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Abstract

Transcriptional regulation plays a significant role in the biological response of bacteria to 

changing environmental conditions. Therefore, mapping transcriptional regulatory networks is an 

important step not only in understanding how bacteria sense and interpret their environment but 

also to identify the functions involved in biological responses to specific conditions. Recent 

experimental and computational developments have facilitated the characterization of regulatory 

networks on a genome-wide scale in model organisms. In addition, the multiplication of complete 

genome sequences has encouraged comparative analyses to detect conserved regulatory elements 

and infer regulatory networks in other less well-studied organisms. However, transcription 

regulation appears to evolve rapidly, thus, creating challenges for the transfer of knowledge to 

nonmodel organisms. Nevertheless, the mechanisms and constraints driving the evolution of 

regulatory networks have been the subjects of numerous analyses, and several models have been 

proposed. Overall, the contributions of mutations, recombination, and horizontal gene transfer are 

complex. Finally, the rapid evolution of regulatory networks plays a significant role in the 

remarkable capacity of bacteria to adapt to new or changing environments. Conversely, the 

characteristics of environmental niches determine the selective pressures and can shape the 

structure of regulatory network accordingly.

1. INTRODUCTION

Biological processes are constituted of a number of reactions forming pathways that 

transform chemical species into useful products. These processes may create complex 

biomolecules, transform energy from one form to another, or direct the assembly of complex 

multicellular systems. For example, photosynthesis is a biological process that transforms 

light energy into chemical bond energy, which can be used subsequently to drive other 

thermodynamically unfavorable reactions. Biological systems depend on the combination of 
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a large number of processes, which are organized to fulfill synergistic roles. In addition, to 

survive in nature, biological systems need to be robust to environmental fluctuations. 

Therefore, the existence and function of networks to sense external or internal conditions 

and thereby regulate the fluxes of molecules through different pathways are essential to the 

survival of biological systems.

Because cellular pathways can be controlled at many levels, mapping regulatory networks 

can also potentially help us understand and identify additional components of critical, yet 

incompletely characterized, biological processes. For example, one way of regulating flux 

through a metabolic pathway is to control the abundance of proteins that catalyze individual 

reactions. Accordingly, if genes are targets of a regulator that controls their expression, then 

it is possible that these genes encode proteins that somehow contribute to the pathway. The 

blueprints for proteins and regulatory elements are found in deoxyribonucleic acid (DNA), 

so it is not surprising that regulation of gene expression is central to the function of 

biological systems. Consequently, characterizing the architecture of gene regulatory 

networks can reveal much about the function and the organization of biological processes.

Mapping the gene regulatory networks that control the transcriptional responses of bacteria 

to various environmental cues has been an ongoing effort for several decades. However, 

with the complete sequencing of a rapidly growing number of organisms, new experimental 

and computational methods have been developed to accelerate this process. As a result, large 

portions of the regulatory networks of model organisms have been reconstructed, spurring 

new studies on the processes that shape their function. Because living systems need to 

respond to their environment in a sensible manner, the structure of regulatory networks is 

subject to selective pressures; thus, they constantly evolve driven by mutations to adapt to 

the characteristics of internal signaling pathways, or environmental signals, or community 

interactions. Several recent studies predict that transcriptional regulatory networks evolve 

faster than the functions of the genes they regulate. Indeed, orthologous genes are not 

always regulated by orthologous regulators (Luscombe et al., 2004; Madan Babu, 

Teichmann, & Aravind, 2006; Perez & Groisman, 2009a; Price, Dehal, & Arkin, 2007). 

Therefore, the processes driving evolution of transcriptional regulatory networks are likely 

to be different from those shaping evolution of other cellular functions and are currently not 

well understood.

Here, we review recent studies that begin to elucidate the evolution of transcriptional 

regulatory networks across bacterial species. We first review the biological concepts that 

shape these networks and then experimental and computational approaches that can be 

combined to study their organization and function. We then illustrate how extensive 

comparative genomics analyses of both transcription factors and their regulons provide new 

information about the patterns of conservation or divergence of transcriptional regulatory 

networks and the evolutionary processes that determine the functional composition of 

regulons. A theme that is emerging from these studies is that the formation and evolution of 

transcriptional regulatory networks often directly capture the relationship between the 

different factors that characterize the ecological niches occupied by different bacterial 

species.
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2. GENE EXPRESSION REGULATION AS AN OUTPUT OF SIGNAL 

TRANSDUCTION PATHWAYS

2.1. Relative timescales of environmental fluctuations and biological responses

Because very few environments on the planet provide a stable set of conditions, it is vital for 

biological systems to sense and adapt to changes. Consequently, in parallel to the evolution 

of energetic and metabolic processes, biological systems have evolved elaborate signaling 

and regulatory systems that program responses to changing conditions. Individual organisms 

or communities are exposed to environmental fluctuations that can happen on very different 

timescales. For example, fluctuations of glucose concentration may be very unpredictable in 

the human gut, while sunlight exposure in the open environment follows a highly 

predictable diurnal cycle. The time-scales of change illustrated in these two examples pose 

very different challenges for microbes. In the face of rapid stochastic fluctuations of 

metabolite concentrations, biological systems have evolved mechanisms that provide fast 

and dynamic responses in order to properly balance fluxes in the metabolic networks and 

avoid the buildup of toxic intermediates. Allosteric inhibition of enzymatic activity is a good 

example of rapid, real-time regulation that is integrated into metabolic pathways (Changeux 

& Edelstein, 2005). On the other hand, rapid response may not be optimal for systems that 

change on longer timescales when long-term investments, such as the assembly of large, 

multienzyme bioenergetic pathways, like the photosynthetic apparatus, need to be robust to 

short perturbations in light or other environmental cues.

Because the genome is the source of cellular genetic information, regulation at the 

transcriptional level is both sensible and efficient for medium to long-term regulation. 

Indeed, repressing the transcription of unnecessary genes saves resources for other necessary 

functions. However, transcription and translation, which are coupled in bacteria, are 

processes that require major investments of energy and occur on the timescale of minutes. 

Therefore, this mode of regulation is only appropriate for adaptation to fluctuations that 

occur on similar or slower timescales. In bacteria, shifts in metabolic regimes or some stress 

responses have an important regulatory component at the transcriptional level. Accordingly, 

characterizing the relevant transcriptional regulatory circuits is expected to help identify 

genes and functions involved in these processes.

2.2. Three main classes of protein transcription factors

Biological systems have developed a wide array of sensors and effectors to gather 

information and regulate cellular processes accordingly. At the same time, because 

regulatory networks are intimately intertwined with the biological processes they regulate, 

sensory, regulatory, or enzymatic activities can often be combined within one protein. 

Transcription factors are examples of proteins that can have multiple activities combined 

within one entity. These DNA-binding proteins are important elements in the control of gene 

expression and are integral parts of signal transduction pathways. Today, we know of three 

main classes of bacterial signal transduction pathways that regulate transcription: one- and 

two-component systems, and alternative sigma factors (Fig. 1.1).
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2.2.1 One-component transcriptional regulatory systems—One-component 

transcriptional regulatory systems are defined as those containing both a direct 

environmental input domain and a DNA-binding output domain in one polypeptide chain 

(Fig. 1.1A) (Ulrich, Koonin, & Zhulin, 2005). The input domain can sense signals through 

direct binding of a ligand (e.g., cyclic adenosine monophosphate) or cofactor (e.g., iron–

sulfur cluster) and affects the activity of the output domain often through changes in 

conformation or oligomeric state. In their active state, one-component transcription factors 

often form dimers or higher-order oligomers that are able to bind a specific DNA sequence 

to control the transcriptional activity of targeted genes. The CRP, FNR, and LacI 

transcription factors of Escherichia coli are classic examples of one-component systems. 

The vast majority of identified one-component regulators are cytosolic proteins with no 

transmembrane domains; thus, they are apparently limited to sense mostly intracellular 

signals. One-component regulators are often the most abundant types of protein regulators 

found in bacterial genomes and are believed to be the evolutionary precursors of the more 

complex two-component systems (Ulrich et al., 2005).

2.2.2 Two-component systems—In classic two-component systems, the sensory and 

regulatory domains are divided between a histidine kinase sensor and a response regulator 

(Fig. 1.1B) (Mascher, Helmann, & Unden, 2006; Stock, Robinson, & Goudreau, 2000; 

Szurmant, White, & Hoch, 2007). The histidine sensor kinase is often a transmembrane 

protein that consists of an input domain embedded in the cell membrane and a cytoplasmic 

histidine kinase domain. Similar to the input domain of one-component systems, the input 

domain of the sensor histidine kinase often senses signals through binding of ligands or via 

cofactors. The state of the input domain is transmitted via a conformational change to 

control the activity of the histidine kinase domain, which when active, autophosphorylates a 

conserved histidine residue. The phosphoryl group is then transferred from the histidine 

sensor kinase to a conserved aspartate residue on the cognate response regulator. The 

interaction between histidine kinases and response regulators is determined by specific side 

chain interactions to provide accurate recognition of cognate response regulators (Skerker et 

al., 2008). For those response regulators, which act as transcription factors, their 

phosphorylation state determines whether the protein can oligomerize and bind a target 

DNA sequence to control gene expression.

The modular design of two-component systems has undoubtedly facilitated evolution of 

novel regulatory circuits through the recombination of sensory and regulatory domains. In 

addition, the catalytic nature of the signal transduction by the histidine kinase domain 

enables the development of complex and dynamical information processing. One remarkable 

example of complex information processing is the adaptation to signal variation displayed 

by the chemotaxis system that allows E. coli cells to orient themselves in chemical gradients 

(Hazelbauer, Falke, & Parkinson, 2008).

2.2.3 Alternative sigma factors—Bacterial sigma factors differ operationally from other 

transcription factors in several ways: they (i) are dissociable subunits of ribonucleic acid 

(RNA) polymerase, (ii) direct RNA polymerase to recognize specific bipartite promoter 

DNA sequences, and (iii) actively promote the process of transcription initiation (Helmann, 
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2002; Paget & Helmann, 2003; Wösten, 1998). Bacteria possess a main housekeeping sigma 

subunit that is responsible for transcription of most promoters (similar to E. coli σ70), but 

various alternative sigma factors have evolved to direct RNA polymerase toward particular 

sets of promoters (Gruber & Gross, 2003; Kazmierczak, Wiedmann, & Boor, 2005). That is, 

alternative sigma factors provide an additional strategy to regulate gene transcription activity 

by altering RNA polymerase affinity for promoter sequences and thereby inducing major 

changes in global transcription patterns. Alternative sigma factors are distributed into two 

main families: the σ70-family, a group that exhibits high structural homology to 

housekeeping sigma factors (Helmann, 2002; Paget & Helmann, 2003; Staroń et al., 2009), 

and the unrelated σ54-family, which relies on an additional ATP-dependent transcription 

factor to initiate transcription at the promoter (Buck, Gallegos, Studholme, Guo, & Gralla, 

2000; Merrick, 1993). The σ70-family of sigma factors has been divided into four groups 

based on protein domain structure and amino acid sequence conservation (Paget & 

Helmann, 2003). Group I sigma factors consist of the housekeeping sigma factors, which, 

when tested, are known to be essential for viability. Alternative sigma factors in Groups II 

and III are very similar in amino acid sequence to those in Group I but are often dispensable 

for growth in laboratory conditions. Nevertheless, the Group II and III alternative sigma 

factors are involved in various cellular processes, such as development, general stress 

response, or virulence. Sigma factors in Group IV were only recognized some 20 years ago, 

but they are now known to be the largest and most diverse group of sigma factors with more 

than 40 subgroups identified by phylogenetic analysis of sequenced bacterial genomes 

(Staroń et al., 2009). Group IV sigma factors appear to have limited and specific functions, 

which often relate to extracytoplasmic stresses (Group IV sigma factors are also referred to 

as extracytoplasmic factors). In this role, Group IV sigma factors are important components 

of bacterial signal transduction networks (Staroń et al., 2009).

As in other signal transduction pathways, mechanisms exist to control the activity of Group 

IV alternative sigma factors. These sigma factors are most often controlled by cognate anti-

sigma factor proteins that bind to and sequester the sigma factors until a signal triggers 

release (Helmann, 1999; Hughes & Mathee, 1998) (Fig. 1.1C). Anti-sigma factors often 

contain a signal input domain that senses a signal through binding of ligands, interactions 

with other proteins, or side chain chemistry, and an anti-sigma factor domain that interacts 

specifically with its cognate sigma factor (Helmann, 1999; Hughes & Mathee, 1998). Anti-

sigma factors may also contain transmembrane domains, presumably to transmit an 

extracellular signal and control activity of their cognate Group IV sigma factor in the 

cytoplasm. The general design of the sigma/anti-sigma factor system is analogous to the 

two-component system design except that the signal is somehow transmitted via protein–

protein interactions instead of a phosphorylation cascade. Like two-component systems, the 

modular organization of the different protein domains creates a large combinatorial space 

accessible through protein domain recombination (Staroń et al., 2009).

2.3. Other regulatory systems

Transcriptional regulation can take many additional forms in bacteria. Every step of the 

transcription process, as well as the protein translation process, can be regulated. Additional 

factors that can regulate gene expression at the transcriptional level are DNA methylation 
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patterns (Low, Weyand, & Mahan, 2001), riboswitches (Winkler & Breaker, 2005), 

chromosome structure (McLeod & Johnson, 2001), small ligands, small RNAs, and RNA-

binding proteins (Massé, Majdalani, & Gottesman, 2003). However, these modes of 

regulation will not be discussed further here.

2.4. Signal integration at the gene promoters

Gene transcription by the RNA polymerase is carried out in three general phases: initiation, 

elongation, and termination. Regulation of gene expression occurs principally during 

initiation although regulation in subsequent phases can be significant in many systems 

(Landick, 2006; Winkler & Breaker, 2005). Initiation is a highly regulated process and 

constitutes a point where many environmental and cellular signals are integrated as inputs to 

control RNA polymerase activity (Browning & Busby, 2004). The promoter region contains 

key sequence elements that determine the molecular dynamics and regulatory logic of 

transcription initiation. In particular, the organization of these sequence elements relative to 

each other is critical because the same set of sequence elements can result in opposite 

regulatory logic if arranged differently (van Hijum, Medema, & Kuipers, 2009).

Many bacterial transcription factors bind DNA near the promoter to interact directly or 

indirectly with RNA polymerase and modulate the transcriptional output of genes. Known 

transcription factors recognize specific target DNA sequences between 12 and 30 

nucleotides long that often exist as direct sequence repeats or palindromes because many 

transcription factors bind DNA as homodimers (Rodionov, 2007). The binding affinity of a 

transcription factor to a particular region of DNA depends on the sum of all interactions with 

DNA or other proteins. The binding thermodynamic equilibrium to a particular DNA 

sequence can be approximated relatively well by the sum of the independent contributions of 

the binding interactions to each of the sequence nucleotides. Therefore, the DNA sequence 

of a particular binding site can often be translated into quantitative information about the 

affinity of a transcription factor (van Hijum et al., 2009). However, interactions with other 

proteins that are localized near the DNA-binding site, such as RNA polymerase or other 

transcription factors, can have a significant contribution and compensate for weak 

interactions with the target DNA sequence (Barnard, Wolfe, & Busby, 2004).

The location of the transcription factor binding site relative to the promoter often determines 

its effect on gene expression. The same transcription factor can stimulate the activity of one 

promoter while repressing the activity of another (Browning & Busby, 2004; van Hijum et 

al., 2009). Some well-studied activation mechanisms are driven by protein–protein 

interactions. In these cases, the transcription factor binding helps recruit and stabilize RNA 

polymerase at the promoter to initiate transcription. Conversely, if the transcription factor 

binding site overlaps with the promoter region, the competition between the transcription 

factor and RNA polymerase for binding DNA can reduce gene expression dramatically. The 

same negative effect can be achieved if the transcription factor binds downstream of the 

promoter to block transcription elongation. Therefore, by arranging promoter elements, 

transcription factor binding sites, and adjusting binding affinities, complex logical 

operations can be developed to adjust transcriptional output to one or multiple signals. The 

diversity of functions that can be created by mixing a relatively small number of promoter 
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elements is illustrated by the elaborate regulation of genes involved in E. coli sugar 

metabolism (Kaplan, Bren, Zaslaver, Dekel, & Alon, 2008).

Many more complex processes have been described in both bacteria and other cells, such as 

DNA looping or structural remodeling of the promoter, but for many systems, the position 

of the transcription factor binding site relative to the promoter has been used as an indicator 

for its effect on gene expression (Browning & Busby, 2004; van Hijum et al., 2009). The 

emerging consensus from these studies is that repressor sites are often found within 60 base 

pairs upstream or downstream of the transcription initiation site. In contrast, binding sites for 

transcriptional activators tend to be found between 95 and 35 base pairs upstream of the 

transcription initiation site. Therefore, this information can be used to infer the control logic 

of many promoters.

3. MAPPING TRANSCRIPTIONAL REGULATORY NETWORKS

3.1. Regulons and transcriptional regulatory networks

The global patterns of gene expression play a major role in determining the protein content 

of cells and, ultimately, active cellular processes. Because cellular processes reflect the sum 

of the activity of many proteins, the regulation of the corresponding sets of genes also 

requires extensive coordination. Consequently, biological systems rely on extensive 

regulatory networks that integrate information and directly control the output of gene 

transcription. Thus it is not surprising that a significant part of the response of biological 

systems to changes in their environment occurs at the transcriptional level. These regulatory 

networks need to be characterized to understand how biological systems function in their 

environment.

Most transcription factors within an organism interact with multiple promoters; thus, they 

are able to regulate transcription of many target genes. The set of target genes of a particular 

transcription factor is defined as its regulon. Because genes can be regulated by multiple 

transcription factors, the regulons of different transcription factors often contain overlapping 

members. Nevertheless, regulons may be considered as higher-order functional units 

because the members of a particular regulon eventually relate to the particular signal that 

controls activity of the transcription factor. Therefore, it is useful to characterize the 

regulons of transcription factors to understand the set functions that are regulated in 

response to particular environmental signals.

3.2. Experimental characterization of regulons

Characterizing the components of one or more regulatory networks can be a tedious process. 

However, the recent advances in DNA sequencing technology that made available full 

genome sequences for many organisms triggered the development of a collection of 

genome-based approaches to identify these networks. These approaches, such as whole-

genome gene expression analysis, allow researchers to probe the effects of biological 

perturbations on global transcript levels, hence accelerating the collection of data necessary 

to map transcriptional regulatory networks (Blais & Dynlacht, 2005; Zhou & Yang, 2006).
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3.2.1 Global transcription profiling—The abundance of messenger RNAs can be 

monitored genome wide using either microarrays of DNA probes, where each labeled 

transcript hybridizes to a specific set of probes, or high-throughput deep sequencing analysis 

of transcript-derived cDNA molecules. Using these approaches, researchers can characterize 

the effect of biological perturbations, such as gene deletion or environmental changes, on the 

global gene expression pattern of an organism. For example, the regulon of a particular 

transcription factor may be inferred by identifying genes that have altered transcript levels in 

conditions where the transcription factor is active versus conditions where it is not active. 

However, these types of comparisons do not allow researchers to distinguish primary effects 

from secondary effects on gene regulation since perturbations often have pleiotropic effects.

With the accumulation of datasets from various experimental treatments, more advanced 

computational approaches were developed to infer networks by clustering genes whose 

expression patterns were coregulated. For example, clustering techniques were used to 

compare gene expression profiles across multiple conditions and identify groups of genes 

that are coexpressed and likely to be coregulated (Quackenbush, 2001). In addition, if a 

sufficiently large amount of data are used for clustering analysis, it is possible to predict 

primary and secondary effects on gene expression triggered by experimental treatments. 

Methods that have been successfully used to discover coregulated genes from expression 

profiles include principal component analysis, hierarchical clustering, self-organization 

maps, and K-means clustering (Slonim, 2002).

However, these techniques only offer indirect evidence for the direct regulation of target 

genes by specific transcription factors. Therefore, the resulting hypotheses need to be 

validated with additional methods such as in vitro transcription assays, promoter fusions 

with a reporter gene, or chromatin immunoprecipitation. To determine components and 

potential overlaps among regulatory networks, high-throughput technologies offer the 

significant advantage of obtaining genome-wide datasets.

3.2.2 Chromatin immunoprecipitation for protein binding site localization—
Chromatin immunoprecipitation followed by hybridization to a chip or high-throughput 

DNA sequencing (chromatin immunoprecipitation on an oligo microarray chip (ChIP-chip) 

and chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq)) 

have been used to detect genome-wide protein–DNA interactions in vivo and provide direct 

evidence for the regulation of genes by a transcription factor (Buck & Lieb, 2004; Mardis, 

2007). The result of a ChIP-chip or ChIP-seq experiment consists of a series of enrichment 

signals distributed over the genomic locations where proteins bind DNA (Buck & Lieb, 

2004). Therefore, a single experiment can identify in principle all the binding sites bound by 

a particular protein under the chosen experimental conditions. The precision in locating 

binding sites depends on the length distribution of the sheared DNA, the spacing between 

consecutive probes on the microarray in a ChIP-chip assay, or the depth or coverage of 

sequence information derived in a ChIP-seq experiment. ChIP analyses are also subject to 

false-positive (binding events that do not result in changes in gene expression) or false-

negative events (the failure to observe binding if growth conditions are not optimized to 

observe all such events). Therefore, it is also necessary to complement the ChIP data 

analysis with computational sequence analysis to determine the exact sequence recognized 
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by the targeted DNA-binding protein. On the other hand, ChIP data do not often inform 

about the biological role of the targeted protein. For example, if we consider a transcription 

factor, binding to a promoter region may activate, repress, or not affect the transcription 

activity of the downstream genes depending on the promoter configuration. Therefore, 

additional experiments, such as genome-wide expression profiling or more traditional in 

vivo or in vitro analysis of candidate target genes, are necessary to determine the function of 

a transcription factor at each binding site.

3.3. Reverse engineering transcriptional regulatory networks

The combination of binding site localization and global expression profiling experiments 

with computational sequence analysis can be used to characterize the regulons of targeted 

transcription factors. If performed systematically, this approach can help reconstruct large 

portions of the transcriptional regulatory networks of well-studied model organisms (Blais & 

Dynlacht, 2005; Bonneau et al., 2007; Yoon, McDermott, Porwollik, McClelland, & 

Heffron, 2009).

However, making correct predictions about regulatory networks still face many obstacles, 

even in the best-studied model organisms such as E. coli and Saccharomyces cerevisiae. 

First, despite the availability of complete genome sequences, a comprehensive list of all 

possible components of regulatory networks is unavailable because many gene products of 

unknown functions may participate in signal transduction or gene regulation. For example, 

elements, such as small regulatory RNAs, have been identified only recently as significant 

players in global gene expression regulation. These small RNAs can affect messenger RNA 

transcription, translation, or stability on limited sets of genes or act at the global level 

(Massé et al., 2003). Therefore, further biochemical and genetic experiments on 

uncharacterized gene products are necessary to identify all the elements involved in 

regulatory networks. Second, interactions among cellular components need to be 

characterized because these interactions determine the network topology, which ultimately 

controls information flow within cells. However, interactions between components of 

regulatory networks can take many forms (e.g., protein–protein, DNA–protein, RNA–DNA, 

small molecules–protein), which make it difficult to develop standardized and automated 

experimental approaches. Third, the logic of each interaction needs to be determined to 

understand how the information is processed at each node of the networks (Veiga, Dutta, & 

Balázsi, 2010). For example, as discussed earlier, the regulatory logic of gene transcription 

depends on the positions of transcription factor binding sites relative to other promoter 

elements. Finally, the dynamical behaviors of all the network component interactions 

represent a fourth layer of information that determines the overall performance of the 

regulatory networks. At this level, our knowledge is limited to very few well characterized 

and small systems. For all of the above reasons, the reconstruction of transcriptional 

regulatory networks remains a substantial undertaking that requires extensive resources.

The development of computational tools has greatly contributed in efforts to reconstruct 

regulatory networks. For example, databases and visualization tools are important assets to 

store, manage, explore, and retrieve the rapidly growing amount of data resulting from the 

systematic use of high-throughput experiments. The Gene Expression Omnibus (http://
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www.ncbi.nlm.nih.gov/geo/) offers a public repository for data generated by array-based 

gene expression profiling experiments and provides basic tools to explore and retrieve 

information. Another database, RegulonDB (http://regulondb.ccg.unam.mx/), aims at 

gathering and organizing all the information scattered in the published scientific literature 

that is relevant to E. coli transcriptional regulatory networks. A second task that greatly 

benefits from computational tools is the recognition of patterns in complex datasets. 

Examples of algorithms that perform pattern recognition were presented earlier when 

discussing the discovery of transcription factor binding sites in sets of promoter sequences 

or clustering of gene expression profiles. Third, computational systems can build 

quantitative models of biological systems and perform simulations to explore rapidly the 

outcome of different hypotheses (Sauer, Heinemann, & Zamboni, 2007). Despite these 

advances, many existing problems, such as the global reconstruction of transcriptional 

regulatory networks in biological systems or the accurate annotation of protein functions, 

would greatly benefit from the development of more advanced computational tools.

3.4. Characterization of conserved regulatory networks using comparative genomics

Another source of information, which can potentially facilitate the reconstruction of 

regulatory networks, is the known or predicted evolutionary relationships between 

organisms. Indeed, it appears that comparative genomics has utility in such reconstructions 

since some components and the topology of regulatory networks may be conserved among 

organisms performing similar biological functions (Rajewsky, Socci, Zapotocky, & Siggia, 

2002; Rodionov, 2007). Consequently, comparative genomics can be used to take advantage 

of the growing number of fully sequenced bacterial genomes to infer or identify regulatory 

network patterns shared among closely or distantly related species. As of May 2012, there 

are over 3000 publically available bacterial genome sequences (http://img.jgi.doe.gov/). In 

addition, large-scale comparative genomic studies may shed some light on the relationship 

between cellular functions and ecology, as well as the evolutionary mechanisms shaping the 

architecture of transcriptional regulatory networks (Haft, Selengut, Brinkac, Zafar, & White, 

2005; Hughes Martiny & Field, 2005; van Hijum et al., 2009).

3.4.1 Homologues, orthologs, and paralogs—A significant challenge to overcome 

when performing comparative genomics studies is to identify across genomes which genes 

share common ancestry (Kuzniar, van Ham, Pongor, & Leunissen, 2008). This task is not 

trivial because bacteria have relatively high rates of mutation, recombination, gene 

duplication, or horizontal DNA transfer between species (Boto, 2010; Didelot & Maiden, 

2010; Hudson, Bergthorsson, & Ochman, 2003; Tago et al., 2005). Nevertheless, because 

protein coding and regulatory sequences are under selective pressure to maintain their 

biological functions, genes sharing common histories can often be identified based on 

sequence similarity either at the DNA or at the deduced amino acid level. Genes that have 

descended from a common ancestor are defined as homologues. Orthologs are homologues 

that were separated by speciation events, whereas paralogs are homologues generated by 

gene duplication. Homologues do not necessarily maintain the same biological function 

depending on the selective pressures experienced by different species, while it is generally 

believed that orthologs are more likely to maintain their functions if their roles are essential 

to the cell. Paralogs are not under the same selective pressure because with two copies of the 
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same gene per organism, one copy is likely to diverge, while divergence of the other copy is 

limited to ensure it fulfills the required function. It is extremely difficult to distinguish 

between orthologs and paralogs using sequence information only because, in addition to 

functional divergence, multiple gene duplications, gene losses, or horizontal transfers may 

have occurred since the original gene duplication event.

All sequence comparisons rely on alignments that calculate the degree of similarity between 

sequences. Different approaches have been developed to detect sequence homology and 

build accurate sequence alignments (e.g., BLAST, Altschul, Gish, Miller, Myers, & Lipman, 

1990; HMMER, Eddy, 1998; CLUSTAL W, Thompson, Higgins, & Gibson, 1994; 

MUSCLE, Edgar, 2004). Once the distance between sequences has been calculated, 

different algorithms can be used to organize genes in functionally related groups. One of the 

simplest ways to construct such families group genes that are best reciprocal matches 

between pairs of genomes (reciprocal best Blast hits) (Moreno-Hagelsieb & Latimer, 2008). 

Unfortunately, this method performs poorly when comparing distantly related organisms 

because reciprocity breaks down if gene duplication is followed by gene loss. A similar but 

more stringent approach considers the triangular relationship between genes from two or 

more species (Cluster of Orthologous Groups) (Tatusov, Koonin, & Lipman, 1997). 

Alternatively, more sophisticated approaches have been developed to represent the 

relationship between sequences using a graph structure, which is then analyzed to detect 

densely connected subgraphs representing functionally related gene families (OrthoMCL, 

Li, Stoeckert, & Roos, 2003; TribeMCL, Enright, van Dongen, & Ouzounis, 2002). When 

comparing different approaches, it appears that groups of orthologs determined by 

OrthoMCL currently achieve the best balance between sensitivity and specificity (Chen, 

Mackey, Vermunt, & Roos, 2007).

To date, algorithms that aim to detect orthologs across species use only information from 

protein sequences, but additional information may be relevant. For example, synteny (the 

physical colocation of genes in the genome) may provide information about the gene’s 

evolutionary history, as well as its function in the context of other genes, because genes 

participating to the same pathway are often organized in operons (Rocha, 2008). In addition, 

the regulation of a particular gene is an integral part of the gene function; therefore, 

homologous genes that perform identical functions across species are expected to be 

regulated similarly (Rodionov, 2007). Therefore, supplementing sequence similarity data 

with information from genomic and regulatory contexts may improve the prediction of 

orthologs and paralogs across genomes. Conversely, more accurate predictions of orthologs 

could benefit analyses aimed at reconstructing the evolutionary history of transcriptional 

regulatory networks with respect to biological functions (Francke, Siezen, & Teusink, 2005).

3.4.2 Detecting conserved regulatory sequences—Selective pressure to maintain 

function also applies to regulatory DNA sequences found in the promoter regions of genes 

or operons. Consequently, it has been observed that regulatory DNA sequences are more 

likely to be conserved across related species than the surrounding nonfunctional sequences 

(Cliften et al., 2003). This observation prompted efforts to use collections of homologous 

promoter regions across species to detect functional sequence elements (also called 

phylogenetic footprinting) (Blanchette & Tompa, 2002). This approach is similar to the 
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detection of shared regulatory sequences in groups of coregulated genes within one genome, 

but it has the advantage that if only a few target genes are known in one organism the 

collection of promoter sequences containing a particular regulatory sequence can be 

supplemented by the promoter sequences of orthologous genes across genomes. As 

expression of genes for transcription factors is often autoregulated in bacteria, this approach 

also has the ability to help assign binding sequences to their corresponding transcription 

factor.

Phylogenetic footprinting algorithms aim to detect overrepresented sequence elements in a 

collection of promoter sequences. However, if the evolutionary distance between 

homologous promoter sequences is short and only few mutations occurred, then it is difficult 

to distinguish between functional and nonfunctional sequences. Conversely, if the 

evolutionary distance is too great, then it is possible that the regulatory network changed and 

nonhomologous transcription factors regulate homologous target genes or that homologous 

transcription factors recognize different binding sequences. Either of these events would 

limit the ability of phylogenetic footprint to identify correctly the components and 

architecture of a given regulatory network (Baumbach, 2010). For example, the transcription 

factor LexA, which is broadly conserved across bacteria, has evolved to recognize 

completely unrelated sequences between Bacillus subtilis and E. coli, even though LexA 

still regulates functions related to DNA damage in both species (Erill et al., 2004). 

Therefore, to accommodate evolutionary history, sequence detection algorithms have 

incorporated phylogenetic information and evolution models to increase sensitivity and 

specificity (Micro-FootPrinter, Neph & Tompa, 2006; PhyME, Sinha, 2007; and 

PhyloGibbs, Siddharthan, Siggia, & van Nimwegen, 2005).

3.4.3 Operon predictions—In bacteria, genes are often transcribed in polycistronic 

messenger RNA; thus, several consecutive genes can be under the control of only one 

promoter. A set of cotranscribed genes is defined as an operon. The existence of operons 

provides a way for bacteria to ensure that expression of genes participating to the same 

biological process is coordinated (Price, Huang, Arkin, & Alm, 2005). While the existence 

of operons can help researchers identify related functions (Overbeek, Fonstein, D’Souza, 

Pusch, & Maltsev, 1999), the inability to predict correctly operons can pose a problem when 

trying to computationally predict promoter regions in genome sequences. Indeed, large 

regions containing other coding or transcribed sequences (small RNA, etc.) may separate a 

gene from its promoter. In addition, the systematic experimental determination of the operon 

structure of one genome is not trivial. Therefore, this information is not available for most 

sequenced bacterial genomes (the most extensive datasets available are for E. coli http://

regulondb.ccg.unam.mx/ and B. subtilis http://dbtbs.hgc.jp/).

Computational tools to predict operons in genomic sequences have been developed to 

resolve this problem (Brouwer, Kuipers, & van Hijum, 2008). The main sources of 

information used by these algorithms are experimental evidence, regulatory sequences, 

intergenic distances, functional relation, or phylogenetic conservation. However, it appears 

that a small intergenic distance is by far the best indicator to predict if two consecutive 

genes are cotranscribed (Brouwer et al., 2008). Operon predictions for many sequenced 

bacterial genomes are available (http://csbl1.bmb.uga.edu/OperonDB/DOOR.php, Mao, 
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Dam, Chou, Olman, & Xu, 2009, http://www.microbesonline.org/operons/, Price et al., 

2005).

4. FACTORS SHAPING THE FUNCTIONAL COMPOSITION OF REGULONS

The selective pressures shaping the composition of regulons are a priori rather clear. Genes 

encoding functions that are part of the same pathways or structures often need to be 

coregulated, and in bacteria, these genes are often organized in operons to ensure coordinate 

transcription (Price et al., 2005). In addition, it is essential for cells to regulate functions 

according to the appropriate environmental signals. Therefore, regulatory networks have 

evolved to connect genes and the functions they encode to the appropriate environmental 

signals. This notion has been confirmed numerous times by characterizing transcriptional 

regulatory networks and target genes. However, the relationships between signals and 

cellular functions are not always simple and direct because several additional factors may 

play a role in the evolution of regulatory networks. For example, epistatic interactions 

between genetic mutations can create unpredictable phenotypes and complicate the 

relationship between the selective pressure and the structure of regulatory networks. A study 

analyzed the global gene expression profiles after the deletion of the crp gene, which 

encodes a global regulator in E. coli, in two strains that were evolved independently in a 

controlled environment and in their common ancestor. The results revealed that even though 

new parallel epistatic interactions evolved as a result of the defined environmental 

conditions, 20,000 generations were sufficient to observe significant divergence in the 

composition of the CRP regulon with no mutations found in the crp gene itself (Cooper, 

Remold, Lenski, & Schneider, 2008).

4.1. Signal integration

It is often beneficial for organisms to regulate expression of proteins according to multiple 

signals. For example, the E. coli catabolite repression system induces the expression of the 

lactose operon only if lactose is present and glucose is absent from the environment, 

presumably because glucose is easier to metabolize than lactose (Deutscher, 2008). 

Catabolite repression requires the coordinated activity of two transcriptions factors, CRP 

and LacI, at the promoter of the lac operon. Therefore, the lac operon is connected to two 

signaling pathways that respond to the absence of glucose and the presence of lactose.

The control logic of gene expression has been extensively studied at many bacterial 

promoters. From these studies, it appears that different logical functions can be achieved 

from a variety of mechanisms, but as a result, genes often belong to more than one regulon 

(see reviews Alon, 2007; Browning & Busby, 2004; Cases & de Lorenzo, 2005; Janga & 

Collado-Vides, 2007; van Hijum et al., 2009). Overall, the benefits of integrating multiple 

signals drives the elaboration of intertwined regulatory networks resulting in regulon overlap 

and regulatory cascades that can make it difficult to identify a direct relationship between 

the signals and the regulated functions.

In addition, free-living bacteria found in rich and fluctuating environments are presumably 

expected to be able to sense many signals to respond accordingly to numerous sources of 

stress. The analysis of protein families in bacterial genomes indicates that the number of 
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regulators scales with the square of the total number of genes found in the genome in 

general (Nimwegen, 2006). However, the genome of bacteria living in complex 

environments, such as soil, seems to be enriched for transcription factors beyond what is 

expected from the general correlation (Cases, de Lorenzo, & Ouzounis, 2003).

4.2. Signal correlation

In some environments, signals or physical factors may vary in a correlated manner, and thus, 

two or more signals may convey equivalent information about changes in the environment. 

Actually, correlations between signals can be exploited by organisms to infer the state of 

factors in the environment that they may not be able to sense. For example, bacteria are not 

able to see and count the number of sister cells present in their immediate surroundings, but 

they can estimate the concentrations of diffusible small metabolites. Therefore, as the 

concentration of excreted metabolites increases with population density, bacteria evolved 

mechanisms to use the concentration of particular metabolites as a proxy to infer the number 

of neighboring cells (Miller & Bassler, 2001).

Predicting changes in the environment can be another way to take advantage of signal 

correlation. For example, when E. coli experiences an elevation in temperature, genes 

encoding for functions involved in aerobic respiration were downregulated (Tagkopoulos, 

Liu, & Tavazoie, 2008). The connection between temperature- and oxygen-related functions 

presumably reflects the covariation of these two factors when E. coli makes the transition 

between the outside world and the mammalian gut. Therefore, E. coli cells are able to 

predict changes in oxygen levels by monitoring temperature variations. This hypothesis is 

supported by the fact that the coregulation of these two different functions is rapidly lost 

when E. coli cells evolve in a novel-controlled environment (Tagkopoulos et al., 2008). 

Similarly, E. coli induces genes necessary for maltose metabolism in the presence of lactose, 

but not vice versa. The induction of the maltose operon is lost when E. coli is evolved in an 

environment constantly high in lactose with no maltose (Mitchell et al., 2009). A follow-up 

mathematical modeling analysis demonstrates the benefit of this type of unidirectional 

predictive regulation in certain environmental conditions (Mitchell& Pilpel, 2011). 

Anticipatory behavior has been observed in several other organisms. For example, Vibrio 

cholerae expresses genes associated with fitness in aquatic environments while still in the 

late stage of infection of the human host (Schild et al., 2007). Candida albicans induces 

genes involved in stress responses in the presence of glucose, which is presumably an 

indication that the cell successfully infected the blood stream. In Caulobacter crescentus, 

gene profiling analysis revealed that addition of xylose in the growth medium induced the 

expression of exoenzymes associated with plant polymer degradation, indicating that the 

presence of xylose is associated with the presence of other plant material (Hottes et al., 

2004).

The regulatory mechanisms evolved by cells to achieve predictive behavior have not been 

completely elucidated yet, but in Rhodobacter sphaeroides, genes involved in aerobic 

respiration and genes involved in photosynthesis are directly regulated by the same 

regulator, FnrL (Dufour, Kiley, & Donohue, 2010). The presence of photosynthetic 

functions under the control of a common transcription factor whose activity is regulated in 
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an oxygen-dependent manner may reflect the covariation of oxygen and light in the natural 

environment of R. sphaeroides. This is another example of direct regulation of distinct 

functions by a common regulator that likely represents an effective and easy to evolve 

strategy to achieve associative learning. In conclusion, signal correlation may cause the 

placement of different cellular functions under the control of the same transcription factor 

and eventually confound the direct functional relationship between signals and regulated 

genes.

4.3. The concept of core and extended regulons

As discussed above, selective pressures tend to force a direct functional relationship between 

signals and regulated genes while particular environmental factors may complicate this 

relationship. Therefore, the regulon composition of an individual regulator is expected to be 

specific to environmental conditions and, thus, vary across bacterial species with different 

lifestyles. Indeed, the results of the comparative genomics analysis of the FnrL regulon 

across ecologically diverse bacteria support this model (Dufour et al., 2010). For example, 

the R. sphaeroides FnrL regulon includes functions involved in aerobic respiration and 

photosynthesis. However, only functions related to aerobic or anaerobic respiration are 

conserved in the regulon of FnrL orthologs across species, even among other photosynthetic 

α-proteobacteria. Interestingly, the conserved functions found in the so-called core FnrL 

regulon are directly related to oxygen availability, which is the signal regulating FnrL 

activity. On the other hand, the functions present in the extended part of the FnrL regulon in 

R. sphaeroides reflect a specific adaptation of this bacterium to its environment.

Another example of this concept is provided by studying the E. coli alternative sigma factor 

RpoE that is activated by cell envelope stress. A comparative analysis of the E. coli σE 

regulon in nine γ-proteobacteria revealed the existence of a core regulon that contains 

functions involved in the synthesis and maintenance of lipopolysaccharide and outer 

membrane porins, which are functions directly related to the inducing stress (Rhodius, Suh, 

Nonaka, West, & Gross, 2005). At the same time, the extended RpoE regulon in E. coli 

comprises functions related to pathogenesis or symbiosis, indicating that envelope stress is 

also an indicator of host interactions for this bacterium. In addition, in several species of the 

Enterobacteriaceae family, the PhoP transcription factor, which responds to Mg2+ levels, 

regulates not only genes necessary for adaptation to limiting levels of Mg2+ but also, in only 

some species, genes involved in pathogenesis functions (Perez et al., 2009). Other 

comparative genomics studies uncovered similar patterns for regulon conservation across 

related species (Nonaka, Blankschien, Herman, Gross, & Rhodius, 2006; Oliver, Orsi, 

Wiedmann, & Boor, 2010; Perez & Groisman, 2009b; Swingle et al., 2008).

In conclusion, several comparative genomics studies of transcription factor regulons support 

the idea that regulons comprise different sets of functions adapted to correlated signals, 

which are specific to ecological niches. However, only functions directly related to the 

signal relayed by the transcription factor are conserved across related species because 

correlated signals are different in each ecological niche (Fig. 1.2).
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4.4. The dynamics of transcription factor binding sites

Several recent analyses suggest that transcriptional regulatory networks evolve more rapidly 

than the functions they control (Dufour et al., 2010; Lozada-Chavez, Janga, & Collado-

Vides, 2006; Madan Babu et al., 2006; Price et al., 2007). Indeed, as discussed above, the 

extended part of different regulons is often not conserved even between very closely related 

species. Several factors may underlie the capacity of bacteria to rewire their transcriptional 

regulatory networks over a short evolutionary time (van Hijum et al., 2009; Wang, Wang, & 

Qian, 2011). For example, analyses of gene promoters revealed that, even in the absence of 

apparent changes in the regulatory network architecture, transcription factor binding sites 

still experience significant turnover (Doniger & Fay, 2007; Huang, Nevins, & Ohler, 2007). 

Binding site turnover occurs when a new transcription factor target site appears next to the 

original binding site because of random mutations; then, elements of the original binding 

site evolve to a point where it is no longer recognized by the original protein. This 

observation indicates that a relatively high rate of mutation in noncoding genomic regions 

(estimated to be ~10−9–10−10 mutation per cell per generation; Hudson et al., 2003; Tago et 

al., 2005) creates and destroys transcription factor binding sites frequently. Additional 

studies showed that spurious binding sites in promoter regions appear frequently but are 

under strong selection (Froula & Francino, 2007; Hahn, Stajich, & Wray, 2003). Finally, the 

high rates of duplication, recombination, and transposition in bacterial genome may also 

contribute significantly to rapid changes in the distribution of existing transcription factor 

binding sites throughout the genome. For example, the insertion of IS elements into the 

promoter of flhDC, which encodes for the master regulator of motility in E. coli, occurs at 

high frequency and allows the adaptive evolution of higher motility in soft agar by 

disrupting promoter repression (Barker, Prüß, & Matsumura, 2004). Other examples of 

adaptive evolution resulting from promoter modification by transposable DNA sequences 

have been documented (Jaurin & Normark, 1983; Podglajen, Breuil, & Collatz, 1994).

4.5. Regulons evolve rapidly

The rapid evolution of transcription factor binding sites discussed above, together with the 

possibility that some transcription factors may control genes involved in distinct functions 

because of correlations in environmental factors, creates circumstances that can allow rapid 

adaptive or nonadaptive evolution of transcriptional regulatory networks. For example, 

experiments demonstrated that great changes in the CRP-dependent expression profiles can 

be observed in E. coli after only 20,000 generations of directed evolution (Cooper et al., 

2008). Therefore, it is not surprising that many comparative analyses found that orthologous 

bacterial genes are rarely regulated by orthologous regulators (Lozada-Chavez et al., 2006; 

Madan Babu et al., 2006; Price et al., 2007). However, many analyses have not considered 

two important aspects of transcriptional regulatory network evolution. First, when assessing 

the conservation of regulon across species, a distinction must be made between genes in the 

core regulon versus genes in the extended regulon. Indeed, the composition of the core 

regulon may evolve more slowly or in parallel with the function of the transcription factor 

because of the direct functional connection between the core functions and the regulating 

signal. On the other hand, the composition of the extended regulon may evolve more rapidly 

to reflect particular correlations in environmental factors. The rapid changes in the extended 
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regulon may underlie the capacity of bacteria for rapid integration of laterally acquired 

functions and adaptation to new conditions. Second, because transcription factors can have 

complex evolutionary histories and may evolve to sense different signals, attempting to infer 

transcription factor functions from comparative sequence analyses is often difficult or can 

lead to inaccurate predictions when considering distantly related species. Indeed, regulators 

that appear to be orthologous may in fact have different functions (Price et al., 2007). For 

example, the CRP–FNR family has many subfamilies represented in α-proteobacteria 

species that may be hard to differentiate using protein sequence information only without 

specific knowledge of their biochemistry (Dufour et al., 2010). Therefore, the simultaneous 

analysis of transcription factors and their associated core regulon may help identify 

functional divergence more reliably.

5. EVOLUTION OF TRANSCRIPTION FACTOR FUNCTIONS

Although transcription factors are functionally diverse, sequence and structural domain 

analyses suggest that these proteins can be classified into relatively few homologous groups, 

indicating that transcription factors with different functions share common origins (Gelfand, 

2006; Rodionov, 2007). For example, a phylogenetic analysis of the CRP/FNR family of 

transcription factors across 87 α-proteobacteria revealed that this superfamily is composed 

of 19 distinct subfamilies (Dufour et al., 2010). Further analysis of the FNR, FixK, and DNR 

subfamilies showed that transcription factors from each family have different functions. 

These results illustrate that transcription factors that share common ancestry can diverge to 

acquire new functions. Intuitively, several mechanisms can contribute to the evolution of 

new transcription factor functions, such as point mutations or domain recombination. 

However, the precise processes underlying the evolution of new transcription factor 

functions are not well understood yet. Recent studies attempting to shed light on this 

question using comparative genomics analyses have led to two alternative models to explain 

the functional divergence of transcription factors (Price, Dehal, & Arkin, 2008; Teichmann 

& Babu, 2004).

5.1. The duplication and divergence model

The first widely accepted model addressing the functional divergence of transcription factors 

was proposed to rely on gene duplication followed by functional divergence (Teichmann & 

Babu, 2004). Proteins encoded in the E. coli genome were grouped into families of 

homologues based on sequence similarity to identify presumed duplicated genes. Then, the 

analysis of the network of known regulatory interactions revealed that about a third of all 

known regulatory interactions between transcription factors and target genes in E. coli were 

constituted by homologous transcription factors regulating at least one common target gene 

or one regulator regulating two homologous target genes. In addition, approximately 6% of 

these regulatory interactions are represented by two homologous transcription factors 

regulating two homologous target genes, indicating that these homologous regulatory 

interactions may have been inherited from the simultaneous duplication of the transcription 

factor and its target genes. For example, in E. coli, the regulators ZntR and CueR, two 

paralogs of the MerR family, independently regulate transcription of the homologous genes 

zntA and copA, which encode respectively for zinc and copper transporters (Yamamoto & 
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Ishihama, 2005a, 2005b). Similarly in Salmonella enterica, the related transcription factors, 

CueR and GolS, show very specific regulation in response to copper and gold stress despite 

sharing almost identical DNA-binding sites. Only two mutations in the DNA recognition 

sequence are sufficient to switch specificity between CueR and GolS (Pérez Audero et al., 

2010). This example illustrates how very few evolutionary steps can create regulators of 

different functions. In conclusion, these results support that duplication of transcription 

factors or target genes, followed by the gain and loss of new regulatory interactions, 

contributes significantly to the evolution and growth of transcriptional regulatory networks 

in bacteria (Teichmann & Babu, 2004). In R. sphaeroides, the properties of two homologues 

of the heat shock sigma factor, RpoHI and RpoHII, may be another example of this 

evolutionary model. Indeed, the phylogenetic trees of these two homologues suggest that α-

proteobacteria possessing two RpoH homologues inherited these two regulators by vertical 

descent after duplication of an ancestral rpoH gene (Green & Donohue, 2006). Since the 

proposed duplication event, RpoHI and RpoHII have evolved to fulfill regulatory functions 

in different stress response pathways, heat shock and singlet oxygen, respectively (Dufour, 

Landick, & Donohue, 2008; Nuss, Glaeser, & Klug, 2009). Overall, however, the gene 

duplication and divergence analysis do not take into account the possibility that presumed 

paralogs may in fact be acquired from lateral gene transfer, which is frequent among 

bacteria (Boto, 2010), thus, overestimating the contribution from gene duplication.

5.2. The role of lateral gene transfer

A second evolutionary model was proposed by Price et al. (2008) to account for the 

contribution of lateral gene transfer to the evolution of transcriptional regulatory networks. 

In this analysis, the authors conducted a phylogenetic analysis of transcription factors found 

in E. coli and other related γ-proteobacteria to distinguish homologues that were created by 

gene duplication from homologues acquired through lateral gene transfer (Price et al., 2008). 

Their results revealed that very few transcription factors have been duplicated in the E. coli 

lineage, but that transcription factors had a complex history of lateral gene transfers. 

Furthermore, an analysis of the regulatory interactions suggested that similarities in the 

regulation of homologous target genes by homologous transcription factors are likely to 

have arisen by convergent evolution rather than being inherited. This analysis and a more 

recent protein family analysis pipeline concluded that only a minor part of the E. coli 

transcriptional regulatory network was created by gene duplication (Price et al., 2008; 

Treangen & Rocha, 2011). Their model for the evolution of transcription factors proposed 

that an ancestral transcription factor is transferred to different species in which it acquires a 

new function; then, the inherited protein is reacquired by the first species through lateral 

gene transfer, potentially with some associated target genes to facilitate the integration of the 

xenogenic genes in the recipient regulatory network. In general, horizontal gene transfer 

appears to be a major contributor to the diversity of function found in bacterial genomes and 

a significant driver for the adaptation to new ecological niches (Ochman, Lawrence, & 

Groisman, 2000; Wiedenbeck & Cohan, 2011).

5.3. Extended regulons may facilitate the evolution of new transcription factor functions

The above models do not address the exact process by which a transcription factor may 

acquire a new function. Because a transcription factor constitutes a link between a signal and 
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a set of biological functions, the evolution of a new function requires that the transcription 

factor respond to a new signal and that the composition of the associated regulon adapt to 

the new signal. These steps are unlikely to happen simultaneously; thus, the evolutionary 

path taken by transcription factors needs to be orchestrated carefully. For example, if the 

input domain of a transcription factor evolves to respond to a new signal, either from a point 

mutation or from a domain recombination, then the functions encoded in the original 

regulon will be regulated by a new signal that may not be relevant. Conversely, if the output 

domain evolves before the transcription factor acquires a new regulon, a problem still exists. 

In both cases, it is apparent that independent changes in the input or output domains of 

transcription factors can lead to a state that does not offer any benefit to the cell; thus, these 

changes will not be fixed in the population. Therefore, a transcription factor can successfully 

evolve a new and beneficial function to the cell only if two relatively rare events occur 

either simultaneously or if the cell can tolerate a transitional transcription factor that does 

not function properly long enough to allow more genetic changes to occur and reestablish a 

functional connection between signal and target genes.

Several phylogenetic analyses revealed some aspects of the regulon organization that may 

play a significant role in the processes underlying the evolution of new transcription factor 

functions (Dufour et al., 2010, 2008; Perez et al., 2009; Rhodius et al., 2005; Rodionov, 

Dubchak, Arkin, Alm, & Gelfand, 2004, 2005; Turkarslan et al., 2011). Indeed, the 

existence of functionally distinct core and extended regulons may provide an evolutionary 

path that avoids the transition through a nonfunctional state. In this model, correlation 

between two environmental signals may cause a transcription factor, which is able to sense 

one signal, to acquire an extended regulon encoding for functions that are relevant to the 

second signal. In this situation, the two signals convey the same information about the state 

of the environment and the two sets of functions are coregulated; thus, changes in the input 

domain that cause the transcription factor to sense the second signal are functionally neutral. 

Therefore, changes that allow the transcription factor to sense the second signal do not affect 

the overall function of the transcriptional regulatory network. As a result, the extended part 

of the regulon becomes the core regulon, and vice versa (Fig. 1.3). Through this process, a 

transcription factor may acquire a new input signal and a new set of target genes in a 

stepwise manner without transitioning through a nonfunctional state, which may be subject 

to purifying selection. It is also conceivable that a duplication of the transcription factor 

precedes functional divergence. In this scenario, one of the duplicate regulators evolves to 

sense the second signal and the two regulators are free to split the original composite 

regulon according to the two distinct sets of functions. Although studies are needed to test 

this model, analyses of the phylogenetic conservation of members of the CRP/FNR 

transcription factor family suggest that this process may have occurred in some bacterial 

species (Dufour et al., 2010). Indeed, a few bacteria, such as Oceanicola batsensis, appear to 

possess the core regulon associated with FNR-type regulators but no gene encoding for an 

FNR-type regulator. Instead, these species possess genes encoding for homologues of FNR 

that are predicted to be unable to sense oxygen because they lack one or more conserved 

cysteine residues that are required to coordinate an iron–sulfur cluster. The signal sensed by 

these regulators is unknown, but the transcription networks may have acquired the ability to 

sense a new signal, thus, a new function, while still maintaining in their regulons genes that 
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define the FNR core regulon. Another phylogenetic analysis done in Archaea revealed that 

the unusually large expansion in number of the transcription factor B (TFB) family may 

underlie the rapid adaptation of halophilic species to the very diverse ecological niches 

found in hypersaline ecosystems (Turkarslan et al., 2011). Members of the TFB family in 

Halobacterium salinarum have distinct functions but still show large overlaps in their 

contributions to gene expression profiles under various experimental conditions (Facciotti et 

al., 2007; Turkarslan et al., 2011). These observations may represent an interesting 

illustration of the proposed model for the evolution of new transcription factor functions.

6. CONCLUSIONS

One theme that emerged from early comparative genomics studies of transcription factors 

and their targets was that transcriptional regulatory networks are not well conserved even 

across closely related species. Accordingly, the evolution of regulatory networks is a very 

rapid and dynamical process that contributes significantly to the remarkable capacity of 

bacteria to adapt to new environments. Comparative studies also revealed that this rapid 

evolution may be driven by various factors, such as gene duplication, genome 

recombination, horizontal gene transfer, or transcription factor binding site turn over.

Fortunately, the availability of a growing number of genome sequences provides us with 

more resolving power to generate specific hypothesis about the structure of regulatory 

networks and their conservation across organisms. Furthermore, technological advances 

leading to the creation of high-throughput experimental tools have accelerated the validation 

of network structures in model organisms. However, the rapid evolution of gene regulation 

poses challenges because knowledge acquired from studies in model organisms may not be 

directly transferrable to related species.

Another factor that appears to be important in shaping regulatory networks is the nature of 

the relationship between the environmental variables that characterize the ecological niche 

of specific organisms. Indeed, covariations of signals may result in networks where different 

functions are placed under the regulation of a common regulator, thus, confounding the 

expected connection between one signal, one regulator, and one function. Therefore, it will 

be critical to integrate ecological information with phylogenetic data to improve the 

predictive power of transcriptional regulatory network reconstruction.

Finally, it is often not possible to test evolutionary theory in a laboratory or in populations of 

complex organisms or communities because of the long-timescale on which evolution 

operates. However, some studies in bacteria have shown that the evolution of transcriptional 

networks can occur in a few thousand generations. Therefore, directed evolution 

experiments could be proposed to test the effects of environmental conditions on the 

architecture of transcriptional regulatory networks. In addition, the rapid progress in DNA 

sequencing technologies makes monitoring changes in the genome sequence to detect 

genetic basis of adaptation practically feasible.
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Figure 1.1. 
Three main classes of DNA-binding transcription factors. Diagrammatic representation of 

the three known classes of DNA-binding transcription regulators in bacteria, one-component 

(A), two-component (B), and group IV sigma factor (C). Transcription factors are depicted 

to bind DNA in the presence of an activating signal, but in some cases, the regulation is 

reversed and the transcription factors bind DNA only in the absence of the specific signal.
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Figure 1.2. 
The core and extended regulon structure of orthologous transcription factors. Diagrammatic 

representation of three species sharing orthologous transcription factors and variable sets of 

target genes. Target genes that are conserved across most or all species constitute the so-

called core regulon. The remaining target genes that are variably conserved across species 

constitute the extended regulon. Functions encoded in the core regulon are usually directly 

related to the signal that activates the transcription factor. Functions in the extended regulon 

are likely to represent particular adaptation of species to their ecological niche.
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Figure 1.3. 
Evolution of new transcription factor functions through the extended regulon. Diagrammatic 

representation of the successive steps in the evolution of new transcription factor functions 

using the extended regulon as an evolutionary bridge. (A) Selective pressures drive the 

evolution of regulatory connections between a transcription factor and functions that are 

necessary for the biological response to the activating signal. (B) Correlation between 

signals (signals A and B) in a particular environment allows the incorporation into the 

regulon of additional functions that are relevant to the biological response to signal B. (C) 

The signal correlation and the presence of an extended regulon allow the transcription factor 

to evolve a new function without affecting the function of the transcriptional regulatory 

network. (D) The transcription factor has acquired a new function and is associated with a 

new core regulon.
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