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Abstract—Nanoparticles are promising platforms for the
diagnosis and treatment of cancer. Diverse classes and shapes
of materials have been investigated to establish design
principles that achieve the effective partitioning of medical
cargos between tumors and healthy tissues. Molecular
targeting strategies combined with specific nanoparticle
shapes confer tissue-specificity on the carriers, allowing the
cell-specific delivery of cargos. We recently developed a
filamentous platform technology in which the plant virus
Potato virus X (PVX) was used as a scaffold. These particles
are flexible 515 x 13 nm filaments that encourage passive
tumor homing. Here we sought to advance the PVX platform
by including a molecular targeting strategy based on cyclic
RGD peptides, which specifically bind to integrins upregulat-
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ed on tumor cells, neovasculature, and metastatic sites.
Although the RGD-targeted filaments outperformed the
PEGylated stealth filaments in vitro, enhanced tumor cell
targeting did not translate into improved tumor homing
in vivo in mouse tumor models. The RGD-PVX and PEG-
PVX filaments showed contrasting biodistribution profiles.
Both formulations were cleared by the liver and spleen, but
only the stealth filaments accumulated in tumors, whereas the
RGD-targeted filaments were sequestered in the lungs. These
results provide insight into the design principles for virus-
based nanoparticles that promote the delivery of medical
cargos to the appropriate cell types.

Keywords—Nanoparticle shape, Cancer, Tumor targeting,
Biodistribution, Integrins.

INTRODUCTION

Cancer is the leading cause of death in the devel-
oped world and is also prevalent in the developing
world. To improve survival and the quality of life,
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more efficacious therapies are required, especially to
treat patients with tumors that resist conventional
chemotherapy. Nanoparticles equipped with targeting
ligands and medical cargo are promising approaches
for cancer diagnosis and therapy because nanoparticle-
based formulations enable the tissue-specific delivery
of contrast agents for molecular imaging and/or toxic
payloads for therapeutic intervention.'’

There is mounting evidence that elongated, filamen-
tous nanomaterials are advantageous for drug deliv-
ery. Non-spherical materials show increased
margination toward the vessel wall, which improves
the efficiency of tumor homing.® %!%1%1318 Elongated
materials present ligands more effectively to target
cells and the flat vessel wall than their spherical
counterparts.'>'®3* Furthermore, elongated materials
are more likely to resist immune detection and mac-
rophage uptake, thus contributing to synergistic tar-
get enhancement.*® Nevertheless, most platform
technologies currently under development are sphe-
rical or elongated low-aspect-ratio materials. Filomi-
celles mimic the shape of filamentous viruses and are
therefore exceptions, but these are micron-sized and
therefore technically they are not nanomaterials.'*
The synthesis of high-aspect-ratio materials remains
challenging because it is impossible to avoid poly-
dispersity and the combination of synthetic chemistry
and nanotechnology cannot yet mimic what nature
has achieved, i.e., self-assembly and programmability
at the atomic level. Therefore, we have developed a
bioinspired platform technology based on filamentous
plant viruses, specifically Potato virus X (PVX), which
is shown in Fig. 1.

The PVX capsid is a flexible 515 x 13 nm protein-
based filament that consists of 1270 identical copies of
a coat protein unit suitable for genetic and chemical
modification.'” The flexible nature of the material is
advantageous because flexible nanomaterials can pass
through restrictions and penetrate tissue more easily.?
We have shown that PVX-based filaments achieve
more efficient partitioning between tumor and liver
tissue compared to spherical nanoparticles.’’ The

FIGURE 1. (a) Nicotiana benthamiana plants infected with
Potato virus X (PVX) and (b) a negatively-stained transmission
electron micrograph of PVX.
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shape-mediated enhanced tumor homing is repro-
ducible in a variety of models, including human tumor
xenografts of breast cancer, fibrosarcoma, squamous
sarcoma and brain and colon cancers.?'*

A combination of prolonged circulation and the
enhanced permeability and retention (EPR) effect are
thought to contribute to passive tumor homing and
accumulation.!” This phenomenon has been observed
in many nanoparticle systems, including clinical for-
mulations of Doxil® (a liposomal formulation of
doxorubicin) and Abraxane® (an albumin nanoparticle
formulation carrying paclitaxel). Both formulations
increase the efficacy of their payloads, reflecting their
beneficial physiochemical properties and the patho-
physiological characteristics of the target tissue. Nev-
ertheless, there is some ambiguity and controversy
surrounding the EPR-mediated tumor homing of
nanoparticles, especially in clinical applications.'’
Therefore, nanoparticles have been modified to include
targeting ligands that interact specifically with targets
such as growth factor receptors,””*’ tumor matrix
proteins,”*?” signatures of the tumor-associated
endothelium®*® or combinations thereof.

The overexpression of o, f33, o, fis and asf; integrins
on cancer cells, neovasculature and metastatic sites has
been confirmed in many human malignancies, and
changes in integrin expression and function are asso-
ciated with disease progression.”®?"* Integrins are
validated targets for RGD peptide ligands and several
nanoparticle systems carrying these peptides are under
development. Here we describe the development and
testing of integrin-targeted PVX nanofilaments mod-
ified with cyclic RGD peptides. The specificity of
RGD-targeted PVX was compared to the PEG-PVX
stealth formulation using a combination of in vitro and
in vivo testing.

MATERIALS AND METHODS

PVX Propagation and Synthesis

PVX was produced through farming in N. ben-
thamiana plants using previously established proto-
cols' and extracted at yields of 20 mg of pure PVX
from 100 g of infected leaf material. RGD-PVX par-
ticles were synthesized using a two-step protocol.
First, PVX was covalently modified with Alexa Fluor
647 (A647) succinimdyl ester (NHS-A647, Life Tech-
nologies) and the bifunctional linker succinimidyl-
[(N-maleimidopropionamido)-tetracthyleneglycol] ester
[SM(PEG),, Pierce] targeting surface-exposed lysine
residues on the viral coat proteins (PVX consists of 1270
identical copies of a coat protein, each of which has an
exposed lysine side chain). Subsequently, cyclic RGD
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peptide with cysteine functionality (cyclo(Arg-Gly-Asp-
d-Phe-Cys (cRGDfC), Peptides International) was
covalently attached to PVX through Michael addition
targeting the terminal maleimide group of the bifunc-
tional linker. Specifically, PVX particles at a concentra-
tion of 2 mg mL ™" in 0.1 M potassium phosphate buffer
(pH 7.0) were incubated for 2 h at room temperature
with 5000 molar excess of NHS-A647 and 10,000 molar
excess of SM(PEG), in the presence of DMSO [at a final
concentration of 10% (v/v)]. PVX formulations were
then purified using 10-kDa cut-off centrifugal devices
(Millipore) to separate unreacted dyes and linker mole-
cules. Then, PVX rods were reacted overnight with
10,000 molar excess of cRGDfC in 0.1 M potassium
phosphate buffer (pH 7.0) and purified as described
above.

PEG-PVX stealth filaments were synthesized by
reacting PVX (at 2mgmL~" in 0.1 M potassium
phosphate buffer pH 7.0) with 5000 molar excesses
of NHS-PEG5000 (NanoCS) and NHS-A647 (Life
Technologies) overnight using a one-pot synthesis
protocol. A647-labeled PEG-PVX formulations were
then purified using centrifugal filters as described
above. All formulations were resuspended in 0.1 M
potassium phosphate buffer (pH 7.0) and stored at
4 °C until further processing.

UV/Visible Spectroscopy

UV/visible spectroscopy was performed using
NanoDrop instrument to quantify labeling efficiency
with fluorophores. The number of A647 labels per PVX
was calculated based on Beer-Lambert law using the
PVX and A647-specific extinction coefficients: epyx =
2.97 mL mg ' em ™! at 260 nm, epg47 = 270,000 M !
em~ ' at 650 nm.

Denaturing Gel Electrophoresis

SDS gel electrophoresis was carried out to analyze
conjugation of RGD peptide and PEG chains to
individual coat proteins. 10 ug denatured protein sam-
ples were analyzed on 4-12% NuPage gels (Life Tech-
nologies) in 1x MOPS SDS running buffer (Life
Technologies). Protein bands were visualized under
white light after staining the gels with SimplyBlue
SafeStain (Life Technologies). Protein bands were ana-
lyzed using ImageJ software (http://imagej.nih.gov).

TEM

Diluted samples of PVX, RGD-PVX and PEG-
PVX particles (20 uL, 0.1 mg mL~") were negatively
stained with of 2% (w/v) uranyl acetate for 2 min on a
carbon-coated copper grid. Samples were analyzed

using a Zeiss Libra 200FE transmission electron
microscope operated at 200 kV.

Tumor Homing and Imaging Using Mouse Xenograft
Models

All animal studies were carried out using TACUC-
approved procedures. Human colon cancer xenografts
were developed using HT-29 cells (ATCC) maintained
in McCoy’s medium (Life Technologies) supplemented
with 10% (v/v) fetal bovine serum (FBS), 1% (w/v)
penicillin/streptomycin and 1% (w/v) glutamine (all
from Life Technologies). Six-week-old male NCr-nu/nu
nude mice maintained on an alfalfa-free diet (Teklad
2018S, Harlan Laboratories) were subcutaneously
injected in the right flank with 2.5 x 10° cells in 50 uL
medium mixed with an equal volume of matrigel (BD
Matrigel, BD Biosciences, USA) using a microliter
Hamilton 22 gauge syringe. One tumor was induced in
each mouse. The animals were monitored daily and
tumor homing studies commenced when tumors
reached an average volume of 20-30 mm® (typically
within 12 days after the injection of HT-29 cells).
Animals were assigned randomly into groups with
n = 3 mice per formulation. PBS, PEG-PVX and
RGD-PVX particles were administered intravenously
via tail vein injection. At specific time points post-
administration, mice were euthanized and major tis-
sues (liver, lungs, kidney, heart, spleen, brain and
tumors) were harvested and imaged in the Maestro™
fluorescence imager using combinations of yellow
excitation/emission filters for A647 (excitation filter:
575-605 nm; and emission filter: 645 nm longpass).
Region of interest (ROI) analysis was performed using
the Maestro'™ software to determine the fluorescence
intensity from the respective tissues as compared to
tissues from PBS injected mice. After imaging, tissues
were frozen in OCT media for cryo-sectioning.

Immunofluorescence

Intratumoral localization of RGD-PVX and PEG-
PVX particles with respect to integrins (o), macro-
phages (CD68) and endothelium (CD31) was deter-
mined using immunofluorescence analysis of 10 um
thick tumors sections prepared from frozen tissues
embedded in OCT medium (Fisher) using a Leica
CMI1850 cryostat. Tumor sections were fixed in 95%
(v/v) ethanol for 20 min on ice and rinsed with cold
PBS. Tumor sections were permeablized using phos-
phate buffered saline containing 0.02% (v/v) Tween-20
(PBST) twice for 10 min each and then blocked with
10% (v/v) goat serum (GS) in PBST for 60 min. Sec-
tions were then stained using a rabbit anti-integrin o,
antibody (1:500, Millipore) or rat anti-mouse CD68
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FIGURE 2. Modification of PVX with PEG and RGD ligands. N-hydroxysuccinimide (NHS) chemistry was used to conjugate A647
and SM(PEG), bifunctional linkers to PVX lysine residues. The cRGDfC peptide (with terminal cysteine) was then conjugated using
the maleimide handle to produce RGD-PVX. Similarly, A647 and PEG (5-kDa MW) were conjugated to PVX by NHS chemistry to

yield PEG-PVX filaments.

(1:250) antibody (Biolegend) with 1% (v/v) GS in
PBST for 60 min at room temperature. After washing
thoroughly with PBST, tumor sections were incubated
with A488-conjugated goat anti-rabbit secondary
antibody (1:2000, Life Technologies) and A555-con-
jugated goat anti-rat antibody (1:1000, Life Tech-
nologies) with 1% (v/v) GS in PBST for 60 min. Slides
were then washed three-times with PBST and mounted
with Fluoroshield with DAPI (Sigma Aldrich) and
stored at —20 °C until imaged. Similarly, lung cryo-
sections were stained to determine PVX localization
within the lung tissues with respect to integrin and
macrophages.

For CD31 staining, tumor sections were permeabi-
lized using 0.2% (v/v) Triton-X-100 (EMD Chemicals)
in PBS for 2 min. Slides were blocked using 10% GS
(v/v) in PBS and then incubated with A488-conjugated
rabbit anti-mouse CD31 antibody (Biolegend) for
60 min, washed with PBS and then mounted as above
and stored at —20 °C until imaged. Analysis of sec-
tions was performed on an Olympus Fluoview FV1000
confocal microscope. Images were processed using
ImageJ software (http://imagej.nih.gov).

Cell Uptake Using Flow Cytometry

HT-29 and RAW264.7 cells were grown to conflu-
ency in McCoy’s 5SA media and DMEM media,
respectively supplemented with fetal bovine serum
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(10% v/v) and penicillin/streptomycin (1% v/v) (all
reagents from Life Technologies) at 37 °C and 5%
CO,. Cells were washed three times with PBS and
collected using enzyme-free Hank’s based Cell Disso-
ciation Buffer (Fisher). Cells were then added to 96-
well v-bottom plates (200,000 cells/200 uL/well) and
incubated with 1 ug of RGD-PVX or PEG-PVX par-
ticles/well, in triplicate for 3 h at 37 °C and 5% CO..
Following incubation, cells were washed twice in
FACS buffer [l mM EDTA, 25 mM HEPES, 1% (v/v)
FBS in PBS, pH 7.0] and fixed in 2% (v/v)
paraformaldehyde (Electron Microscopy Sciences) in
FACS buffer for 10 min at room temperature. Cells
were washed twice after fixation, re-suspended in
400 uL FACS buffer and stored at 4 °C until analysis.
Cells were analyzed using a BD LSRII Flow
Cytometer and 10,000-gated events were recorded.
Data were analyzed using FlowJo 8.6.3 software.

For competitive binding assays, HT-29 cells were
first incubated with 1,000-fold excess of free RGD
peptide for 30 min followed by incubation with RGD-
PVX particles for 2 h. For competitive binding assays
with RAW264.7 cells a series of conditions was tested:
RAW264.7 cells were pre-incubated with 10, 100, 1000
and 10,000 x excess of soluble RGD peptide for 30 min
followed by addition of RGD-PVX filaments, which
were allowed to interact with the macrophage cell line
for 2 h. Cells were then collected, prepared and ana-
lyzed as described above.
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Confocal Microscopy for Cellular Uptake

HT-29 cells and RAW264.7 cells were cultured as
described above. For uptake studies, 25,000 HT-29 or
RAW264.7 cells per well were cultured onto glass
coverslips in a 24-well suspension culture plate for
24 h. After washing and replacing with fresh media,
1 ug of RGD-PVX or PEG-PVX particles/well were
added into the culture media and incubated with cells
for 3 h. Post-incubation, cells were washed three times
with sterile saline and fixed for 5 min at room tem-
perature with DPBS containing 4% (v/v) paraformalde-
hyde and 0.3% (v/v) glutaraldehyde. Cells were then
washed three times with DPBS. RAW264.7 cell cov-
erslips were then mounted with Fluoroshield with
DAPI (Sigma Aldrich) for nuclear staining and sealed
using nail polish.

Post fixation, HT-29 cells were permeablized with
0.2% (v/v) Triton-X 100 (Fisher Bioscience) for 2 min
followed by blocking with 10% (v/v) GS for 60 min.
Cells were then stained with mouse anti-human
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LAMP-1 antibody (1:250 dilutions) (Biolegend) with
1% (v/v) GS in DPBS for 60 min, washed three times
and then counter stained with A488-tagged goat anti-
mouse antibody (at 1:1000 dilution, Life Technologies)
with 1% (v/v) GS in DPBS for 60 min at room tem-
perature. Coverslips were washed three times with
DPBS, and mounted with Fluoroshield with DAPI
(Sigma Aldrich) resulting in nuclear staining and
sealed using nail polish. Confocal images were cap-
tured on Olympus FluoViewTM FV1000 LSCM
and data processed using Image] 1.440 software
(http://imagej.nih.gov/ij).

RESULTS AND DISCUSSION

Synthesis of Targeted RGD-PVX and Stealth
PEG-PVX Filaments

PVX was produced by molecular farming in N.
benthamiana plants with yields of 20 mg pure PVX per

PEG-CPs

RGD-CPs

v

=0 380 =30 e PVX PEG-PVX RGD-PVX
Wavelength (nm)
© Dyes/ PVX modified CPs
PEG-PVX 574 10% (PEG)
RGD-PVX 606 15% (RGD)

(d)

FIGURE 3. Characterization of PEG-PVX and RGD-PVX particles: (a) UV/Vis spectroscopy was used to determine number of dye
molecules attached and to determine the concentration of PEG-PVX and RGD-PVX particles. (b) SDS-PAGE was used to confirm
the covalent conjugation of PEG and RGD peptides to the PVX coat proteins (CPs). ImageJ software was used to determine the
percentage of modified coat proteins. (c) Quantification of dye molecules and PEG/RGD ligands per PVX filament based on UV/Vis
and SDS-PAGE. (d) Transmission electron microscopy was used to confirm the structural stability of PVX particles after modifi-

cation (left to right: PVX, PEG-PVX and RGD-PVX). Scale bar = 100 nm.
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FIGURE 4. Comparative biodistribution of PEG-PVX and RGD-PVX particles injected intravenously into NCR-nu/nu mice with
subcutaneous HT-29 tumor xenografts. Ex vivo Maestro analysis was carried out using dissected tissues 24 h post-administration.
(a) Maestro images (yellow boxes show enlarged view of the lungs from animals treated with RGD-PVX, showing hot spots for PVX

sequestration). (b) Quantitative analysis.

100 g infected leaf material. The RGD-PVX derivative
was generated by conjugating the cyclic RGDfC pep-
tide (with a terminal cysteine residue) to solvent
exposed lysine residues on PVX using a bifunctional
PEG linker with a 24.6 A spacer arm [SM(PEQG),]. The
PEGylated stealth formulation was prepared using
lincar PEG with a molecular weight of 5 kDa because
PVX modified with this PEG had previously achieved
tumor homing in various animal models.*'~*? Filament
tracking in cells and tissues was achieved by conju-
gating the near-infrared dye Alexa Fluor 647 succin-
imidyl ester (NHS-A647) using the reaction scheme
outlined in Fig. 2.

The PVX-based formulations were characterized by
UV/Vis spectroscopy and denaturing gel electrophoresis
(SDS-PAGE) to confirm the degree of modification.
Based on the Beer-Lambert law and the extinction
coefficients of the fluorophore and PVX, approximately
574 dye molecules were conjugated per PEG-PVX and
approximately 606 per RGD-PVX (Figs. 3a, 3c). SDS-
PAGE confirmed the covalent attachment of the RGD
peptide and PEG chains (Fig. 3b). The PVX coat pro-
tein has a molecular weight of 19 kDa, so higher mole-
cular weights indicate the addition of RGD and PEG.
ImagelJ software was used to determine the degree of
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labeling showing that ~10% of the PVX coat proteins in
the PEG-PVX formulation were modified with
PEGS5000, and ~15% of the PVX coat proteins were
modified with RGD in the RGD-PVX formulation. The
RGD-PVX particles therefore displayed ~200 RGD
peptides by way of a 400-Da intervening PEG spacer,
whereas the PEG-PVX particles displayed ~130 PEG
chains with a molecular weight of 5 kDa.

Biodistribution and Tumor Homing Properties

The biodistribution and tumor homing of the PVX
formulations were studied using NCr-nu/nu nude mice
with subcutaneous HT-29 xenografts. The nanoparti-
cle formulations were administered intravenously as a
single dose of 10 mg protein/kg body weight. At 24 h
post-administration, the mice were sacrificed and the
tumors, livers, spleens and lungs were removed for
ex vivo quantitative tissue analysis using the Mae-
stro™ fluorescence imaging system (Fig. 4).

Both formulations were cleared by the liver and
spleen as expected because these are the organs of the
mononuclear phagocytic system (MPS), which has
been shown to facilitate the clearance of several virus-
based nanomaterials, including those based on Cowpea
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FIGURE 5. Immunofluorescence analysis of tumor and lung sections. The tumor sections were stained with antibodies specific
for the endothelial marker CD31 (red, a + b), integrin «, [red, ¢ + d (inset: higher magnification)], the tumor macrophage marker
CD68 (pink, e + f) and DAPI (blue) to determine the localization of PEG-PVX and RGD-PVX within the tumor. (g—-i) Whole lung (g)
and lung sections (h, i) from mice treated with RGD-PVX were stained for «, integrin (red) and CD68* macrophages (pink).
Co-localization analysis was used to highlight the hotspots of RGD-PVX accumulation with integrins and CD68 macrophages (i).

Scale bars = 50 um.

mosaic virus (CPMYV), Tobacco mosaic virus (TMYV)
and bacteriophages Qf and M13.>!%-212%:34 The overall
biodistribution of the PEG-PVX stealth filaments
was consistent with our previous observations.’'*?
Although the majority of the injected PEG-PVX par-
ticles were cleared by the liver and spleen, a substantial
amount also accumulated in the tumor tissue. In stark
contrast, the RGD-targeted PVX formulation showed
negligible accumulation in the tumor but significantly
enhanced uptake in the lungs, where no stealth fila-
ments were found (Fig. 4).

Our central hypothesis was that the RGD-targeted
formulation would show similar or better levels of
tumor homing compared to the stealth particles and
would be more efficiently localized in the tumor
because targeting would promote uptake by integrin-
positive tumor cells, as has been observed with other
nanoparticle systems.’” However, our experiments

showed the opposite outcome, with the stealth particles
but not the targeted particles accumulating in the
tumor. The ability of the RGD-targeted particles to
bind selectively to integrin was confirmed in vitro (see
below), therefore we were able to rule out the lack of
target specificity and recognition as an explanation for
these unexpected results.

We considered the possibility that the unanticipated
biodistribution of the particles might be explained by
differences in their pharmacokinetic profiles. As stated
above, PEG-PVX was decorated with ~130 PEG
molecules, each with a molecular weight of 5 kDa,
whereas RGD-PEG was decorated with ~200 RGD
molecules, each with a 400-Da intervening PEG spac-
er. Based on the available surface area of PVX
(Apyx = 21,033 nm?) and the Flory dimension of
5-kDa PEG (Rr = 5.9 nm),9 we estimated that the
PEG chains are presented in a mushroom conformation
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FIGURE 6. Biodistribution of PEG-PVX and RGD-PVX particles in healthy Balb/c mice. Tissues were collected for ex vivo Mae-
stro™ fluorescence analysis 24 h after the administration of PEG-PVX and RGD-PVX. (a) Maestro images (yellow boxes show
enlarged view of the lungs from animals treated with RGD-PVX, showing hot spots for PVX sequestration). (b) Quantitative

analysis.

with nearly 70% surface area coverage. In contrast,
the Flory dimension of the shorter PEG spacer
(Rr = 0.8 nm) achieves less than 10% surface cover-
age. The more effective stealth effect of PEG-PVX is
likely to protect the particles from serum protein
adsorption, thus evading the immune system more
effectively and resulting in more efficient passive tumor
accumulation. This is consistent with reports describ-
ing the prolonged circulation of PEGylated liposomal
doxorubicin formulations, which promotes EPR-
mediated tumor homing.?>*

We attempted to increase the molecular weight of
the intervening PEG spacer in the RGD-PVX formu-
lation to match the stealth formulation, but integrin
recognition of RGD-modified PVX with an interven-
ing PEG 5-kDa spacer was diminished (data not
shown). The longer PEG chain in the mushroom
conformation may block the interaction between the
RGD ligand and integrin thus preventing molecular
recognition.
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To gain further insight into the unexpected biodis-
tribution profiles discussed above, we prepared tumor
and lung sections from tumor xenograft mice and
stained the sections using antibodies specific for the
endothelium (CD31), «, integrin and macrophages
(CD68) as shown in Fig. 5. Histological analysis
showed that both formulations were generally located
near the tumor endothelium, but there was no sig-
nificant co-localization with the endothelial marker
CD31 (Figs. 5a, 5b). The tumor sections stained posi-
tive for a, integrins as expected, since both HT-29 cells
and the tumor endothelium overexpress o, integrins,'!
and the integrin-specific antibody we used cross-reacts
with human o, integrins (present on the cancer cells)
and mouse a, integrins (present on the endothelium).
Although fewer RGD-PVX particles were found in the
tumor tissue, they were associated with «, integrin-
positive sites within the tumor microenvironment
(Fig. 5d). On the other hand, PEG-PVX stealth for-
mulation did not colocalize with «, integrins, which
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FIGURE 7. The analysis of PEG-PVX and RGD-PVX interactions with and uptake into cells using flow cytometry and confocal
microscopy. (a + d) Flow cytometry was used to determine the interactions between PVX particles and HT-29 cancer cells (a, b) or
RAW264.7 macrophages (d, €). The mean fluorescence intensity (MFI) is plotted and error bars indicate the standard deviation
(n = 3). (b + e) Competition binding assays using RGD-PVX and free RGD peptides. (¢ + f) Confocal microscopy shows that RGD-
PVX is taken up more efficiently than PEG-PVX by HT-29 cells and RAW264.7 macrophages. Cells were stained with DAPI (blue) to
show the nucleus and with the endosomal marker LAMP-1 (pink; in HT-29 cells) or WGA (red; RAW cells). Colocalization of the
particles and the endosomal marker indicates cellular uptake. Scale bars = 10 yum.

is in line with our expectations (Fig. 5c). Neither for- data therefore confirmed that the stealth particles
mulation appeared to colocalize with CD68-positive accumulated more efficiently than the targeted parti-
macrophages (Figs. 5e, 5f). The immunofluorescence cles in the tumor. While both formulations were
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localized near the endothelium, the RGD-targeted
particles were colocalized with o, integrin-positive
areas, indicating molecular specificity despite the
diminished overall tumor accumulation.

Next, we investigated the histology of the lungs
(Figs. 5g—5i). Only RGD-PVX was sequestered in the
lungs, so tissue sections were prepared only from ani-
mals treated with the RGD-PVX formulation. Lung
tissue sections were stained for o, integrins and
macrophages (using the CD68 marker). RGD-PVX
was accumulated in hotspots in the lungs, and these
areas were positive for both o, integrins and CD68
(Figs. 5h, 5i).

RGD-tagged nanoparticles have been reported to
target lung metastasis '®>° but the mouse model used
in our experiments does not present metastatic disease
in the lungs. This was confirmed by staining for human
cells within the lungs using an anti-human vimentin
antibody, and no human cells were found (data not
shown). To ensure that the biodistribution profile was
not specific to our tumor mouse model, we repeated
the experiments using healthy Balb/c mice (Fig. 6). The
results were similar to those obtained in the tumor
xenograft models, i.e., both types of particles were
cleared by the liver and spleen whereas only the RGD-
PVX particles were sequestered in the lungs.

Our data indicate that targeted RGD-PVX fila-
ments accumulate in the lungs in healthy animals as
well as tumor xenograft models. The RGD-PVX fila-
ments are sequestered in hotspots and are colocalized
with o, integrins and the macrophage marker CD6S.
Integrins play a role in macrophage-mediated inflam-
matory responses.” Alveolar macrophages and the
bronchiolar epithelia of normal lungs express integrins,
but integrin expression is more extensive during
inflammation.®® These background levels of integrin
within the lung microenvironment may explain the
sequestration of RGD-targeted nanoparticles in the
lungs. Carbon nanotubes can also accumulate in
the lungs*'*** but little information is available about
other nanoparticles accumulating in the lungs follow-
ing intravenous injection. A recent study showed pro-
longed accumulation of RGD-nanoparticles in the
lungs following systemic administration.'

Interactions with Cancer Cells and Macrophages

To gain further insight into the behavior of the PVX
filaments in vivo, we conducted a series of in vitro
experiments using HT-29 cells (a colon carcinoma cell
line) and RAW264.7 cells (a mouse macrophage cell
line). RGD-targeted and stealth PVX particles were
incubated with each of the cell lines and then analyzed
by flow cytometry and confocal microscopy. PEG
shielding minimizes the non-specific interaction
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between PVX particles and cells, so few particles were
taken up by either cell line (Figs. 7a, 7d). In contrast,
the RGD-targeted particles showed significant inter-
actions with both the HT-29 and RAW264.7 cell lines
(Figs. 7a, 7d) and were readily taken up into both cell
types (Figs. 7c, 7f). Competition binding assays were
carried out to investigate the molecular specificity of
the RGD-targeted formulation. We found that a molar
excess of 1000 free RGD peptides was able to prevent
the molecular interaction between RGD-PVX particles
and HT-29 cells, confirming that the RGD-PVX par-
ticles target integrins expressed on the surface of these
cells (Fig. 7b).

Although stealth filaments were effectively shielded
from phagocytosis, RGD-targeted filaments were also
taken up by RAW264.7 cells (Figs. 7d-7f). PEG
shielding reduces phagocytosis, but it is clear that the
shorter PEG chain on the RGD-targeted formulation
is unable to prevent non-specific clearance. To estab-
lish whether the RGD ligands also promote the uptake
of RGD-PVX particles by the macrophage cell line, we
repeated the competition binding assays, this time pre-
incubating RAW264.7 cells with free RGD peptides at
various molar excesses before adding the RGD-PVX
particles. The presence of soluble RGD did not com-
pletely abolish the uptake of RGD-PVX particles but
there was a significant reduction compared to the un-
treated control, suggesting that o, integrin plays a role
in this process (Fig. 7e). This is consistent with other
studies showing that RGD-modified particles were
taken up by monocytes. In contrast to our study,
nanoparticle-monocyte targeting was a successful way
to target the nanoparticles to the tumor tissue by
promoting monocyte delivery.*

CONCLUSIONS

We compared RGD-PVX and PEG-PVX filaments
to determine their tumor homing properties based on
biodistribution and cellular interaction in vitro and in
tumor-bearing and healthy mice. The stealth PVX
particles showed significant tumor homing capability,
facilitated by their longevity in the circulation and
therefore their prolonged bioavailability, as demon-
strated by their slow phagocytic clearance. In con-
trast, RGD-targeted PVX filaments showed negligible
tumor homing capability but were instead sequestered
in the lungs. The lung-specific accumulation of the
RGD-modified filaments probably reflects their abil-
ity to bind integrins expressed on alveolar macro-
phages and the bronchiolar epithelium.™ In future
studies, one might consider utilizing the propensity of
RGD-PVX filaments to target inflamed areas within the
lung microenvironment to block integrin-mediated
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interactions with metastatic cells that facilitate tumor
progression, but this would require further careful
optimization.

Although molecular targeting may promote cellular
uptake, the targeting ligand also affects the overall
biodistribution of the carrier. We found that the
addition of a targeting ligand may not necessarily
achieve favorable tumor partitioning. Although RGD
peptides are useful for preclinical and clinical investi-
gation, their incorporation into PVX-based stealth
filaments was only successful in vitro. Alternative
design strategies, e.g., incorporation of the targeting
ligands into more heavily PEGylated filaments, or the
targeting of alternative molecular receptors such as
growth factors that are up-regulated or selectively
expressed within the tumor microenvironment, may be
suitable strategies to achieve molecular targeting of the
filamentous carrier. Overall, these studies provide an
important insight into the design principles that are
required for virus-based nanoparticles to achieve
selective delivery of diagnostic or therapeutic cargos to
tumor cells.
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