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Abstract

Genome-wide association studies have identified twenty loci associated with late-onset Alzheimer
disease (LOAD). We examined each of the twenty loci, specifically the £50kb region surrounding
the most strongly associated variant, for changes in gene(s) transcription specific to LOAD. Post-
mortem human brain samples were examined for expression, methylation, and splicing
differences. LOAD specific differences were detected by comparing LOAD to normal and
“disease” controls. Eight loci, prominently ABCA7, contain LOAD specific differences.
Significant changes in the CELF1 and ZCWPW1 loci occurred in genes not located nearest the
associated variant, suggesting that these genes should be investigated further as LOAD candidates.
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Introduction

Late-Onset Alzheimer disease (LOAD) is a neurodegenerative disease that affects
individuals 60 years or older. LOAD heritability estimates of up to 70% indicates that there
is a considerable genetic component to the disease[1]. In 1993, APOE was the first gene to
be unequivocally established as a susceptibility gene for LOAD [2, 3]. Recently, genome-
wide association studies (GWAS) have identified an additional twenty loci significantly
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associated with LOAD that fall within or near the ABCA7, BIN1, CASS4, CD2AP, CD33,
CELF1, CLU, CR1, EPHA1, FERMT2, HLA, INP55D, MEF2C, MS4A6A, NMES,
PICALM, PTK2B, SLC2A4, SORL1, and ZCWPW1 genes [4-9].

In an effort to understand how these variants influence LOAD etiology, several studies have
attempted to elucidate how these loci contribute to LOAD by examining transcription and
splicing of the genes nearest the GWAS variants with the strongest association. To date,
increased CD33 molecule (CD33) expression has been shown to be associated with
Alzheimer disease (AD) and to inhibit microglial uptake of amyloid beta [10, 11]. Alternate
isoform expression of Clusterin (CLU) results in an increase of CLU protein secretion, an
effect observed in AD [12]. Increased copy number variants located within the complement
component (3b/4b) receptor 1 (Knops blood group) (CR1) gene are significantly associated
with LOAD [13]. Lastly, sortilin-related receptor, L (DLR class) A repeats containing
(SORL1) harbors an intronic polymorphism associated with decreased expression in LOAD
[14, 15]. In total, transcriptional alterations have been identified in the ABCA7, BIN1, CD33,
CLU, CRY, and SORL1 loci[10]. While the majority of studies examined the gene nearest the
strongest associated variant, it is important to note that all significant GWAS variants fall
outside of known exons and that some areas of strong association contain multiple genes.
Fourteen of the twenty strongly associated variants lie within intronic regions and six
variants fall completely outside of known gene boundaries.

In this study, we wanted to examine all the genes located with a 100kb region surrounding
each of the most strongly LOAD associated variants to examine gene transcription for
abnormalities and potentially identify the gene(s) that may play a role in LOAD etiology. To
do this, we examined each LOAD loci for changes in gene expression, methylation, and
splicing specific to LOAD by performing RNA sequencing (RNA-Seq) on a total of ten
cases and ten cognitively normal controls. Changes in gene expression and splicing were
examined within the twenty loci. DNA methylation, a known regulator of expression, was
examined in eight LOAD and eight cognitively normal controls in the same samples used
for RNA-Seq. To determine if alterations were LOAD specific, or were secondary effects of
neurodegeneration, alterations in expression, methylation, and splicing observed in LOAD
were also compared to a “disease control”, Dementia with Lewy bodies (DLB). Patients
with DLB exhibit similar phenotypes to LOAD; however, their pathological attributes differ
substantially. This characteristic allowed us to use the disease control to potentially filter out
the differences observed in LOAD from those due to DLB neurodegeneration and enabled
us to hopefully identify processes specifically contributing to LOAD. We confirmed
expression differences using quantitative Real Time PCR (qRT-PCR) and compared
findings to a previous microarray study. This study revealed a total of eight loci with
significant changes in expression, methylation, and splicing in seventeen genes throughout
the loci specifically altered in LOAD. These findings may provide mechanistic insights into
the role these loci play in LOAD.
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Materials and Methods

Tissue samples

RNA transcription was investigated using tissue samples isolated from the temporal pole
from a total of thirty brain samples. Ten samples were collected from each of the following
three groups: subjects with late-onset Alzheimer disease (LOAD), neurologically normal
controls, and disease controls, subjects with dementia with Lewy bodies (DLB). Samples
were extracted from the temporal pole (Brodmann area 38) of age-matched Caucasian males
(Table 1). The mean (SD) ages were LOAD: 77.4 (£5.7) years; DLB: 79.1 (£5.6) years;
cognitively normal controls: 74.6 (£7.8) years. Samples were frozen and stored at —80C.

All cases underwent a standardized neuropathological assessment with evaluation of gross
and microscopic findings and quantitative analysis of Alzheimer's type pathology.

LOAD cases were selected according to dementia status, staged for LOAD pathology
according to Braak (11, 1V), and were positive for A and PHF-Tau in two brain areas
(Brodmann areas 9 and 39)[1]. Semi quantitative grading of Lewy body pathology and
assignment of Lewy body type were determined according to the Third CDLB
recommendations [2, 3]. Cases of DLB were selected based on the distribution of Lewy
bodies and the severity of Alzheimer-type pathology.

Normal control samples were confirmed to be cognitively normal, and died from underlying
causes of death unrelated to neurological disease. Autopsies and neuropathologic diagnoses
were performed in accordance with published guidelines by a consultant neuropathologist.

RNA and DNA isolation

RNA was isolated from the frozen tissue samples using the QIAGEN Qiashredder and
TRIzol reagents (Invitrogen). RNA was extracted using the miRNeasy mini Kit (Invitrogen)
and each sample was treated with an on-column DNase treatment (Invitrogen). RNA was
dissolved in DNase/RNase-free water (Invitrogen) and concentration was determined using
the Qubit florometer with the Qubit™ RNA kit. The quality of the RNA was determined
using the Bioanalyzer 2100 (Agilent). All RNA samples were stored at —80C.

Genomic DNA was isolated from 24 of the 30 frozen tissue samples (N=8 LOAD patients,
N=8 cognitively normal controls, and N=8 DLB patients). Isolation was carried out using
the Ql1Aamp® DNA Mini and Blood Mini Handbook (Qiagen) in accordance with the
manufacturer's specifications. DNA concentration was determined using the Qubit
fluorometer with the Qubit™ DNA Broad Range kit. DNA integrity was assessed using gel
electrophoresis.

RNA-Seq library preparation

RNA-Seq libraries were prepared from 10ug of total RNA isolated from each sample. The
RNA integrity number (RIN) was determined using the Bioanalyzer 2100 and all samples
had a RIN number =6. Ribosomal RNA was depleted using the RiboMinus™ Eukaryote Kit
for RNA-Seq (Invitrogen). Depletion was confirmed using the Agilent RNA Nano chip and
Bioanalyzer 2100. RNA concentrations were determined using the Qubit™ RNA Kit.
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Approximately 600 ng of ribosomal depleted RNA was utilized for library preparation using
Script-Seq (Epicentre®) along with the Phusion® Polymerase enzyme (Kappa Biosystems).
Library completion was confirmed using the DNA High Sensitivity Kit on the Bioanalzyer
2100 and concentration was determined using the Library Quantification Kit-1llumina
(Kappa Biosystems).

Microarray Validation Analysis

The microarray data set was downloaded from the publicly available GEO database (GEO
accession number GSE15522)[8]. All subsequent data manipulations and analyses were
done using the Limma R Bioconductor package [9]. Initially, four AD samples were
removed as they were determined to be outliers. We adjusted for confounders to account for
age, gender, and sex variables on expression. To do this, we used a robust linear regression
model for covariate corrections as rim

expression=081 PMI+fp> age+03 gender (1)

and the residuals were used for differential gene expression. For each gene, differential
expression between two conditions was assessed by a two-tailed t-test, using a threshold P-
value of 0.05. All P-values were corrected using the Benjamini and Hochberg False
Discovery Rate (FDR) [10].

DNA methylation library preparation

Bisulfite conversion of 500ng of genomic DNA was achieved with the EZ DNA
Methylation Gold kit (Zymo Research). DNA samples were prepared according to the
[llumina® Infinium protocol and run on the HHlumina® Infinium HumanMethylation450
bead chip.

RNA-Seq analysis

Libraries were sequenced on the Illumina HiSeq2000 with an average of ~50 million 100bp
paired-end reads being sequenced per library. Reads were aligned using GSNAP software
and only unique reads were used in analyses [4]. To ensure the greatest percentage of
aligned reads, bar codes were clipped off the sequencing read prior to alignment.
Strandedness was assigned based on the Script-seq library protocol.

To examine expression and splicing differences, reads were assembled to transcripts from
the Gencode v15 database to generate count data for each transcript using SAMtools [5]. To
reduce noise, only transcripts with a count above five were used in subsequent analysis.
Transcriptional differences were determined using the DESeq?2 software [6]. Splicing
differences were resolved using the DEXSeq v1.12.0 software [4]. To accurately assess
splicing, only genes of four or more exons were examined, which resulted in a total of
17,076 genes evaluated for splicing differences. The Kolmogorov—-Smirnov test was used to
examine differences in exon distribution. Both of these analysis, as well as downstream
analysis, were carried out using R software, version 3.1.0 (http://www.r-project.org).
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DNA methylation analysis

DNA methylation was performed using the IMA (Illumina Methylation Analyzer) R package
available from bioconductor [7]. All default parameters were used except that the 3-value,
which is the ratio of methylation probes to both un-methylated and methylated probes, was
quantile normalized. The CpG sites and CpG islands were then assessed for differential
methylation using a generalized linear model.

Quantitative RT-PCR

Results

Quantitative rtPCR was used to validate RNA-Seq findings. RNA from all three groups was
reverse transcribed with SuperScript®I1l (Invitrogen). 5-50ng of cDNA was used per
reverse transcription PCR (rt-PCR) reaction. Q-PCR was performed using isoform specific
Tagman® Assays. The housekeeping genes, ACTB, GAPDH, and GUSB were used for
normalization. All of the housekeeping genes utilized for this study were located at least 55
Mb from the closet AD loci. Fold differential expression between LOAD cases and both
controls were calculated using the delta-delta Ct method (LightCycler®480 Software,
Version 1.5).

Expression in the twenty loci

Using RNA-Seq, we examined expression in post mortem human brain tissue from 10
LOAD cases and 10 normal controls (Table 1). A total of 100 genes are located throughout
the 100kb surrounding the twenty loci, 87 with detectable expression (Table 2). The gene
located closest to the most strongly associated variant has, by convention, been used to refer
to each locus (Supplemental Table 1). Comparison of the 87 genes between LOAD and
normal controls revealed nine genes that were differentially expressed in LOAD after
correcting for multiple testing using false discovery rate (FDR < 0.1). These genes were
CNN2 within the ABCA7 locus, CR1 and a lincRNA within the CR1 locus, M3A14,
MSAAT7, MSABE within the MS4A6A locus, TRIM35 within the PTK2B locus, and C7orf61
and TSC22D4 within the ZCWPW!1 locus (Table 2).

To determine whether the differential expression of the nine genes is LOAD-specific and not
a secondary result of the neurodegenerative process, we compared expression of these nine
genes in LOAD to that observed in DLB samples from the temporal pole, which we term
“disease controls.” Expression of C7orf61, CNN2, CR1, MSAA14, MSAAT7, MHAGE and a
lincRNA (RP11-78B10.2) within the CR1 locus, were statistically different in LOAD when
compared to both normal and disease controls within our RNA-Seq data

Verifying RNA-Seq results

To confirm the RNA-Seq findings, six genes were validated using gRT-PCR. The direction
of differential expression of all six genes was consistent with that observed using the RNA-
Seq data (Figure 1). The qRT-PCR results of one gene, CR1, had a similar direction of
expression; however, it varied in significance. While CR1 differed significantly between
LOAD and both normal and DLB controls in the RNA-Seq data, CR1 only differed
significantly between LOAD and normal controls in the qRT-PCR results (Figure 1). There
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was a similar increase in CR1 in LOAD when compared to DLB, indicating that CR1 is
differentially expressed in LOAD; however, these findings may be due to the increased
sensitivity of RNA-Seq. In summary, qRT-PCR results verify our RNA-Seq findings.

Replicating RNA-Seq results

To examine if our transcriptional changes overlapped with previous findings, we evaluated
publicly available microarray data (GSE15222) from autopsied prefrontal cortical tissue of
163 LOAD cases and 196 controls[16]. Expression values were hormalized and corrected
for sex, age, and post mortem interval (Table 1). These values were then tested for
differential expression between LOAD and controls.

In the microarray data set, only 52 of the 87 genes had detectable expression. Thirty of these
genes were significant for differential expression (FDR < 0.05). Although this transcriptome
analysis was performed in another brain region, we found that five of the nine genes with
altered expression in LOAD were similarly altered in LOAD samples in the prefrontal
cortex (Supplemental Table 2). The lincRNA (RP11-78B10.2) within the CR1 locus,
M$SAA14, and C7orf61 were undetectable. While TRIM35 and MSAABA were not
differentially expressed, their direction of expression was similar to the genes’ expression in
our original data set. These findings replicate most of the expression changes observed in
our study as well as suggest that the differential expression in LOAD can be observed in at
least 2 different brain regions.

Splicing in LOAD

Splicing differences can give rise to proteins that vary in structure and as a result can
differentially influence cellular processes [17]. We examined splicing in two different ways:
significant changes in the use of individual exons and differences in exon distribution across
the gene. Expression differences of individual exons within the 20 loci were observed in
LOAD:; however, no individual exon was significant after FDR (data not shown). While no
individual exon was significantly altered in LOAD, differences in overall exon distribution
would reveal if several exons throughout the gene were altered in LOAD, which would be
suggestive of isoform expression differences (Figure 2A). At this time, no established
method exists to test isoform expression using count data; therefore, we examined this by
using the Kolmogorov-Smirnov test to determine if the normalized exon values in LOAD
differed from controls. This test showed that ABCA7, TMEM259, EPDR1, EPHAL,
MS4A6A, MS4A6E, NMES, PICALM, and SBNO2 have differential exon distributions
when comparing LOAD to normal controls (FDR < 0.1) (Figure 2B).

Using the disease controls, we conducted the same analysis to examine differential exon
distribution between LOAD and DLB to identify LOAD specific splicing changes. Of the
nine genes found to differ between LOAD and normal controls, five genes ABCA7,
TMEM259, EPHAL, MSHAABA, and MHAAGE had differing exon distribution when compared
LOAD to disease controls (Figure 2B). These findings suggest that differential splicing in
multiple exons across these genes are specific to LOAD, at least when compared to DLB.
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Overall DNA methylation is drastically altered in LOAD associated loci

DNA methylation is a known regulator of transcription and can affect transcription of
multiple genes; thus, we examined each locus for significant disruptions of methylation[18].
A comprehensive analysis of DNA methylation was performed using the Illumina 450K
methylation bead array in eight of the same LOAD cases, eight DLB samples, and eight
normal controls.

After quality control, a total of 1,324 CpG sites were identified within the twenty loci. A Q-
Q plot of the p-values generated from the comparisons of LOAD to normal controls revealed
widespread methylation differences across the loci (Figure 3A). Because g-q plots are
generally performed on genotype data, we wanted to make sure this deviation in p-values
was due to DNA methylation and not an artifact of the approach. Examination of DNA
methylation when comparing samples within the same cohort (e.g. 4 LOAD samples vs. 4
LOAD samples) revealed that the number of CpG sites that differed were in accordance with
the expected number, the number of tests * 0.05. Thus, the differences observed when
comparing LOAD to CON and DLB samples above are likely to be real (Supplemental
Figure 1).

Because DNA methylation located in the promoter region is known to regulate gene
expression, we examined correlation of promoter-based methylation with gene expression
across the 20 loci. On average, correlation between DNA methylation located in the
promoter regions and gene expression in LOAD (r =—0.013) across the 20 loci was slightly
altered (student's t-test; p-value= 0.06) when compared to the correlation observed in normal
controls (r = —0.151). However, the correlation between DNA-methylation and gene
expression in DLB (r = -0.021) was similar to that observed in LOAD (student's t-test; p=
0.59).

In total, we identified ten loci with differences in DNA methylation within LOAD: ABCA?,
CASS4, CELF1, CD33, EPHAL, FERMT2, MEF2C, PTK2B, SORL1, and ZCWPW1.
Closer examination revealed CpGs within twelve genes and five CpG islands within these
loci to have significant differential methylation in LOAD after FDR between LOAD and
normal controls. Interestingly, eight of the twelve genes with CpG differences were located
within the 3’UTR (Figure 3C), a phenomenon known to regulate transcription elongation
and stabilize splicing [19].

We then compared the DNA methylation differences observed above in LOAD to disease
controls to determine whether the changes were specific to LOAD. DNA methylation
differed across the twenty loci when comparing LOAD to the disease controls (Figure 3B).
Of the twelve loci with differential methylation between LOAD and normal controls, six
loci remained differentially methylated when compared to disease controls (Figure 3C). Six
of the genes in these loci were differentially methylated in LOAD (FDR<0.1) when
compared to DLB: MEF2C, NDUFS3, FERMT2, PILRA, PILRB, and SORL1. The biggest
methylation difference was observed in the CpG island shore (chr19:1045074-1045679)
located in a non-coding region within the ABCA7 locus. The CpG shore was
hypomethylated in LOAD compared to both normal and disease controls (FDR<0.05).
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Discussion

Recent GWAS have shed light on variants associated with LOAD. While APOE has known
coding variants directly associated with LOAD, most of the twenty closely associated
variants identified in the recent large-scale GWAS studies fall outside coding regions [9].
The absence of known direct effects on the genes makes it difficult to interpret how these
variants influence the disease state. It is currently unknown whether the GWAS associated
variants directly contribute to LOAD or are in linkage disequilibrium with the disease
causing variant(s). It has been hypothesized that GWAS variants located outside of coding
regions may play regulatory roles, such as altering expression, DNA methylation, or splicing
[20]. The recent ENCODE project, for example, found that up to 54% of non-coding
variants in previous GWAS studies overlap regulatory regions [21-23]. To understand which
genes and processes are contributing to LOAD, this study examined expression,
methylation, or splicing across the 20 associated loci for changes specific to LOAD.

The ABCAY locus, the locus with the largest effect size after APOE [9], had the greatest
amount of differential expression, methylation, and splicing changes (Figure 4).
Interestingly, the gene with the strongest change in expression within this locus CNN2
(Calponin 2), is flanked by two genes with differences in exon distribution: ABCA7 (ATP-
binding cassette member 7) and TMEM259 (transmembrane protein 259). In addition to the
increased expression of CNN2, overall expression in the ABCA7Y locus is increased in
LOAD. Because methylation is often inversely correlated with expression, the decreased
methylation of the CpG island shore (chrl9: 1045074-1045679) located 49kb downstream
from the (rs3764650) ABCAY7 variant suggests that there may be a correlation to the
increased expression observed across the loci. Previous findings suggest that the three genes
with LOAD specific differences are involved in similar processes: ABCA7 and TMEM259
are thought to be involved in host-defense mechanisms [24]. Interestingly, ABCA7 is
involved in the host-defense system through phagocytosis, a process that necessitates
cellular structure reorganization of actin [25, 26] and CNN2 functions in the structural
organization of actin filaments [27]. Together, these findings suggest that major disruption
in regulatory processes is occurring within the ABCA7 locus and that several genes within
this locus could be contributing to LOAD etiology.

Similar to the ABCAT locus, the MSAABA locus contains several genes that are involved in
immune-related processes and have LOAD specific changes. All of the genes within the
MS4AG6A loci belong to the membrane-spanning 4-domain family. Expression of MSAA14,
MSAA7, and MSHAAGE is increased in LOAD. In addition, splicing of MSAA6A and MSAAGE
is specifically altered in LOAD. Interestingly, the strongest variant within this locus
(rs983392) lies in between MSAABA and the other genes, suggesting that several genes
within this locus are contributing to LOAD.

LOAD specific changes are only observed within one gene in the CELF1 locus. The
NDUFS3, NADH-ubiquinone oxidoreductase fe-s protein 3 gene has a LOAD specific
increase in methylation within the 3’UTR. Moreover, NDUFS3 expression is moderately
decreased (p<0.05) in LOAD. Interestingly, NADH-ubiquinone oxidoreductase fe-s protein
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3 (NDUFS3) is a subunit of the mitochondrial complex 1 that is disrupted within the brains
of patients with Down syndrome and patients with LOAD [28, 29].

Similar to the CELF1 locus, the ZCWPW1 locus does not have differential expression of the
ZCWPW.L (zinc finger, CW type with PWWP domain 1) gene itself. Methylation differences
specific to LOAD are observed in the PILRA and PILRB genes within this locus; increased
methylation was observed in a the CpG sites located within the gene body of PILRA and a
CpG sites located on the 3’UTR of PILRB has decreased methylation. No significant
expression differences of PILRA or PILRB were observed in LOAD; however, two genes of
unknown function, TSC22D4 (TSC22 domain family protein 4) and C7ORF61, are
significantly increased in LOAD. Interestingly, paired immunoglobulin-like type 2 receptor,
alpha (PILRA) and beta (PILRB) help regulate cell-to-cell signaling, a process significantly
decreased in LOAD [30, 31].

Notable differences were observed within five loci. In the EPHAL loci, overall exon
distribution of EPHA1 (EPH receptor A1) and methylation within the 15t exon differed in
LOAD when compared to both controls. Methylation differences were observed in the
FERMT2 and SORL1 loci. Methylation within the 3’UTR region was significantly
increased in SORL1 (Sortilin-related receptor) and decreased in FERMT2 (Fermitin family
homolog) in LOAD when compared to both controls. In addition to SORL1 having increased
methylation, the expression of SORL1 was decreased, as seen in previous studies [14, 15].
LOAD specific differences in the MEF2C locus consist of decreased methylation within the
gene body of ME2FC (Myocyte enhancer factor 2C) and a shore off a CpG island
downstream of MEF2C. Interestingly, MEF2C gene expression was moderately decreased in
LOAD. The CR1 locus contains two genes with significant expression after FDR. Increased
expression of the first gene, CR1 (complement component (3b/4b) receptor 1), in LOAD has
been previously observed [32]; however, our utilization of a disease control allows us to
show this increase is LOAD specific. The second gene with increased expression in the CR1
locus is an ncRNA (RP11-78B10.2) of unknown function. Interestingly, this ncRNA
overlaps a region that is thought to be a repeat region of CR1 that is expanded in LOAD
[32]. Taken together, LOAD specific changes in these five indicate that loci the genes
located closest to the variant are likely the LOAD contributing gene

The expression and splicing differences found are likely to be those genes with the strongest
effect on expression and splicing given our stringent requirement for at least five mappable
reads. While we observed DNA methylation differences across the 20 loci in LOAD, there
was only a slight difference in promoter based methylation and expression. Our findings
replicated previously observed expression changes of CR1 and SORL1; however, expression
differences of other genes found to differ in LOAD samples did not (e.g. ABCA7, BIN1,
CD33, and CLU). Because we observe similar changes of these four genes in the microarray
dataset, it is thought that the lack of differences may be due to sample size and that with an
increase of sample size, it might be possible to identify additional LOAD specific
differences.

The utilization of Dementia with Lewy bodies (DLB) as a “disease control” allowed us to
distinguish between the changes within the loci that were LOAD specific from those that
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resulted from the neurodegenerative process. DLB is a heurodegenerative disease and its
hallmark pathological feature is the accumulation of Lewy bodies within the brain. Some of
this accumulation occurs in the same areas of the brain affected by af plaques, including the
temporal lobe [33]. While the pathology of DLB and LOAD differs, the two diseases share
many similarities and phenotypic characteristics[34].

In addition to LOAD and DLB sharing many characteristics, they also shared disruptions in
some of the same genes across the 20 loci. Interestingly, six of the CpG sites located nearest
the variant were similarly methylated in both LOAD and DLB samples. These six consisted
of CpG sites near CELF1, EPHAL, CD33, CAS4, PTK2B, ZCWPWL in the CELF1,
EPHAL, CD33, CAS#, PTK2B, ZCWPWA1 loci, respectively. Similar changes in splicing
were also observed in SBNO2, MSAA7A, NMES, and PICALM of the ABCA7 MSAAGE,
NMES8, and PICALM locus, respectively. The similarities between LOAD and DLB tend to
suggest that certain genes within these loci may play a role in the overall neurodegenerative
process.

We were able to identify expression, methylation, and splicing of genes within eighteen of
the twenty loci. Of these eighteen loci, eight had differences in expression, methylation,
and/or splicing between LOAD and normal controls. By using a disease control, we were
able to distinguish between expression and methylation changes due to LOAD verses the
more general neurodegenerative process and pinpoint the changes specifically altered in
LOAD. Interestingly, ABCA7, CELF1, MHAABA, and ZCWPW1 loci had LOAD specific
changes in expression, methylation, and splicing in genes that were not located closest to the
variant. These findings suggest that genes in addition to, or in place of, the gene located
closest to the variant may also be contributing to LOAD. This seems most evident in the
ABCA7 and MSAABA loci. In addition, the slight increase in methylation observed across all
20 loci, suggest the possibility that GWAS studies may have identified a combination of
genes that contribute to LOAD. Characterization of these changes through the 20 loci has
given insight into the disrupted processes that are occurring throughout the loci and as a
result may be directly contributing to LOAD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. qPCR results verify RNA-Seq findings
We validated RNA-Seq results by performing gPCR on several genes within the 20 loci. Ten

samples were used for each cohort. Differential expression observed in the RNA-Seq results
correlated with the gPCR results. Genes expression differences were determined using the
Wilcox-Rank Sum test (*:p<0.05; **:p<0.005). CON: Normal controls; LOAD: Late-onset
Alzheimer disease; DLB: Dementia with Lewy Bodies.
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B. i Adj. P-value
ADvsCON ADvsDLB
EPHA1* 1.38E-08 1.18E-06
ABCA7* 2.51E-05 9.50E-06
SBNOZ2 1.67E-03 4.41E-01
MS4AGE™ 2.74E-02 6.59E-02
EPDR1 3.82E-02 4.41E-01
MS4AGA™ 3.82E-02 4.37E-02
NMES 3.82E-02 4.41E-01
TMEMZ259* 6.91E-02 4.56E-02
PICALM 6.91E-02 4.41E-01

Figure 2. Five genes have LOAD specific differences in overall exon distribution
(A) EPHAL has the biggest difference in overall exon distribution in LOAD when compared

to both controls (test: Kolmogorov—Smirnov test, p-value <0.001). The exons are
represented on the x-axis and the pre-normalized expression level is on the y-axis. LOAD is
purple, normal controls (CON) is green, and DLB is orange (A). The nine genes with overall
exon distribution are listed the nine genes in Fig2B. The first comparison is between LOAD
and normal controls (ADvsCON). All nine genes with differential exon distribution between
LOAD and normal controls were then compared to DLB (ADvsDLB). Genes with an
asterisk indicate those that were differentially spliced in LOAD when compared to both
normal and disease controls.
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Q-Q Plot Methylation Differences
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Avg. Meth | Avg. Meth | Avg. Meth | P-Value  Adj.P Log2fC | P-Value Adj.P Log2FC
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NDUFS3 0.283 0.256 0.283 0.002 0.028 0.145 0.950 0.850 -0.003
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TSC22D4 0.075 0.094 0.089 0.014 0.045 -0.321 0.085 0171 -0.320
(D33 0.489 0.521 0.496 0.006 0.015 -0.090 0.633 0.685 -0.020
FERMT2* 0.828 0.865 0.857 0.004 0.012 -0.062 0.015 0.081 -0.048
MEF2C 0.847 0.804 0.820 0.003 0.012 0.075 0.055 0131 0.047
UTR3 NDUFS3* 0.807 0.770 0.767 0.026 0.046 0.067 0.017 0.081 0.073
PILRB* 0.739 0.681 0.691 0.004 0.012 0.116 0.029 0.094 0.096
SIGLEC? 0.657 0.708 0.680 0.004 0.012 -0.109 0.144 0.218 -0.049
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1551500 SORL1 0.164 0.144 0.159 0.000 0.008 0.185 0.234 0.305 0.125
VX 0.300 0277 0.285 0.000 0.008 0.119 0.112 0.195 0.116
chr19:996074-996679* 0.263 0319 0338 0.003 0.022 -0.280 0.000 0.001 -0.363
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Figure 3. Methylation differences in 20 gene loci
1324 CpG sites were detected within the 20 loci. Comparison of these sites between LOAD

and normal controls (A) and LOAD and DLB (B) revealed that a significant proportion of
CpG sites within the loci have p-values that are lower than expected under the null.,
suggesting there is wide-spread changes in DNA methylation within the loci. Figure 3C

displays the CpG sites that are differentially methylated in LOAD when compared to normal
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controls. LOAD specific changes in methylation were identified after comparing these same
sites between LOAD and DLB. LOG2FC is the fold-change in DNA methylation of LOAD
relative either the normal control, under the LOAD vs. CON, or the disease control, under
the LOAD vs. DLB. A linear model was used to determine differences in methylation (P-
value). The adjusted p-value (ADJ.P) was determined using FDR. Genes with an asterisk (*)
are significant in LOAD when compared to both normal and disease controls (FDR<0.1).
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Figure 4. lllustration of expression, methylation, and splicing differences across the ABCA7
locus

Panel A displays the eight genes located within the ABCA7 locus and the LOAD associated
SNP (rs115550680) is marked by the yellow star (A). In panel B, a CpG Island upstream of
ABCAY has LOAD specific hypomethylation and is displayed as a red rectangle (B). Panel C
displays the LOAD specific splicing differences identified in TMEM259 and ABCAY7. Genes
with splicing differences are in color(C). LOAD (purple); disease control (yellow); CON
(green); Genes with no difference (grey). LOAD specific expression differences of three
genes are observed in this locus (D): CNN2 is significantly increased (adj.p<0.05), a
moderate decrease of GPX4 (p-value<0.05), and the moderate increase of SBNO2 expression
(p-value<0.05) are illustrated in panel D. An arrow located underneath the gene indicates the
direction of LOAD specific expression of the gene.
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Table 1
Sample Information.
Original DataSet  Group  Sex (M/F) Age PMI Autolysis  Brain Weight
LOAD 10/0 76.5(1.8) - 6.5(x1.0) 1261.2(x42.2)
Control 10/0 79.1(1.9) - 14.9(+2.5)  1413.0(+50.1)
DLB 10/0 74.6(+2.6) - 7.3(x0.8)  1231.0(x37.3)

GEO (GSE15222)

LOAD 88/88 83.6(x0.5) 7.1(+0.3) -
Control 105/85 81.1(x0.7) 9.8(x0.7) -

Page 19

The original data set consists of the three cohorts. All samples from the original data set are from the temporal pole; Brodmann's Area 38. The

second data set (GES15222) consists of the replication data set and is from the pre-frontal cortex. CAU: Caucasian.
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