial spatial resolution and 

contrast were measured using a sphere (close to the noise ROI) using the method detailed in 

[5], involving a fit to the 3D edge spread function (ESF) averaged over a local cone and 

parameterized by the fit parameter σ (units mm, corresponding to the ESF “width”). Note 

that spatial resolution in the longitudinal (z) direction in FBP was also matched to PWLS 

methods by applying additional apodization in the z direction in FBP as in [5]. Figure 4(a) 

shows a clear reduction in noise with PWLS at matched spatial resolution; moreover, a 

further reduction of noise can be seen at all the spatial resolutions of interest after using the 

corrected weights. Similar results are found in the CNR-resolution tradeoff in Fig. 4(b), in 

which PWLS-C exhibited the best tradeoff among the three methods. Quantitative results are 

shown in Fig. 4(c), where PWLS-C exhibits the highest spatial resolution (e.g., at the edges 

of the spheres and ventricles) at matched CNR (∼12), and conversely, the lowest noise level 

at matched resolution (∼1 mm). The CNR was 9.6 (FBP), 11.6 (PWLS-O), and 14.2 

(PWLS-C) for this matched resolution (∼1 mm).

The noise-resolution performance of the different methods was also examined for the full 

artifact correction process in Fig. 1 using the fully corrected projections (“bone correction” 

in beam hardening correction not considered in this preliminary work). This reduced the 

remaining artifacts from lag and veiling glare (e.g., “comet” artifacts). Figure 5 shows FBP 

and PWLS-C images with spatial resolution (∼0.5 mm) matched for the largest sphere (in 

the axial slice in Fig. 4). PWLS-C images exhibited lower noise overall, increased CNR 

across all spheres (3.0-12 mm diameter), as well as reduced cone-beam artifacts. The CNR 

was 5.1 (FBP), 8.7 (PWLS-O), and 10.4 (PWLS-C) for this matched resolution (∼0.5 mm). 

For resolution matched at ∼1 mm, the CNR was 9.7 (FBP), 11.7 (PWLS-O), and 14.8 

(PWLS-C). Since lag and glare corrections also introduce some level of variance changes 

(small compared to scatter and beam hardening corrections), modeling the variance change 

in lag and glare corrections is expected to further improve image quality and is the subject of 

future work.

4. Conclusion

We have proposed a novel PWLS image reconstruction approach that: (1) provides accurate 

modeling of the underlying variations in measurement noise properties through the two 

dominant artifact corrections (scatter, beam hardening); and (2) utilizes a new weighting 

mechanism to compensate for correction-induced variations in the fidelity of the 

measurements. In test-bench experiments emulating intra-parenchymal hemorrhage in acute 

TBI, the proposed method demonstrated superior CNR-resolution tradeoffs in comparison to 

traditional methods including FBP and PWLS with traditional weights (raw measurements). 

Image quality obtained using the proposed method supports the hypothesis that FPD-CBCT 
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can provide soft-tissue image quality suitable to TBI detection and motivates further 

investigation in development of a dedicated point-of-care system for diagnosis of acute TBI.
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Figure 1. 
Illustration of the artifact correction process for FPD-CBCT imaging of TBI. The colormaps 

show the difference image before and after correction (units HU). Images on the right show 

a head phantom with simulated TBI with and without artifact correction, illustrating the 

benefit to image uniformity but amplifying noise by greater than a factor of 2. (Grayscale 

window: with correction [0, 150] HU; without correction [-240, -160] HU). The correction 

process combined with model-based reconstruction (with corrected weights, detailed below) 

is hypothesized to provide both high-fidelity artifact correction and low noise images (high 

CNR) suitable to the challenging task of TBI detection.
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Figure 2. 
Workflow of the artifact corrections and PWLS reconstruction method investigated in this 

work.
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Figure 3. 
(a) Experimental setup on a FPD-CBCT test-bench and an anthropomorphic head phantom. 

(b) Ratio of the original weights to the corrected weights for a lateral projection. Note the 

logarithmic grayscale. (c) ROI for measuring image noise and the sphere (12 mm diameter 

simulated bleed) for edge-spread function analysis on an axial slice in the center of the head.
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Figure 4. 
(a) Noise vs. spatial resolution for different reconstruction methods. Numbers on FBP curve 

and PWLS curves correspond to cutoff frequency and the exponents in βR (base 10), 

respectively. (b) CNR vs. spatial resolution; (c) ROI of images reconstructed by different 

methods at matched CNR (∼12) or at matched spatial resolution (∼1 mm). Parameters in 

PWLS methods: 100 iterations, 20 subsets per iteration, ± 10-4 mm-1 quadratic 

neighborhood in Huber loss function.
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Figure 5. 
FBP images (top row) and PWLS-C images (bottom row) using projections with a full set of 

four corrections (spatial resolution matched at ∼0.5 mm). Each row from left to right shows 

the axial, sagittal, and coronal slice, respectively.
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