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Abstract

One of the challenges associated with high-volume, diverse datasets is whether synthesis of open 

data streams can translate into actionable knowledge. Recognizing that challenge and other issues 

related to these types of data, the National Institutes of Health developed the Big Data to 

Knowledge or BD2K initiative. The concept of translating “big data to knowledge” is important to 

the social and behavioral sciences in several respects. First, a general shift to data-intensive 

science will exert an influence on all scientific disciplines, but particularly on the behavioral and 

social sciences given the wealth of behavior and related constructs captured by big data sources. 

Second, science is itself a social enterprise; by applying principles from the social sciences to the 

conduct of research, it should be possible to ameliorate some of the systemic problems that plague 

the scientific enterprise in the age of big data. We explore the feasibility of recalibrating the basic 

mechanisms of the scientific enterprise so that they are more transparent and cumulative; more 

integrative and cohesive; and more rapid, relevant, and responsive.
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In 2003, the U.S.-based National Science Foundation (NSF) received a report from a Blue 

Ribbon Advisory Panel on the importance of strengthening collaborative, electronic 

networks for science (Atkins et al. 2003). The advisory report was followed by an action 

plan from the NSF in 2007 announcing a “Cyberinfrastructure Vision for 21st Century 

Discovery” (National Science Foundation 2007). Both reports captured a vision for a 

collaborative, data-intensive research environment that—according to the NSF director at 

the time, Arden Bement—would transform every aspect of science from theory building 

within high-energy physics; to mapping new frontiers in molecular medicine; to supporting 

new interdisciplinary views of human endeavor within the social, behavioral, and economic 

sciences. The reports heralded the need to bring big data into the full pantheon of scientific 

endeavor, including medicine and the social sciences.

Big data in the life sciences and medicine

Two years after the release of the cyberinfrastructure report, the newly appointed director of 

the National Institutes of Health (NIH), Francis Collins, stressed that the development of 

high-throughput computing technologies would be an integral part of the NIH mission. 

Admittedly, Dr. Collins’s emphasis on big data technologies in the life sciences stemmed 

HHS Public Access
Author manuscript
Ann Am Acad Pol Soc Sci. Author manuscript; available in PMC 2015 August 18.

Published in final edited form as:
Ann Am Acad Pol Soc Sci. 2015 May 1; 659(1): 16–32. doi:10.1177/0002716215570007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from his observation that the gene sequencing technologies responsible for documenting the 

3 billion+ base pairs of the human genome had increased exponentially in computing speed 

while decreasing in cost (F. S. Collins 2010). The NIH was becoming aware that in the not-

so-distant future the availability of high-throughput computing technologies would create a 

clinical environment conducive to an entirely new type of biomedical enterprise. Thought 

leaders have referred to this as “4P Medicine,” or medicine that would use the power of data 

to become more predictive, preemptive, personalized (or some would say more precise), and 

participative than its industrial-age counterpart (Hood and Flores 2012; Shaikh et al. 2014). 

Data flowing back into the research enterprise from the natural laboratories of clinical 

practice could also inform a new era of basic discovery; one in which biomedical science 

and health systems research could be informed by real world application in a virtuous cycle 

of continuous improvement within a “rapid learning healthcare system” (Etheredge 2007).

At the same time, new technologies have been emerging in the consumer sphere that have 

been catalyzing a need to accommodate the influx of voluminous, and high-velocity, data 

streams in health and medicine. For example, the market from real-time “wearable devices” 

such as the Apple Watch® and the Fitbit® Daily Activity Tracker is expected to exceed $6 

billion by 2016 in the United States (Mearian 2012). The Food and Drug Administration has 

been actively engaged in discussions related to its role in monitoring the efficacy and 

reliability of these devices in medicine, while keeping a close eye on the privacy, security, 

and confidentiality issues associated with the collection of these data for research and 

marketing. Similarly, the number of office-based physicians reporting adoption of electronic 

health records (EHRs) rose precipitously from 17 percent in 2002 to 78 percent in 2013 due 

in large part to market incentives from the Health Information Technology for Economic 

and Clinical Health (HITECH) Act of 2009. The sociotechnical challenges of creating new 

clinical workflows that are enhanced by—and not impeded by—this data capacity will 

remain at the heart of research and engineering activities in the years to come (Robert Wood 

Johnson Foundation 2014).

With all of these innovations in data collection, what remains as a bottleneck is the analytic 

capacity to turn raw data into actionable information; or put more succinctly, to turn big data 

into knowledge. It was for this reason that the NIH launched the BD2K initiative (Ohno-

Machado 2014) in 2013. BD2K includes efforts not only to develop new methods and 

analytics but also to train biomedical and behavioral researchers in existing big data 

approaches, which are not represented in traditional research training programs.

Relevance of BD2K to the social sciences

The opportunities associated with moving big data to knowledge are relevant to the social 

sciences in two ways. First, the computational techniques needed to integrate and analyze 

voluminous amounts of data will be just as important in building a foundation for new 

knowledge in the social sciences as they are becoming in the physical sciences. The big data 

movement will require all disciplines to revisit their basic methodological and 

epistemological foundations in an era of data-intensive, networked science, and the social 

sciences will be no exception. In fact, the social and behavioral sciences have been criticized 

by the popular press recently for being unable to replicate some of the foundational studies 

Hesse et al. Page 2

Ann Am Acad Pol Soc Sci. Author manuscript; available in PMC 2015 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in their constituent disciplines (Winerman 2013). Other critics have bemoaned the slow pace 

of translation from laboratory to practice in the social sciences, and have noted that changes 

in the fabric of the underlying disciplines should be enacted to accelerate progress on 

important social problems (Baker, McFall, and Shoham 2009). Social science communities 

are joining other scientific disciplines in revisiting the roles of theory, publication, data 

sharing, intellectual property rights, knowledge accumulation, and public accountability as 

they reinvent themselves in the current era.

Second, the translation of data into knowledge is itself a social enterprise. Social science 

research is needed to understand how big data assets can be created, accessed, shared, and 

utilized for advances in knowledge across disciplines. The President’s Council of Advisors 

on Science and Technology explained it this way in their 2010 report on “Designing a 

Digital Future” in the United States and abroad: “One of the most striking features of the 

revolution enabled by the Internet and the World Wide Web over the last two decades is the 

extent to which it has been fueled by the contributions of millions of users, the vast majority 

of whom have little or no technological or programming prowess. … This is just the 

beginning of the new field of collective intelligence, in which modern technology yields 

new understanding of collective human behavior and new methods for problem-solving in 

complex systems and networks.”

In this article, we explore the implications of moving from big data to knowledge in the 

social sciences. We begin with the challenges and opportunities associated with refining the 

basic structures underlying the creation of a truly cumulative science through revised policy 

and new, participative platforms. We then examine the necessary structural and analytic 

changes needed to extract value from converging and parallel data streams. In this context, 

we introduce the concept of integrative data analysis, and we illustrate how new techniques 

have begun to improve awareness of the social and behavioral processes that play out across 

multiple levels of analysis within health-oriented communities. We complete our treatment 

of BD2K in the social sciences by examining ways in which these new data structures can 

be engineered to facilitate a faster, and more efficient and relevant course of science in the 

future.

Refining the Structures of Cumulative Science

In 1993, the first author of this article reported data from an online survey conducted within 

a community of physical oceanographers in what was arguably one of the first evaluations 

of the sociological and psychological effects associated with moving collaborative science 

into a networked, computer-mediated communication environment (Hesse et al. 1993). 

Findings from the study were enlightening. In general, electronic connectivity was positively 

associated with increased scientific productivity across respondents as measured by papers 

published, presentations made, honors received, and scientists known (equivalent to a main 

effect). Interestingly, associations were differentially strong for oceanographers that were 

geographically isolated from the resources amassed at the more prestigious coastal 

institutions (an interaction effect). Taken together, this early research highlighted the 

potential of electronic connectivity to support distributed work in ways that would be 

productive within the “invisible college” (Crane 1972) of science. Research in other contexts 
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revealed similar effects (Sproull and Kiesler 1991). Recognizing the potential of electronic 

networks to accelerate knowledge discovery, the NSF increased its investments in electronic 

connectivity to improve data collection, analysis, and reporting in science.

A movement toward open access

With investments under way to support science through electronic networks, there would 

soon be a sharpening focus among policy-makers to ensure that the benefits of publicly 

funded research would be distributed transparently and equally to all possible beneficiaries. 

In what is commonly known as the “Bethesda statement on open access publishing” issued 

in June 2003, the NIH led the pack by announcing its intention to require that any scholarly 

publications resulting from publicly funded biomedical research be made available freely to 

the public within 12 months of formal publication. Other international bodies offered similar 

resolutions to take advantage of the benefits associated with the global information 

infrastructure. Several bills were introduced through the U.S. legislature to follow suit, 

suggesting that publicly funded research be made freely available to the public to spur 

innovation. Although the majority of those bills never came up for a vote, the intent of the 

legislation was codified during the budget negotiations of 2013 and 2014 in the United 

States.

The Consolidated Appropriations Act of 2014—the negotiated funding bill to keep the U.S. 

government open after the political impasse of 2013—included specific provisions for 

public access to government-funded research findings. Affected agencies included the 

Departments of Health and Human Services, Education, and Labor with annual expenditures 

over $100 million. The legislation directed the agencies to make published research articles 

funded by taxpayer dollars available freely to the public in electronic format no later than 12 

months following publication. The expanded coverage of the bill, it has been estimated, 

would now make $31 billion of the total $61 billion annual research budget for the U.S. 

government open to the public. As might be imagined, the legislation has led to ongoing 

debates among the scientific publishing houses over how to comply with the requirements of 

the legislation while meeting publication costs. Social science publishers typically rely on 

subscription fees, whereas medical publishers often use author fees to cover costs. Debates 

over new business models are under way.

Moving toward open access to data

In a similar vein, the NIH and the White House have taken interest in assuring that the 

building blocks of research, specifically the data upon which publications are based, also be 

made available to the broader scientific enterprise. In 2003, the NIH initiated a data sharing 

policy for all grants receiving more than $500,000 per year in direct costs, and the NIH 

recently published a genomic data sharing (GDS) policy that requires all NIH-supported 

genomic data, regardless of funding level, to be made available in an appropriate NIH data 

repository for secondary analyses.1 This policy addresses many of the challenges of open 

data efforts including informed consent for future secondary data use, appropriate de-

identification and additional privacy protections of sensitive information, protection of 

1See http://gds.nih.gov.
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intellectual property, and the considerations for controlled versus unrestricted access to these 

data repositories. The NIH continues to support the database of Genotypes and Phenotypes 

(dbGaP)2 along with a number of other data repositories to facilitate data access and 

integration, but behavioral and social sciences data are not included among the data 

repositories that the NIH supports.

At the executive level, the first presidentially appointed Federal Chief Information Officer (a 

position made possible by passage of the E-Government Act of 2002) announced plans to 

make federally funded datasets available to the public in machine-readable format through 

the establishment of the “data.gov” website and the more recent “healthdata.gov” site. On 

February 22, 2013, the Office of Science and Technology Policy at the White House 

reinforced that policy by issuing a memorandum to the heads of executive departments and 

agencies instructing them to make access to digital datasets resulting from federally funded 

research a priority. The memo highlighted the provision of weather data to power the 

forecasting industry and the provision of genomic sequencing data to power biomedical 

innovation as compelling use cases.

Improving rigor and reproducibility

Another justification for moving into a paradigm of open science is to improve the rigor and 

reproducibility of research as a fully transparent, collaborative endeavor. Proponents of open 

science have often pointed out that an historical reliance on paper-based, limited publication 

venues has created a set of unanticipated obstacles that stand in the way of cumulative 

knowledge building (Nosek and Bar-Anan 2012). Page limits in print journals, for example, 

may often lead to an exclusion of nonsignificant findings based on the somewhat arbitrary 

heuristic of a p < .05 threshold for statistical significance testing (Cumming 2014). When 

tenure, funding, and professional recognition are all predicated on publication rates, there is 

a not-so-subtle pressure on investigators to strain the assumptions of a priori hypothesis 

testing to explore ways of reaching a .05 level of significance for at least some findings in 

their dataset (Ioannidis et al. 2014), a custom referred to by some as “p hacking” 

(Simonsohn, Nelson, and Simmons 2014). When evaluated for expected frequencies of 

positive and negative findings, and for evidence of successful replication of core findings, 

much of the literature in the life sciences did not appear to measure up to a priori 

expectations (Ioannidis, Nosek, and Iorns 2012).

In response to these concerns, professional societies and funding agencies have initiated 

efforts to identify the systems-level constraints on cumulative science, and to experiment 

with potential remedies. In 2012, the Association for Psychological Science in conjunction 

with the NIH Office of Behavioral and Social Science Research published a special issue of 

the journal Perspectives on Psychological Science on the topic of reproducibility of research 

findings in the psychological sciences. At around the same, the American Psychological 

Association launched an experimental open-access journal called the Archives of Scientific 

Psychology as a foray into data archiving and open-access publishing. In February 2014, the 

Social, Behavioral, and Economics Science Directorate at the NSF convened a panel of 

2See www.ncbi.nlm.nih.gov/gap.

Hesse et al. Page 5

Ann Am Acad Pol Soc Sci. Author manuscript; available in PMC 2015 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://data.gov
http://healthdata.gov
http://www.ncbi.nlm.nih.gov/gap


invited experts to discuss obstacles to rigor and reliability in the social sciences and, in an 

era of big data, propose promising solutions for further exploration.

Integrating Data Streams

Another thrust of the big data initiatives as facilitated through cyberinfrastructure support 

for science is the ability to turn isolated data streams into an integrative picture of 

converging patterns to facilitate situational awareness among social scientists, policy-

makers, practicing professionals, and the general public (Thacker, Qualters, and Lee 2012). 

One example of this capacity can be described using the implications of the work being done 

by physical oceanographers as described earlier in this article. One of the reasons physical 

oceanographers were early adopters of distributed network technologies is that they were 

reliant on these technologies to integrate signals from remote buoys, satellite telemetry and 

sensing, oceangoing vessels, airborne weather balloons, and other sources of high-volume, 

high-velocity data inputs covering large geographic areas. Government agencies such as the 

NSF, the National Aeronautics and Space Administration, and the National Oceanic and 

Atmospheric Administration have all contributed joint funding to ensure that inputs from 

these sensors conform to high standards of fidelity and reliability.

What the funding agencies realized is that they could return value to the public by allowing 

third-party vendors to build applications based on these data. Commercial meteorologists 

translate daily readings of these inputs into daily weather and ocean condition reports for 

reporting through news outlets and more recently through mobile device weather apps. 

Geographic position system (GPS) device developers have created an entirely new sector of 

the economy built on nautical, aeronautic, and automobile navigational systems. Information 

technology powerhouses such as Google, Apple, Android, and others have been able to 

augment these systems with complementary data streams from traffic sensors, open 

geographic information system architecture, and commercial vendors to enable consumer-

facing map software and have even begun experimenting with autonomous driving 

technologies.

Constructing a prototype for situational awareness

Using these integrative data activities from the physical sciences as a backdrop, we sought in 

2007 to illustrate how complementary data streams related to knowledge, attitudes, and 

behaviors in health might add value to communities striving to meet Healthy People 2010—

and subsequently Healthy People 2020—goals.3 Through the National Cancer Institute’s 

Behavioral Research Program, we commissioned a set of developmental studies designed to 

explore the feasibility of using integrative data analytic techniques to present users with an 

interactive map of trends from converging data sources over time. Figure 1 illustrates the 

technical blueprint that we followed in constructing a Population Science Grid (i.e., the 

PopSci Grid) prototype application. The bottom layer of the schematic depicts how common 

data elements, along with other semantically interoperable ontologies, could be used to link 

publicly available surveillance data to an interoperable Grid architecture using the Open 

3The Healthy People initiative is a public engagement program designed to provide science-based, 10-year objectives for improving 
health in America (see www.healthypeople.gov).
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Access Globus toolkit and extensible markup language (XML/XMi) for metadata. Sourced 

datasets could, in theory, be drawn from a large number of publicly available surveillance 

datasets maintained across the federal government. The idea was that by making these 

datasets discoverable on the Grid, it would be possible to construct an interactive public 

layer for bringing relevant components together to inform public policy planners, journalists, 

researchers, and the public.

Figure 2 illustrates how one such interface was constructed, using elements derived from the 

Gapminder animated statistics conceptualized by Hans Rosling (Rosling and Zhang 2011). 

The prototype offered dynamic access to juxtapositions of data on state-based cigarette tax 

policy, self-reported smoking rates, and knowledge and attitudes related to the deleterious 

effects of smoking, while a slider allowed for explorations of trends across a temporal 

dimension. The “Science of Network Computing in Communities” (SONIC) group at 

Northwestern University conducted the initial design and program, with experimental 

enhancements offered by Deborah McGuinness and her team at Rensselaer Polytechnic 

Institute (McGuinness et al. 2011). Hua Min and her colleagues at the Fox Chase Cancer 

Center offered additional development from a medical and public health informatics 

perspective (Min et al. 2013). These collaborations illustrate how multidisciplinary teams 

can be brought together to create new architectures for public health participation, with the 

intention of moving big data assets into a framework for collective intelligence (Hesse et al. 

2011).

This team effort, however, did have its own challenges, mostly related to the data 

themselves. Since data from several independent sources were merged together, it was 

critical to identify measures that were common to all sources; and in some cases, the data 

had to be reformatted to be put on a common scale (e.g., creating common education levels 

across variables) or were left out of the analysis if this was not possible. Inherent limitations 

in the data also precluded the types of information that could be shown (and types of 

analyses that could be done). For example, though cigarette tax information was available at 

the state level, smoking behavior and other demographic information was only available at 

the censusregion level and so this became the smallest geographic level that could be shown 

on the map; the same applied to the years shown as not all data were collected annually. 

Another challenge, not related to the data per se, were the types of statistical analyses that 

were supported through the site. We wanted to avoid overinterpretation of the results, 

especially given the cross-sectional nature of the data, so we limited the analysis to 

descriptive statistics and bivariate correlations as we did not want users to interpret causal 

effects. There were few challenges, however, in working within our multidisciplinary team. 

Given that the team included a wide range of disciplines, that the members had a history of 

working together, and that members were not competing for resources and had a common 

goal, a sense of trust had been established to guide project team members toward collective 

goals. Teams without that background would likely have struggled.

Refining methods for integrating data

As new data streams become available through investments in NIH BD2K activities, there 

will be a concomitant need to expand our repertoire of data management and analytic 
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methods to deal with the variety of new types of data. One area of analytic development that 

is garnering attention is in the sphere of integrative data analysis (IDA). IDA refers to a set 

of strategies in which two or more independent datasets are pooled or combined into one and 

are then statistically analyzed (Curran and Hussong 2009). Relevant data for IDA can be 

both quantitative and qualitative (Castro et al. 2010). IDA approaches differ from and offer 

advantages over other methodological techniques that also strive to build cumulative 

knowledge bases, such as meta-analysis (Cooper, Hedges, and Valentine 2009). In meta-

analysis, summary statistics across multiple studies are pooled together (Cooper, Hedges, 

and Valentine 2009; Glass 1976). Because IDA techniques pool original raw data, there is 

no loss of individual information as found within meta-analytic approaches, allowing 

researchers to answer not only what works, but for whom, and in what context (Cooper and 

Patall 2009). Combining data across studies can provide sufficient power to detect 

moderator and mediator effects that individual clinical studies are seldom sufficiently 

powered to detect, or to facilitate unique cross-study comparisons. In addition, use of IDA 

affords expanded inquiry within many areas of social science research. For example, IDA 

can be used to augment surveillance datasets focused on biomedical tracking with variables 

related to social context, understanding, beliefs, or behaviors.

Though a powerful analytic technique, IDA does have its own limitations related to the data 

being integrated. To successfully combine common data elements, at a minimum the 

constructs being assessed must be the same. Once this is established, challenges arise, 

especially when working with self-report survey data, when the constructs are being 

assessed with measures (or items) that may have different wording, response options, or 

groups being assessed (usually due to different skip patterns across survey iterations). 

Differences in regard to time (when the data were collected), sampling methods, geography, 

and other sources of heterogeneity can also be problematic when integrating data though 

they can also be used for cross-study comparisons and thus be a strength (Curran and 

Hussong 2009). In many ways, measurement issues present the biggest challenge though 

there are psychometric and statistical methods—both traditional and recently developed—

that allow for direct integration and comparison of measures that are assessed differently 

(Bauer and Hussong 2009; Choi et al. 2014).

The second author on this article has taken the lead in illustrating how IDA techniques can 

be used to extend analytic value for the NCI’s Health Information National Trends Survey 

(HINTS), addressing some of the challenges with integrating survey data. The HINTS 

program is a nationally representative, cross-sectional survey that was fielded for the first 

time in fall 2002–2003. Since then there have been seven successive iterations of the survey 

over an 11-year period. Data from the surveys have been mounted in downloadable format 

in the spirit of open access, as have the instruments, methodology reports, and research and 

technical documentation. Since 2003, a robust user community has been active in analyzing 

the open data and in integrating items as common data elements in their own studies, 

enabling comparisons of local results with national data. Over the past decade there have 

been adaptations of HINTS items administered to Korean speakers, Spanish speakers 

(within the continental United States as well as in the territory of Puerto Rico), and 

Mandarin speakers in the People’s Republic of China. Items have been used in several state 

surveys including a concentration among Appalachian states, and in a special adaptation of 
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respondent-driven sampling in the territory of Guam. The modes in which questions have 

been administered have also varied, with a telephone-based random digit dial frame utilized 

in 2003 and 2005; a mixed telephone/postal frame in 2007–2008; postal only frame used 

from 2012 to 2015; and a proposal to translate items into American Sign Language (Finney 

Rutten et al. 2012, 2010; Moser et al. 2011; Nelson et al. 2004; Tortolero-Luna et al. 2010).

The challenge, then, has been to create an analytic bridge between the successive waves of 

HINTS data collection over time, especially when items are not assessed consistently or are 

not assessed at all; across changes in modality that can create qualitative differences in the 

results; across national and special emphases populations; and across levels of analysis for 

users moving from national to regional and state decision-making. To meet these challenges, 

the HINTS analytic team compiled a publicly available technical report that could serve as a 

pragmatic guide for researchers located in schools of communication, psychology, public 

health, medicine, and political science (Moser et al. 2013). The report demonstrated through 

step-by-step examples (and related statistical software syntax) how to use IDA principles to 

investigate and control for biases, and methods to allow for stable estimates at more “local” 

levels (i.e., smaller geographic units) and trending across iterations while expanding the 

breadth of research questions.

While noting the successful application of these methods in the report, it is also important to 

understand that the authors of two of the studies had access to restricted data that provided 

state-level estimates. These geographic data are not available to the public, though they can 

be accessed if users sign an agreement to use the data in an ethical manner and report any 

confidentiality breaches.

Enabling Rapid, Responsive, and Relevant Research

The consumer-facing, and often provocative, gene sequencing company 23andMe caught 

the attention of biomedical scientists when it demonstrated how it was possible to replicate 

the findings of a large NIH-funded trial (Neumann et al. 2009) in less than one-sixth of the 

time and a fraction of the cost for the original study. The NIH-funded trial followed a very 

customary, six-year trajectory to move from hypothesis generation, to proposal 

development, funding, data gathering, data submission, analysis, writing, and acceptance for 

publication. Its methods yielded an evidentiary conclusion suggesting that genetic mutations 

in the GBA gene were five times more likely to develop Parkinson’s than those without the 

anomalous gene. The 23andMe trial, on the other hand, took only 12 months to 

conceptualize, execute, and conclude. It did this by leveraging the willingness of its 

customers to donate data in an exercise of citizen science, while leveraging the capacity of a 

massively distributed electronic network to upload data from thousands of customers 

simultaneously. The end result was a significant reduction in the time it took to collect, 

analyze, and confirm the GBA-Parkinson link (U.S. Institute of Medicine 2012).

Consumer- or patient-initiated registries and repositories such as 23andMe and Quantified 

Self4 provide unique infrastructures for rapid study, but these data sources also suffer from 

4See http://quantifiedself.com.
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being highly self-selective, nonprobability samples, which limits the generalizability of the 

findings. Participants in these repositories, however, intend for their data to be used for 

research. In contrast, consumers who leave digital traces on search engines, mobile 

applications, and social media sites do not intend for their data to be used for research. 

These data are extensively mined for quality improvement and marketing purposes, and 

these data are often considered archival and exempt from informed consent. Moreover, these 

digital services frequently engage in controlled trials, termed “A–B testing” to select optimal 

features, functions, and interfaces for their products, but as evident from the recent 

criticisms of a study that manipulated mood content on Facebook (Kramer, Guillory, and 

Hancock 2014) experimental manipulations of consumer behavior for research purposes 

require greater research participant protections than those required for the experimental 

manipulation of an interface feature or function.

Reinventing discovery

What these new capacities may deliver is an opportunity to “reinvent discovery” in an era of 

networked science, according to some (Nielsen 2012). Along those lines, the third author on 

this article has been engaged in efforts as a contributor to the NIH BD2K steering committee 

to accelerate the pace and relevance of social science research processes given the enhanced 

capacities of the information revolution. His goal, as articulated in a 2013 paper, has been to 

engineer a new research environment that is more rapid in catalyzing discovery; is more 

responsive to real community needs; and is more relevant to the task of translating scientific 

knowledge into replicable behavioral interventions (Riley et al. 2013). This articulation is 

timely given that the Institute of Medicine is moving toward using interoperable data flows 

made possible through electronic health record systems to move efficacious treatment 

recommendations more expeditiously from “bench to bedside” and then “back to bench” for 

further refinement in a learning healthcare system (Abernethy et al. 2010; Etheredge 2007).

Part of the focus on creating a more rapid environment for moving data into knowledge lies 

in revisiting the basic assumptions that underlie much of what we do in social and 

biomedical research. The new mobile sensing technologies that are becoming ubiquitous as 

part of the “wearable device” revolution can provide the capability to collect rapidly 

recorded behavioral data, often unobtrusively, within an “n-of-1” paradigm (Ginexi et al. 

2014; Riley et al. 2011). Scientists who are building theoretical foundations based on 

between-subject designs arrayed over a sparingly collected set of sparse data points will 

likely not be up to the task of accelerating their discoveries beyond the slow, cumbersome 

pace of time-consuming trials (Riley et al. 2011). Research must become more rapid if it is 

to be responsive and relevant to those making treatment and policy decisions now, not 7 to 

14 years from now; and more rapid research reduces the risk of producing findings on 

techniques and procedures that could be dated or obsolete by the time the findings are made 

available.

Fortunately, research can be made more rapid and responsive without compromising rigor 

due to the emerging pallet of new designs and analytic methods—many borrowed from 

complementary disciplines—that can be applied to the challenge of driving knowledge more 

expeditiously from accumulating data sources. For example, the fractional factorial 
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methodologies used by engineers to make decisions quickly about the critical features of an 

engineered system, after which the design is modified and retested through rapid iteration, 

has been modified by methodologists to create sequential multiple assignment research trials 

(SMART) models to test interventions in behavioral medicine (L. M. Collins, Murphy, and 

Strecher 2007). Likewise, the assumptions of statistical process control underlying many 

“six sigma” quality improvement efforts in manufacturing, particularly computational 

system dynamics, can be appropriated to improve the contextual fit between an intervention 

and behavior at both the individual (e.g., Timms et al. 2013) and systems levels (e.g., 

Gaglio, Shoup, and Glasgow 2013).

These rapid research methods and approaches are not intended to replace the traditional 

randomized controlled trial (RCT), large nationally represented epidemiologic studies, or 

other “slow” research methods. However, slow is not synonymous with rigorous. RCTs may 

be an optimal method for testing the efficacy of a new intervention, but questions such as the 

effectiveness of the intervention among real patients in real settings, the safety and side 

effects of the intervention, and the determination of for whom the intervention may be most 

effective are questions that are better addressed by leveraging health system EHRs and other 

large data sources. New data technologies are also emerging from other spheres. From the 

biomedical sciences, genomic researchers are seeking to explore the potential interactions 

between underlying genetic mutations and influences from the physical and social 

environments, a sphere of influence referred to by some as the “exposome” (Wild 2005), to 

predict risk for disease and to modulate treatment. One of the emerging study designs in this 

area is the “genome-wide association study,” a technique that compares DNA extracted from 

individuals with a particular disease against DNA from a comparison group without the 

disease. Literally millions of genetic variants are read using Single Nucleotide 

Polymorphism (SNP) microarrays and then associations are explored over individuals 

between polymorphisms and presence of the disease. What results is a graphical scatter plot, 

referred to as a Manhattan plot (because the resulting spikes look like skyscrapers), in which 

the strength of statistical associations are listed on the Y axis and a list of identified alleles 

(genomic coordinates) are listed on the X axis. The purpose of the plot is to help researchers 

look for alleles that stand out as exhibiting strong associations with the disease when 

computed over many subjects. These techniques could be explored in other types of 

association studies, including the influence of exposome characteristics on disease 

pathogenesis (Topol 2012).

Participating broadly in science

The 23andMe example given at the beginning of this section highlights another trend to 

explore in social science research, and that is the trend referred to by some as “citizen 

science.” Researchers funded by the NSF hypothesized that under the right circumstances 

ordinary citizens could find themselves motivated and capable of contributing data to 

researchers as partners in the scientific enterprise. In one such study, characterized as an 

experiment in “participatory sensing,” individuals suffering from asthma volunteered to use 

specially designed apps on their mobile phones to monitor air quality in Los Angeles over 

the course of their days. The citizen-donated data could then be compiled into data-rich 

atmospheric maps, indicating where air quality was bad and where the air quality was 
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relatively cleaner. The approach had the advantage of being rapid (these were real-time 

sensors), responsive, relevant to participants’ needs, and surprisingly robust (Chen et al. 

2012).

Other manifestations of citizen science have been arising with varying degrees of success. In 

the biomedical arena, the crowdsourcing platform “Foldit” uses gamification techniques 

(i.e., interface ideas borrowed from the video game industry to engage attention and promote 

interaction) in prompting a general audience to “solve puzzles for science.” The puzzle in 

question has to do with folding proteins, a task that is extremely difficult to deduce through 

automated routines but can be tackled by the lay public interested in helping biochemists 

solve real world problems (Parslow 2013). Another manifestation is the “Patients Like Me” 

web presence, which gives patients diagnosed with any number of diseases a chance to 

interact with others suffering from the same ailment and then, together, to offer up data 

about their conditions and treatment in an act of “data altruism” for the good of others. 

Finally, the Food and Drug Administration’s “Mini-Sentinel” pilot program also represents 

an effort to use electronically distributed data collection techniques to aggregate postmarket 

surveillance data on the safety of marketed medical products including pharmaceuticals, 

devices, and biologics (Platt et al. 2012).

Conclusion

In this article we examined the implications of a rapidly evolving, electronically distributed 

work environment for scientists collaborating across a host of issues from physical 

oceanography and biomedicine on one hand, to the social and behavioral sciences on the 

other. In doing so, we have attempted to explore the feasibility of recalibrating the basic 

mechanisms of the scientific enterprise to be more transparent and cumulative; to be more 

integrative and cohesive; and to be more rapid, relevant, and responsive than they ever have 

been before. We recognize, as did the President’s Council of Advisors on Science and 

Technology (2010), that these opportunities are being enabled by the hard work of 

information scientists endeavoring to realize the benefits of a “digital future” across all 

sectors of the economy. We also recognize, as did the President’s Council, that this is a 

sociotechnical endeavor; that at its core, it is about a new era of “social computing.” The 

social sciences will not only benefit from the endeavor, they must also be part of it.
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Figure 1. 
“Population Science Grid 2.0”

NOTE: From the schematic, multiple data sources are integrated in real time using common 

vocabularies and an extensible Web Service middleware layer to present users with an 

integrative view of health behaviors, social determinants, and public health outcomes. The 

Grid Enabled Measures (GEM) tool utilized a web 2.0, crowdsourcing approach to data 

harmonization. Population Science Grid 2.0 was developed between 2007 and 2009.
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Figure 2. 
How Multiple Data Streams Could be Integrated through a Common Interface to Steer 

Community-Level Situational Awareness and Action.
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