
RESEARCH ARTICLE

MORPHEUS, a Webtool for Transcription
Factor Binding Analysis Using Position
Weight Matrices with Dependency
Eugenio Gómez Minguet1¤, Stéphane Segard2, Céline Charavay2, François Parcy1*

1 Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168, Centre National de la
Recherche Scientifique, Commissariat à l’Énergie Atomique, Institut National de la Recherche Agronomique,
Université Joseph Fourier Grenoble I, 38054, Grenoble, France, 2 Laboratoire de Biologie àGrande Echelle,
CEA/INSERMU1038/UJF—Grenoble 1, IRTSV, F-38054, Grenoble, Cedex 9, France

¤ Current address: Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica
de Valencia, Avda de los Naranjos s/n, Valencia, 46022, Spain
* francois.parcy@cea.fr

Abstract
Transcriptional networks are central to any biological process and changes affecting tran-

scription factors or their binding sites in the genome are a key factor driving evolution. As

more organisms are being sequenced, tools are needed to easily predict transcription factor

binding sites (TFBS) presence and affinity from mere inspection of genomic sequences.

Although many TFBS discovery algorithms exist, tools for using the DNA binding models

they generate are relatively scarce and their use is limited among the biologist community

by the lack of flexible and user-friendly tools. We have developed a suite of web tools (called

Morpheus) based on the proven Position Weight Matrices (PWM) formalism that can be

used without any programing skills and incorporates some unique features such as the

presence of dependencies between nucleotides positions or the possibility to compute the

predicted occupancy of a large regulatory region using a biophysical model. To illustrate the

possibilities and simplicity of Morpheus tools in functional and evolutionary analysis, we

have analysed the regulatory link between LEAFY, a key plant transcription factor involved

in flower development, and its direct target gene APETALA1 during the divergence of Bras-

sicales clade.

Introduction
The binding of transcription factors (TF) to cis elements is a key component of most biological
processes. Being able to detect TF binding sites (TFBS) by inspecting genome sequences helps
understanding how organisms work and how they evolved. Methods based on Chromatin
Immunoprecipitation (ChIP) such as ChIP-Chip [1], ChIP-Seq [2] or ChIP-exo [3] allow the
identification of all genomic regions bound by a given TF in one experimental condition and
suites as Bedtools [4, 5] offer many tools to manipulate them. To precisely identify the TFBS
present in these regions, estimate their affinity, predict binding sites that might be bound in
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other experimental conditions, or study organism where ChIP experiments are more challeng-
ing, TF DNA binding models are extremely useful. There are multiple ways to model TFBS.
The most common is the Position Weight Matrix (PWM) that, for each sequence, computes a
score directly related to the TF/DNA affinity ([6] for a review). This method, however, assumes
that each base of the BS contributes independently to the affinity of the TF for DNA [7] and
there is evidence that interdependencies between positions exist [8, 9] and that taking into
account dinucleotide dependencies between two adjacent positions already improves predic-
tions [10]. Several alternatives with specific advantages have been proposed using nucleotide
subsequences (K-mers) rather than mononucleotide positions [8, 11, 12] or hidden Markov
models (HMM) [13]. However, in most cases, PWMs provide simple and reliable estimation of
binding affinity [14]. We propose to adapt the convenient PWMmodel by adding dependency
information at specific positions of the matrix. As documented for several TFs [10, 15–17], this
will improve the prediction power of some PWMmodels.

Although several tools such as RSAT [18], PROMO [19], MatInspector [20] or LASAGNA
[21] are available to identify overrepresented motifs in a set of sequence and build binding
models, none of them allows using PWMwith dependencies nor to calculate occupancy of
DNA regions using biophysical models [22]. We have developed a new algorithm that uses
PWMwith any combination of dependent and independent positions. We incorporated it in a
user friendly set of tools called MORPHEUS, which offers several specific advantages over
existing tools: 1) it is a web tool that does not require any programming skill and can thus be
widely used by the biologist community, 2) users can import their own matrices, not only those
found in databases, 3) position interdependencies can be included between any positions of the
matrix and in combination with independent positions, a possibility currently offered by none
of the existing web tools, 4) a global “predicted occupancy” value can be computed for whole
DNA regions using a biophysical model [22] that integrates the presence of individual binding
sites.

Results and Discussion

Morpheus Matrix Format andmPWM algorithm
The Morpheus PWM format (mPWM) allows the introduction of information on di- or tri-
nucleotide dependencies between any indicated positions (not just adjacent ones) within a
binding site. Unlike other models that increase model complexity for all positions,mPWM
conserves the simplicity of a PWM except for interdependent positions. UsingmPWM, inter-
dependencies are defined as additional 4(d) matrices (d = 2 for dinucleotide dependency, d = 3
for triplets) for any position combination (Example matrix files are provided as S1 Text and S2
Text).

mPWM Format Conversion Tool
We have provided a tool to generatemPWM from an alignment of transcription factor binding
sites. Positions with dependency have to be detected using programs such ENOLOGOS [23]
and provided as a list of dependent positions for the conversion tool to automatically generate
the corresponding 4(d) matrices. Depending on the TF structural features, the possibility is
offered to generate symmetric matrices.

Morpheus tools
The Morpheus suite allows the calculation of relative affinity of TFBS frommPWM. Based on
the scores of individual binding sites present in a large DNA region, Morpheus also computes
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the predicted occupancy using a biophysical model as previously described [22, 24, 25]. This
possibility, not offered by any other web-tool, is particularly important as individual cis ele-
ments can vary within a regulatory region even though the occupancy and overall regulation
are conserved [16, 26]. The predicted occupancy thus offers a global measure that allows com-
paring regions independently of the individual binding site variations.

Morpheus webtool it is composed of three tools:
- Morpheus ‘Score’ tool scans DNA regions and computes the scores of individual TFBS.

The user can choose to display only the TFBS of highest score of each region, the TFBS with a
score higher than a given threshold score or all TFBS. For an easy graphical representation,
this tool also generates score profiles for each sequence as well as an histogram with all scores
(Fig 1).

- Morpheus ‘Occupancy’ tool computes the TF predicted occupancy of each DNA region
using formalism described above [22, 24] with the option of using only the scores exceeding a
given threshold. Occupancy calculation is based on the correlation between predicted score
and relative dissociation constant which can be obtained from in vitromeasurements of relative
affinities [27]. If this data is not available a relative occupancy can be calculated using default
values for the parameters.

Both score and occupancy options take two files as input: a file with sequences in fasta for-
mat and amPWM.

Fig 1. Morpheus flowchart and example of result representation. The tool Score scans DNA regions and computes the scores of TFBS. The bottom left
graph shows TFBS locations and scores; such score profile is generated for each sequence submitted. The Occupancy tool computes the TF predicted
occupancy of each DNA region taking as input sequence files (in fasta format) and a binding model information (mPWM format). Complete results are written
in text files and also displayed as graphical outputs for quick results overview. Bottom right panel shows a occupancy comparison between different DNA
regions. The bottom central panel illustrates the ROC-AUC curve and value obtained with the ROC-AUC tool.

doi:10.1371/journal.pone.0135586.g001
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- Morpheus ‘ROC’ allows assessing the quality of a TF binding model by performing a
Receiver Operating Characteristics (ROC) analysis [28]. This analysis measures the discrimina-
tive power of a TF matrix by comparing a set of bound regions (obtained for example from
ChIP-Seq experiments) to a negative control set generated by the user. The comparison uses
either the best score TFBS of each sequence or its occupancy and the Area Under the Curve
(AUC) value is computed as a measure of the model predictive power.

All three programs display graphic output (Fig 1) for quick results overview and text files
with complete results for further analysis by the user.

For illustration of how Morpheus suite works, we present here a set of analyses performed
with the LEAFY (LFY) protein, a plant TF with a central role in the evolution and development
of flowers [29, 30]. According to in vitro affinity measurement a PWM has been proposed for
this factor (LFY-Trip) that includes three dependency triplets in a symmetric motif of 19 posi-
tions [16], in accordance with the information obtained from the LFY-DNA crystal structures
[31, 32].

LEAFY Binding model evaluation using ROC
The availability of ChIP-Seq data allows performing ROC analysis using the described set of
bound genomic regions [16] as well as a negative set of non bound regions (see Methods for
description of negative set generation) to compare the predictive power of this matrix against
the previously described consensus motifs [31, 33, 34]. To do this, Scores or Occupancies are
computed for both the positive and negative sets with each binding model (using Score or
Occupancy tools) and the result serves as input for the ROC program. A histogram is generated
that represents the distribution of scores or occupancy values for each data set (Fig 2A). This
tool also generates an image file with the ROC curve and a text file with all the data. In Fig 2B,
we use ROC-AUC results to illustrate the increased prediction power of the LFY-Trip PWM as
compared to previously used consensus sequences. This tool can be used to compare the vari-
ous matrices identified by various motifs finding algorithms in order to select the one with the
best predictive power. Next, we illustrate how the LFYmPWM can be used for functional or
evolutionary analysis of a regulatory relationship using the Score and Occupancy tools.

Prediction of LEAFY binding sites on APETALA1 promoter
We focused on the link between LFY and its direct target APETALA1 (AP1) involved in the
development of flowers [29, 30]. The MADS box TF gene AP1 arose from duplication of the
FRUITFUL (FUL) gene and this event was proposed to be important in the fixation of flower
structure in eudicot plants [35]. AP1 have also experienced a more recent Brassicaceae-specific
duplication [36, 37] generating the CAULIFLOWER gene. While AP1 is a direct target of LFY,
there is no evidence for direct regulation of FUL or CAL [16, 38]. We illustrate here how Mor-
pheus can be used to explore LFY-AP1 link through eudicot plants evolution.

The functional analysis of AP1 promoter and its regulation by LFY binding has been per-
formed in the model plant Arabidopsis thaliana. A few promoter versions have been tested in
vivo [39] including different promoter lengths (2.2, 1.7, 0.9 and 0.6 kb), and mutations in three
candidate LFYBS (bs1, bs2 and bs3) displaying consensus motifs [31, 33, 34]. The score profile
of AP1 promoter generated with Morpheus Score tool (option "limit = -25") illustrates the
position of the best LFYBS in AP1 promoter (Fig 3A). We computed Occupancy values for all
promoter versions and compared these values to the in vivo activity of the corresponding pro-
moter fragment (Fig 3B). In vivo, mutations in bs2 and bs3 had weak effect while mutation
in bs1 had a strongest effect, which is in accordance with their computed scores and not with
the presence of the consensus sequence. The good correlation between the two types of data
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illustrates the power of the biophysical model to predict the impact of TFBS changes on gene
expression by integrating all possible TFBS present in a regulatory region.

Transcriptional regulation and evolution
Next, we use the Morpheus tools to study the evolution of the link between LFY and genes of
the FUL clade (AP1, CAL and FUL). Scanning of 2 kb of promoter sequences in various species
illustrates well the diversity of LFYBS landscapes (Fig 4B). As it is difficult to draw clear conclu-
sions directly from these TFBS profiles, we computed the Occupancy (Occ) for these different
promoters (Fig 4A). We found a higher occupancy of the AP1 ortholog promoters as compared
to those of CAL and FUL in the Brassicales clade, a result in good accordance with experimen-
tal data available in Arabidopsis [16, 33, 38, 40]. This analysis suggests that the link between
LFY and AP1 originated before the divergence of B. rapa.

Interestingly, the promoter of the AP1 gene from the Brassicale Carica papaya displays a
low occupancy though evidence suggests a regulation by LFY. We wondered whether this

Fig 2. The performance of a TFmodel can be evaluated by its capability to discriminate between
bound and non-bound regions as determined from a ChIP-Seq experiment. The Morpheus ‘ROC’ tools
computes the ROC-AUC value as a measure of the model predictive power.A) The histogram graphical
output displays the distribution of score values for the best binding sites present on each DNA sequence. B)
ROC data output for three binding models: two consensus motifs and LFY-trip (input data has been
generated using the Morpheus ‘Occupancy’ tool). The LFY-trip model largely outperforms the two consensus
models.

doi:10.1371/journal.pone.0135586.g002
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reflected an absence of regulatory link between LFY and AP1 in this species or whether the
LFY binding sites could be located outside of the promoter. We thus scanned the region down-
stream of the start codon and we found a predicted BS with a very good score that could be
responsible for the AP1 regulation by LFY in this species despite the absence of high affinity
LFYBS in the promoter. None of the other species with low promoter occupancy displayed this
3’ binding site (data not shown). This data supports the hypothesis that LFY-AP1 link origi-
nated before Brassicales divergence. The low occupancy values for AP1 promoters in Fabids
suggest LFY does not regulate AP1 in these species. However, because there are intermediate
Occupancy values in the Fabaceae clade, a more detailed experimental characterization would
be required in these species to assay the possible existence of a regulatory relationship between
LFY and AP1.

These analyses illustrate how genomic sequences can be analysed with the Morpheus tool
to generate hypotheses regarding gene regulation and regulatory network evolution. More

Fig 3. Comparison of LEAFY binding analysis in A. thaliana AP1 promoter using the Morpheus suite
with in vivo promoter expression study [39]. A) Score profile graphic output of the Morpheus ‘Score’ tool
(option limit = -25) using 2.2 kb upstream of AP1 start codon. Red dotted lines show the different promoter
sizes and arrows mark the mutated BS, accordingly with promoters set described in [39]. B) Predicted
occupancy (option All) shows a good correspondence with relative expression of each promoter version as
determined experimentally in a published study and summarized: expression levels: +++ (high), ++
(medium), + (low),—(not detectable). The number indicates the size of the promoter (2.2, 1.7, 0.9 or 0.6 kb),
m2 and m3 indicate mutations in bs2 and bs3 respectively, Δ1 indicates a deletion of bs1. In vivo, mutations
of bs2 and bs3 (promoter 0.6 mutbs2bs3) has only a weak effect while elimination of bs1 drastically affects
AP1 expression.

doi:10.1371/journal.pone.0135586.g003
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examples can be found in three additional studies [16, 41, 42] that used Morpheus while under
development. As more TF binding models become available, such tools will become increas-
ingly important to exploit the genomic data, answer evolutionary questions and bringing up
new working hypotheses.

Fig 4. Evolutionary analysis of LFY binding on AP1 promoters.Genomic sequences were obtained from the Phytozome database and 2 kb promoter
upstream the ATG were used. Only well annotated genes were used.A) Predicted occupancy (Option limit = -23) for each promoter. Phylogenetic
relationships between species are represented. B) Score profile (limit = -23) of some representative promoters. The higher occupancy for AP1 promoters in
Brassicales (red) suggests that the regulatory link between LFY and AP1 in A. thaliana arose before the divergence of this clade. Interestingly, C. papaya with
low occupancy in AP1 promoter has a candidate BS of very good score downstream the start codon likely to be responsible for a regulation by LFY. In
Fabids, the low occupancy values suggest that LFY does not regulate AP1, though some promoters have intermediate occupancy values (green) what will
need further analysis.

doi:10.1371/journal.pone.0135586.g004
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Conclusions
Morpheus web allows a user-friendly suite of tools for the calculation of TFBS relative affinity
on DNA sequences. It incorporates unique features such as dependency between specific posi-
tions, occupancy calculation and ROC-AUC estimation that do not exist in any currently avail-
able webtool. We have illustrated how it can be used to infer hypothesis about TFBS functional
significance or about evolution of regulatory links. Experienced users can download Morpheus
scripts code for specific purpose, however no programming skills are needed to use Morpheus
web-tools. With all its unique characteristics and with the possibility of using any own-modi-
fiedmPWM, we believe Morpheus should have strong acceptance among biologists. Morpheus
web-tools, complete user guide and downloading versions are available at Morpheus website:
http://biodev.cea.fr/morpheus/.

Methods

Morpheus
All scripts for Morpheus tools are written in Python programming language (ver 2.6.7). The
graphic output requires two modules: Numpy (http://numpy.scipy.org/) and Matplotlib
(http://matplotlib.sourceforge.net/). Morpheus tools are available in the Morpheus web (http://
biodev.cea.fr/morpheus/), as well as downloading versions with or without graphic output,
user guide and complete descriptions. The web is hosted and maintained by the GIPSI team
(CEA Saclay).

When the score matrix is not directly provided, Morpheus computes it based on ‘Count’ or
‘Frequency’matrices usingWn,i = Ln(fn,i/fmax,i) whereWn,i is the weight at position i for nucle-
otide n, fn,i is the frequency of nucleotide n at position i and fmax,i is the maximal frequency
observed at position i [43]. Each 4(d) dependency matrix is preceded by a line indicating the
positions involved (S2 Text). For score calculation themPWM algorithm first get the value for
each independent position from the independent matrix and then for all the dependency com-
binations from the 4(d) matrices. If in vitro affinity data is available to correlate score with rela-
tive dissociation constant, the correlation values can be indicated inmPWM file or, if they are
not indicated, the program will use default parameters (corresponding to a line curve with
scope equal to one). From matrix file,mPWM algorithm first identifies the list of independent
positions (i) and the list of dependent positions groups (j; each one associated with a 4(d)

matrix), then the score of each DNA sequence is calculated as:

Sequencescore ¼
X

p2i
scorepnt þ

X

q2j
scoreqdep

where scorepnt is the score in the position p for the nucleotide nt (A,C,G or T) in the independent

matrix and scoreqdep is the score in the 4(d) matrix of group q for the sequence combination dep

(dinucleotide or triplet). Example of matrix files in Morpheus format with or without depen-
dencies are provided as S1 Text and S2 Text, respectively.

Occupancy calculation (default parameters)
Occupancy calculation is based on the relation between predicted score and relative dissocia-
tion constant [16, 24], score = -a � ln(Kd) + b. A and b values can be provided in themPWM
file when they have been determined. If not, Morpheus will use default parameters (a = 1.0 and
b = 0.0). Occupancy calculation formalism also requires the TF concentration [X], which can
optionally be indicated if available. Since this value is rarely available, as default, Morpheus
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uses [X] = e (b/a) corresponding to a TF concentration at which the best possible binding site
(maximal score) is bound with a probability of 0.5.

Sequences sets for ROC-AUC calculation
Positive bound sequences was taken from [16] (S3 Text). To generate a negative set of
sequences for ROC-AUC analysis, we have randomly selected in the A. thaliana genome a set
of sequences that do not overlap with the positive set and with the same size distribution (S4
Text).

FUL clade genomic sequences
Genomic sequences were obtained from Phytozome database [44] by Blast search using the
protein sequence of AtAP1 (At1g69120), AtCAL (At1g26310) and AtFUL (At5g60910). Hits
without transcripts information or with incomplete gene prediction were discarded. A region
of 2 kb upstream the ATG were used for relative binding score calculation. All sequences used
in this study can be found in S5 Text.

Supporting Information
S1 Text. Example of mPWM format without dependency.
(TXT)

S2 Text. Example of mPWM format with dependency.
(TXT)

S3 Text. Positive Sequences Set.
(TXT)

S4 Text. Negative Sequences Set.
(TXT)

S5 Text. FUL clade genomic sequences.
(TXT)
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