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Abstract

Exposure to traffic-related particulate matter (PM) has been associated with increased risk of lung
disease, cancer and cardiovascular disease especially in elderly and overweight subjects.The proposed
mechanisms involve intracellular production of reactive oxygen species (ROS), inflammation and
oxidation-induced DNA damage studied mainly in young normal-weight subjects. We performed a
controlled cross-over, randomised, single-blinded, repeated-measure study where 60 healthy subjects
(25 males and 35 females) with age 55-83 years and body mass index above 25kg/m? were exposed
for 5h to either particle-filtered or sham-filtered air from a busy street with number of concentrations
and PM_, levels of 1800/cm? versus 23 000/cm?® and 3 ng/m?® versus 24 ng/m?, respectively. Peripheral
blood mononuclear cells (PBMCs) were collected and assayed for production of ROS with and without
ex vivo exposure to nanosized carbon black as well as expression of genes related to inflammation
(chemokine (C-C motif) ligand 2, interleukin-8 and tumour necrosis factor), oxidative stress response
(heme oxygenase (decycling)-1) and DNA repair (oxoguanine DNA glycosylase). DNA strand breaks
and oxidised purines were assayed by the alkaline comet assay. No statistically significant differences
were found for any biomarker immediately after exposure to PM from urban street air although
strand breaks and oxidised purines combined were significantly associated with the particle number
concentration during exposure. In conclusion, 5h of controlled exposure to PM from urban traffic
did not change the gene expression related to inflammation, oxidative stress or DNA repair, ROS
production or oxidatively damaged DNA in PBMCs from elderly overweight human subjects.

Introduction The mechanisms involved in PM-generated health effects are

. . . . . thought to include excessive production of reactive oxygen species
Recent epidemiological evidence indicates that exposure to par- 5 p ygen sp

ticulate matter (PM) from air pollution increases the mortality (ROS) and initiation of inflammatory responses (9,10). Both animal

. . . and cell culture studies have shown that exposure to PM is associated
and risk of cardiovascular and lung disease as well as lung cancer

(1-6). Especially the fraction of ultrafine particles, mainly from
diesel-powered vehicles, is thought to promote effects due to high

with increased levels of DNA oxidation products, including muta-
genic DNA bases, and biomarker studies in exposed populations
alveolar deposition and a large surface area per mass with adhered support that this 1s‘r'elevant for 'urban 1ev§ls of air pollution (11’12,)'
. . . . Furthermore, transition metals in urban air PM, . may promote oxi-
toxic compounds such as polycyclic aromatic hydrocarbons, dioxin ) ; A
. . dative stress and increase the level of oxidised guanine in DNA of
derivatives, quinones, aldehydes and metals (7,8). . ;
peripheral blood mononuclear cells (PBMCs) in humans (13-16).
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Several enzymes are involved in the defence against oxidative stress,
including heme oxygenase-1 (HMOX1) and enzymes involved in
the repair of oxidatively generated DNA lesions. The repair of the
mutagenic oxidised lesion 7,8-dihydro-8-oxoguanine (8-oxoGua)
is initiated by 8-oxoguanine-DNA glycosylase 1 (OGG1), and the
excised 8-oxoGua is subsequently excreted in urine (17,18). Despite
increased production of DNA damage, the level found in cells may
therefore be unchanged because of increased repair activity (19,20).

Elderly subjects, especially with metabolic co-morbidities such as
Type 2 diabetes and hypertension, have been shown to be particu-
larly susceptible to adverse cardiovascular effects of particulate air
pollution (14). However, it is not known whether this susceptibility
relates to mechanisms involving oxidative stress, inflammation and/
or DNA damage.

The aim of this study was to assess the effects of 5h of controlled
exposure to traffic-related PM at real-life levels from an urban street in
elderly overweight subjects. We assessed the effect on biomarkers of oxi-
dative stress, inflammatory response, ROS production and DNA dam-
age in PBMCs. The level of oxidative stress and DNA repair response
was assessed by gene expression of HMOX1 and OGG1. The inflam-
matory response was assessed as gene expression of chemokine (C-C
motif) ligand 2 (CCL2), interleukin-8 (IL8) and tumour necrosis factor
(TNF). Basal and nanoparticle-induced ROS production was assessed
by 2,7-dichlorohydrofluoroscein (DCFH)-based fluorescence. DNA
damage was assessed as strand breaks (SB) and formamidopyrimidine
DNA glycosylase (FPG)-sensitive sites by means of the alkaline comet
assay modified to detect oxidatively generated DNA lesions. Previous
reports from this exposure study showed impairment of the vasomo-
tor function and reduced heart rate variability in the subjects after the
controlled exposure to urban street air PM (21).

Materials and Methods

Study population

Twenty-five male and 35 female non-smokers (>55 years)
were recruited for the study as described in more detail in the
Supplementary Information and elsewhere (21). The subjects were
included in the study if they were overweight (body mass index, BMI
> 25kg/m?) and had no personal history of cardiovascular diseases.
The study was reviewed and approved by The Committees on Health
Research Ethics in the Capital Region of Denmark (H-3-2011-074)
and in accordance with the Helsinki II declaration. All participants
were given both oral and written information before the study and
written consent was obtained from all participants.

Study design

We used a cross-over, repeated-measures study design, where par-
ticipants served as their own control with a single-blinded and ran-
domised order of exposure to particle-filtered or non-filtered outdoor
air. Each participant was studied on 2 days, each including 5h in
an exposure chamber with exactly 14 days between exposure days
for 37 subjects, 7-13 days between exposures for 11 subjects and
15-30 days between exposures for 12 subjects. On each day of expo-
sure, between 1 and 4 participants were exposed simultaneously. The
participants were instructed to wear a highly efficient face mask (Dust
Respirator 8812; 3M, St Paul, MN, USA) on the way from their home
to the exposure chamber in order to prevent exposure to ambient air
PM immediately before the experiments. This mask type has been
shown to reduce symptoms and improve cardiovascular health meas-
ures in patients with cardiovascular disease walking in an area with
high levels of air pollution in Beijing, China (22). The participants

arrived fasting and were served standard continental breakfast with
bread, cheese, jam and low fat yoghurt with cereals after all baseline
measurements were done. During the 5-h exposure, they were only
allowed to leave the chamber in order to go to the bathroom. We
collected blood samples before entry into the exposure chamber and
within 1h after exposure. All measurements were completed within a
7-month period, from November 2011 to end of May 2012.

To create an exposure scenario that simulates real-life exposure to
traffic-related PM, air from the curb side of a street (Jstersogade) in
central Copenhagen, Denmark, was introduced directly into the expo-
sure chamber (collected ~5 m from the nearest exhaust pipe area). The
traffic density on this road was 26 800 vehicles during daytime (6
am—6 pm), of which 35% were light-duty diesel-powered vehicles and
2.2% were diesel-powered heavy-duty (>3.5 tons) vehicles as assessed
by traffic counts from the Copenhagen municipality. The outdoor air
was continuously pumped into the exposure chamber using two KVR-
100 Channel ventilators (@land A/S Ballerup, Denmark) at 230 m*h
(pressure = 100 Pa) resulting in an air exchange of 5.3/h in the cham-
ber. Heating devices, placed within the airstream, kept the chamber
temperature constant (~25°C). To create either high or low PM expo-
sure levels in the chamber, the outdoor air was passed through cus-
tom-built units, with or without high efficiency particulate adsorption
filters (Camfil FARR HEPA filter 226002A1; Camfil A/S, Stockholm,
Sweden). In both exposure set ups (with or without filtration), air
flow and pressure were constant, whereas nitrogen oxides (NO, NO,),
ozone and carbon monoxide levels were minimally affected by the
filtration (23). The air in the chamber was continuously monitored
for PM, ; with a Dusttrak Aerosol Monitor 8520 (TSI, St Paul, MN,
USA) and for the particle number concentration with a TSI 3007 con-
densation particle counter. In addition, PM, ; samples were collected
on filters and more extensive characterisation of the chamber air was
carried out in the first half of the study as described elsewhere (21).

Collection and preparation of samples

Peripheral blood samples were collected immediately before and
after the exposure. PBMCs were isolated using Vacutainer Cell
Preparation Tubes (Vacutainer® CPT Becton Dickinson A/S,
Brondby, Denmark). Fresh PBMC samples were used for the
assessment of intracellular ROS production. Samples of PBMCs
were cryopreserved in a solution of 10% dimethylsulfoxide, 40%
Roswell Park Memorial Institute cell culture medium (RPMI 1640
GibcoRBL) and 50% foetal bovine serum (GibcoRBL) at -80°C
for analysis of genotoxicity. Samples of PBMCs were also sus-
pended in TRIzol (Invitrogen, Carlsbad, CA, USA) and stored at
-80°C for assessment of gene expression levels.

Intracellular ROS production

ROS production was measured in THP-1 cells and PBMCs imme-
diately after isolation as described previously for monocytic THP-1
cells (24). The THP-1 monocytes were obtained from the American
Tissue Type Culture Collection (Manassas, VA, USA) and they were
cultured at 37°C and 5% CO, in RPMI with 10% fetal bovine
serum, 1.65 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesul-
fonic acid), 5 mM sodium pyruvate and 0.05 mg/ml of gentamicin as
previously described (25). We measured ROS production in PBMCs
and THP-1 monocytes (both cell types: 50 000 cells/well) during
a 3-h exposure period to nanosized carbon black [Printex 90 from
Evonik Industries, Frankfurt, Germany (primary particle size 14nm;
surface area 300 m?%/g)]. The ROS production method utilised intra-
cellular trapping of dichlorohydrofluorescein diacetate (DCFH-DA),
which is converted by cytosolic esterases to DCFH. The oxidation
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of DCFH produces the fluorescent dichlorofluoroscein (DCF). The
exposure to nanosized carbon black is associated with increased
ROS production in a number of cell types, including lung epithelial
cells and in vascular endothelial cells (26-28).

The PBMCs and THP-1 cells were washed twice with Hanks
buffered salt solution (Hank’s) and incubated with 2 pM DCFH-DA
(diluted in Hank’s) for 15 min at 37°C and 5% CO,. Subsequently,
the samples were washed three times in Hank’s, followed by resus-
pension in concentrations of 0.625, 1.25, 2.5 and 5 pg Printex 90/
ml Hank’s. Immediately after addition of Printex 90, the DCF fluo-
rescence was measured (ex: 488 nm, em: 525 nm). Hereafter, fluores-
cence was measured every 15min for a total period of 180 min and
a total of 13 measurements. We used the area under curve of these
time-curve measurements to get a single data point for ROS produc-
tion. All samples were run in triplicates and expressed as a mean of
the three. In addition, the ROS production was normalised to the
production in THP-1 cells, analysed in parallel in order to limit influ-
ence of day-to-day variation in the assays.

DNA damage in PBMCs

The alkaline comet assay was used to measure the levels of SB and
FPG-sensitive sites in PBMCs. To summarise, PBMCs were embedded
in 0.75% low-melting point agarose (Sigma—Aldrich A/S, Brendby,
Denmark) on GelBond®films (Lonza Copenhagen Aps, Vallensbaek
Strand, Denmark) and lysed (1% Triton X-100,2.5M NaCl, 100 mM
Na,EDTA (ethylenediaminetetraacetic acid), 10mM Tris, pH = 10)
for a minimum of 1h at 4°C. The gel-embedded nuclei were digested
with FPG enzyme, which was a gift from Professor Andrew Collins
(University of Oslo, Norway) or buffer without enzyme for 45 min at
37°C. The Gelbond films were then submerged in an alkaline solu-
tion (300mM NaOH, 1 mM Na,EDTA, pH > 13) for 40min and the
duration of the subsequent electrophoresis was 20 min at 0.83V/cm
(cathode to anode) and 300 mA. Electrophoresis and alkali treatment
were both performed at low temperature (4°C). After electrophoresis,
the Gelbond films were washed three times for 5min in Tris buffer
(0.4M Tris=HCI, pH = 7.5), rinsed with ELGA® water (ultrapure
water of resistivity of 18.2 O/cm, by ELGA maxima water systems)
and dehydrated in 96 % ethanol for a minimum of 1.5h.

DNA damage was measured by visual inspections in an Olympus
fluorescence microscope at x40 magnifications after staining with
YOYO-1 (Molecular Probes, Eugene, OR, USA).

Samples from each subject were coded and analysed in the same
experiment in order to minimise inter-assay variation. We analysed
100 comets (nucleoids) per slide and there were two slides per sam-
ple, corresponding to a total number of 200 analysed nuclei per
sample, and we used the average of the two slides to represent one
sample. The comets were scored by visual classification based on a
five-class scoring system (arbitrary score range: 0-400). In each elec-
trophoresis, we included THP-1 cells that were either unexposed or
treated with photosensitiser Ro19-8022 and exposed to white light
(generates FPG-sensitive sites) as negative and positive control sam-
ples, respectively. The Ro19-8022 photosensitiser was a gift from
F. Hoffmann-La Roche (Basel, Switzerland). The number of FPG-
sensitive sites was obtained as the difference in scores of parallel
slides incubated with or without FPG enzyme. These scores were
transformed to lesions per 10° bp by means of a calibration curve
based on induction of SB by ionising radiation, which has a known
yield. We used a conversion factor of 0.0273 lesions/10° bp per score
in 0-100 range, based on the assumption that an average molecular
weight of a DNA bp is 650Da and 1 Gy yields 0.29 breaks per 10°
Da DNA (29).

Expression of mRNA in PBMCs

The gene expression of inflammation markers (CCL2, IL8 and TNF),
oxidative stress-related enzyme (HMOX1) and DNA repair enzyme
(OGGT1) was measured in PBMCs using RT-PCR (real-time reverse
transcription polymerase chain reaction) with appropriate primers
and probes, as described previously (30-32). We used target-specific
TagMan gene expression assays for the quantitative analysis of spe-
cific gene expression levels. Change in expression of the target gene
was normalised to 185 RNA as reference by using the comparative
2-2¢ method.

Statistical analysis

We used Stata/IC software (version 13.0) linear mixed effect models
(xtmixed) to perform the statistical analyses. Gene expression levels
were adjusted for baseline level (before entering the exposure chamber)
in order to account for day-to-day variation within an individual as
well as BMI, age and sex because of a few missing measurements from
some subjects. Oxidatively damaged DNA and ROS production were
only measured in the samples collected after exposure to either filtered
or non-filtered air and the analysis were thus adjusted for BMI, age
and sex, but not baseline adjusted. The relative response to exposure
was calculated as the percentage change with 95% confidence inter-
val (CI) from the regression coefficient with air filtration as categorical
variable in the mixed effects model. In addition, mixed effects models
with DNA damage as outcome and particle number concentrations
as continuous predictor variable with adjustment for BMI, age and
sex as well as models stratified for sex were also applied. Statistical
significance was accepted at P < 0.05. A total of 60 participants were
recruited in order to have sufficient power for adjustment for baseline
values measured in the morning before exposure based on power cal-
culations described elsewhere (21).

Results

Exposure characterisation

The number, mass and size distribution, mass levels and chemical
composition of the particles in the exposure chamber are provided
in more detail in the Supplementary Information and some of these
data have recently been reported (21). Participants were without
air filtration exposed to an average particle concentration of 24 pg/
m? in terms of PM, ; mass and ~23 000/cm’® (>7nm) in terms of
number concentration as opposed to 3 pg/m? and 1800/cm? with air
filtration, respectively (Figure 1). Filter-based measurement of PM,
on 16 exposure days without air filtration and 8 exposure days with
air filtration showed mass levels of 18 and 1.5 pg/m?® with corre-
sponding black carbon levels of 3.9 and 0.3 pg/m?, respectively. NO
levels were very similar in both exposure scenarios, 31 pg/m? versus
33 pg/m’, whereas NO, was higher in air without filtration (45 pg/
m?) than in air with filtration (26 ug/m?). The particle number con-
centration in the exposure chamber during exposure days with
unfiltered air was nearly identical to the ambient outdoor levels on
the curb side of the street and around half of the particle num-
bers corresponded to fresh soot particles emitted from local traffic
(33). The order of the composition of the PM mass with diameter <
1 pm was as follows: organic material > soot > sulphate > nitrate >
ammonia > chlorine (21).

Effects on biomarkers
The data on levels of DNA damage and ROS production in PBMCs
did not indicate any difference between the exposure conditions
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Figure 1. (A) Particle number concentration (PNC) and (B) PM,
adsorption filtration of the inlet air from an urban street.
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Table 1. Levels of DNA damage and ROS production in PBMCs
from 60 overweight elderly subjects after 5-h exposure to particles
in urban street air or filtered air from the same site

Particle- Non-filtered Positive
filtered air  air control
DNA damage
SB (lesions per 10¢ bp) 0.57+0.04 0.59=0.05 0.98=0.11
FPGss (lesions per 10° bp)  0.32+0.04  0.35+0.04 0.58=0.22

ROS production
Baseline (relative to THP-1) 0.66+0.05
1.26+0.16

0.56+0.05 NA
1.16+0.18 NA

CB response (relative to

THP-1)

DNA damage was assessed as SB and formamidopyrimidine DNA glycosy-
lase sensitive sites (FPGss) by means of the comet assay. PBMCs exposed to the
photosensitiser Ro19-8022 and white light were included as positive control
in all assay batches. ROS production was measured immediately after blood
collection as DCFH-induced fluorescence directly (baseline) and the maximum
fluorescence response above baseline induced by co-incubation with carbon
black 14 nm particles (CB) 0.625, 1.25, 2.5 and 5 pg/ml. The fluorescence was
normalised to the DCFH-induced fluorescence obtained in THP-1 monocytic
cells included in every set of measurements. The data are mean = SEM. NA,
not applicable.

(Table 1). As shown in Figure 2, the PBMCs were capable of
increasing their ROS production in a concentration-dependent
manner upon ex vivo exposure to carbon black and to a similar
extent as seen in THP-1 control cells. Similarly, gene expression
levels of CCL2, HMOX1, IL8, TNF and OGG1 in PBMCs were
unaltered (Table 2). Figure 3 depicts the effect size and 95% CI for
relative change in biomarker level following exposure to urban
air PM after adjustment for BMI, age and sex. Quite remarkably,
only the level of FPG-sensitive sites showed a positive association
with exposure (8% increased; 95% CI: =23 to 40), although this
was far from being statistically significant. None of the measured
biomarkers showed any significant change related to the exposure
to filtered or non-filtered air in the exposure chamber (Figure 2).
Analyses stratified for sex showed no sign of differences in sus-
ceptibility (data not shown). However, Figure 4 depicts a plot of
the total level of DNA damage in terms of the sum of SB and
FPG-sensitive sites on the particle number concentration in the
exposure chamber and a corresponding mixed effects analysis
showed a significant positive association between these two vari-
ables (P = 0.016).
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Discussion

In this human exposure study, we observed no statistically significant
effects after 5h of controlled exposure to real-life levels of PM from
urban street air, on markers of systemic oxidative stress in terms of
DNA damage and ROS production and gene expression levels of
markers of inflammation (CCL2, ILS8, TNF), DNA repair (OGG1)
and oxidative stress (HMOX-1) in PBMCs. Although each of SB and
FPG-sensitive sites showed no association, the sum of them was sig-
nificantly positively associated with the particle number concentra-
tion in the exposure chamber as a continuous variable, suggesting
some genotoxic potential of traffic-related emissions.

Exposure to ambient air pollution has consistently been associ-
ated with high levels of oxidative stress-induced damage to DNA
and lipids (11), although most studies are with cross-sectional
designs with inherent problems of causal inference. In a controlled
exposure chamber study with a similar design, we have previously
found that urban street air from another location in Copenhagen,
Denmark, was associated with significantly increased levels of SB
and FPG-sensitive sites, by around 50% and 40%, respectively
(23). This effect size was found after both 6 and 24 h in the expo-
sure chamber. The present finding of an 8% increase, with 95%
CI ranging from -23 to 40 in FPG-sensitive sites and the asso-
ciation of the sum of FPG-sensitive sites and SB with the particle
number concentration, is compatible with our previous study (23).
That study showed significant associations between each of SB and
FPG-sensitive sites and the particle number concentrations in the
exposure chamber. However, there were also a number of differ-
ences between the two exposure studies. In contrast to the pre-
sent study, the subjects of our earlier study were younger (median
age: 25 years) and of normal weight (mean BMI: 23 kg/m?) and
were also studied with and without exercise for a total of 180 min
at 60% of maximum VO, during the stay in the exposure cham-
ber (23). The effect size appeared slightly larger with exercise in
the chamber, although there was no significant interaction. It is
also possible that increases due to PM exposure were difficult to
detect in the subjects in the present study because their levels of
SB and FPG-sensitive sites might have already been elevated due
to their older age and overweight, factors shown recently to be
associated with high levels of FPG-sensitive sites (34). It should
also be emphasised that the sum of FPG-sensitive sites and SB
reported in the present study is a combined measure of different
types of DNA damage derived from oxidative and non-oxidative
mechanisms of action (35). The exposure levels in terms of particle
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Figure 2. Production of ROS induced by incubation with 14-nm black carbon nanoparticles (0-5 pg/ml) in PBMCs isolated from 60 overweight elderly subjects
after 5-h exposure to filtered air (white) or non-filtered air (grey) from an urban street, whereas the black bars are ROS production in THP-1 assayed in parallel
(positive control) with black carbon nanoparticles. The data are mean + SEM in arbitrary units.

Table 2. Gene expression levels of CCL2, IL8, TNF, OGG1 and
HMOXT1 in PBMCs from 60 overweight elderly subjects after 5h of
exposure to particles from an urban street or filtered air

Particle-filtered air Non-filtered air

Before After Before After
CCL2 0.23+0.06 0.37+0.10 0.29+0.07 0.28+0.09
IL-8 32.0+7.0 34.6+8.0 32.0+7.0 31.2+8.0
TNF 2.0+0.3 4.7+1.7 2.6+0.6 2.9+0.5
OGG1 8.3+1.7 14.6+3.2 12.8+2.7 10+2.9
HMOX1 9.3+1.7 12.7+2.6 11.9+2.3 10.2+1.9

The data are mean =SEM per 10° 18S mRNA.

number concentration (~10 000/cm?) and PM, ; mass (~10 ng/m?)
were actually lower in the exposure chamber in our previous study
compared to the present study with average levels of 23 000/cm?
and 24 pg/m’, respectively. The lower levels in the earlier study
were due to air collection further away from the curb site and
despite a larger traffic load of 49 200 vehicles per day with 4-6%
heavy-duty contribution (23). Differences might also be due to
qualitative changes in PM composition over the 6 years passing.
We have earlier shown that vanadium and chromium in PM, ; per-
sonally monitored for 48h was associated with oxidatively dam-
aged DNA in young healthy subjects in Copenhagen, Denmark
(15). On the other hand, we have also studied groups of young
(aged 13-19 years) subjects in the hours after controlled exposure
to pure diesel exhaust or wood smoke at 300 pg/m* PM for 3h
without finding any effects on SB or FPG-sensitive sites (30,36,37).
The lack of effect of these exposures is not likely to be due to too
early sampling of the blood samples as such because a recent study
of a whole week exposure of wood smoke at very high level in a
reconstructed Viking age house also showed no change in oxida-
tively damaged DNA, although some markers of monocyte adhe-
sion to the vessel wall were changed (32).

It can be speculated that the 5-h exposure period may not be
sufficient to clearly reveal PM-mediated genotoxicity. However, our
previous studies have shown that 3h of exposure is sufficient to
generate SB and FPG-sensitive sites in cultured lung epithelial cells

by diesel exhaust particles and urban air PM from Copenhagen,
Denmark (38). In addition, pulmonary exposure to Printex 90 was
associated with increased levels of SB in bronchoalveolar epithelial
cells in mice at 3 h after an intratracheal instillation (39).
Interestingly, we found decreased nitroglycerin-induced vaso-
dilation as well as decreased high-frequency heart rate variability
as adverse cardiovascular effects of the exposure in our present
subjects, as reported elsewhere and in keeping with the general
notion of such effects of traffic-related air pollution (1,9,21).
However, this was not related to changes in oxidative stress or
nitric oxide bioavailability indicated by any change in vitamin C
or tetrahydrobiopterin or their oxidised forms or changes in any
leukocyte counts (21). This is in keeping with the present lack of
a significant change in the ROS production in PBMCs. The major
ROS producing cell type of PBMCs is the monocyte; however, the
prima facie effect on monocytes of exposure to traffic-related PM
may be differentiation into dendritic cells, as indicated in stud-
ies on light-duty diesel engine PM effects and urban PM, dust
(40,41). Conversely, PBMCs have been reported to increase their
ROS production in response to silica nanoparticle exposure (42).
Monocytes have been shown to increase their ROS production
in response to ZnO-nanoparticle exposure (43). Moreover, rod-
shaped ZnO nanoparticles induced higher ROS production in
PBMCs compared to spherical ZnO nanoparticles (44). This indi-
cates that not only elemental composition and size but also the
shape should be taken into consideration when comparing studies
on nanoparticle effects. In our study, PBMCs were capable of ROS
production as indicated by the increased levels after ex vivo expo-
sure to nanosized carbon black which like traffic-generated PM is
carbon based. The ex vivo carbon black concentrations were much
higher than the comparative PM exposure dose from the chamber,
which might be insufficient to cross a potential threshold of ROS
response in PBMCs. The high carbon black concentrations may
also result in a relatively increased nanoparticle internalisation
through unspecific uptake pathways such as pinocytosis, which
could increase the ROS production by the ingulfed nanoparticles
per se. Moreover, there were no significant changes in gene expres-
sion of oxidative stress response, DNA repair and inflammation
genes, although the variation was rather high and the 95% CI of
the relative changes within the PBMCs was substantial. This is in
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Figure 3. Percentage change (with 95% Cl) in ROS production, DNA damage and gene expression in PBMCs from 60 overweight elderly subjects related to 5-h
exposure to particles in urban street air as compared exposure to filtered air from the same site. DNA damage was assessed as SB and FPG-sensitive sites
by means of the comet assay. ROS production was measured immediately after blood collection as DCFH-induced fluorescence directly (baseline) and the
maximum fluorescence response above baseline induced by co-incubation with carbon black 14 nm particles (CB) 0.625, 1.25, 2.5 and 5 ng/ml. Gene expression
levels of CCL2, IL8, TNF, OGG1 and HMOX1 were determined by RT-PCR with 18S RNA as reference.
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35 000/cm?®). There was a statistically significant association between these two variables.

keeping with our findings of no significant effect from 3h of con-
trolled exposure to diesel exhaust at 300 pg/m? on gene expression
of HMOX1, OGG1, IL8 and TNF in PBMCs from young healthy
subject (37). Similarly, 3h of controlled exposure to wood smoke
at 354 pg/m?® or a week’s exposure to much higher levels in a recon-
structed Viking age house showed no change in the expression of
these genes (32,45), although OGG1 expression was enhanced
after 4h of exposure to wood smoke at similar levels (36). We did
not measure plasma levels of cytokines in the present study as the
collection of blood samples would be too early to detect a response
and the sensitivity of these biomarkers is likely to be low with only

weak associations in long-term exposure studies and often negative
results in controlled exposure studies (46).

The present study had high statistical power with 60 participants
serving as their own control to limit importance of potential con-
founders between subjects. However, there was substantial within-
subject variation in many of the biomarkers resulting in wide CIs
for the relative changes and small effects might have been missed.
Some of this variation might be caused by exposure before entering
the exposure chamber, although the immediate effects should have
been avoided by having the subjects wearing a protective face mask
en route from their home.
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Conclusions

In conclusion, 5h of controlled exposure to real-life levels of traffic-
related PM from urban street air did not increase the level of DNA
damage, ROS production or expression of oxidative stress, DNA
repair or inflammation genes in PBMCs isolated from healthy elderly
overweight human subjects.
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Supplementary Information is available at Mutagenesis Online.
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