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Mycobacterium abscessus subspecies classification has important clinical implications. We used phylogenomic network and
amino acid analyses to provide evidence for the separation of Mycobacterium bolletii and Mycobacterium massiliense into two
distinct subspecies which can potentially be differentiated rapidly by their protein signatures.

Mycobacterium abscessus has become one of the most fre-
quently isolated nontuberculous mycobacterium (NTM)

in clinical laboratories. It is associated with chronic, recurrent
infections that are difficult to treat, partly because of its resis-
tance to many of the usual medications for NTM infections.
This species was previously divided into three subspecies (M.
abscessus, M. massiliense, and M. bolletii) based on biological and
genetic differences (1–3). Currently, however, only two subspecies
are recognized; while M. abscessus is retained as Mycobacterium
abscessus subsp. abscessus, M. massiliense and M. bolletii are placed
in the same subspecies designated Mycobacterium abscessus subsp.
bolletii (4). This tenuous merging of M. massiliense and M. bolletii
is still being debated as recent publications support the previous
three-subspecies classification (5). Here, we present more evi-
dence for the retention of the former three-subspecies taxonomic
division, which correlates better with the expected treatment out-
comes in infected patients (6).

(This research was conducted by J. L. Tan in partial fulfillment of

the requirements for a Ph.D. from University of Malaya, Kuala Lum-
pur, Malaysia.)

For our genomic and amino acid analyses, we used 12 genomes
from strains isolated in the Diagnostic Microbiology Laboratory
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FIG 1 Phylogenomic split network tree obtained from the concatenation of single-copy core genes from M. abscessus subspecies. M. massiliense (right), M.
bolletii (center), and M. abscessus (left) can be seen clearly as distinct groups.
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of the University of Malaya Medical Centre (UMMC), Kuala
Lumpur, Malaysia, and 41 downloaded from the NCBI Genome
database on July 2014 (see Table S1 in the supplemental material).
Eleven of the UMMC strains have been previously reported to be
M. abscessus (M93, M94, and M152), M. bolletii (M24), and M.
massiliense (M18, M115, M152, M172, M159, M156, and M148).
One strain, M139, was shown to have an ambiguous taxonomic
position in a number of studies (7, 8).

The protein sequences for all strains were retrieved using the

self-training structural annotation algorithm of GeneMarkS (9).
To define orthologous sequences, we used the CD-HIT program
(10) with the following criteria: word length of 2, local sequence
identity threshold of 0.4, alignment coverage for both sequences
of 0.4, and greedy algorithm off. We also used the BLASTClust
program with the following parameters: reference and query se-
quences must cover at least 40% of the aligned sequence and ref-
erence and query sequences must have a minimum identity of
40% (11). To reduce false-positive results due to algorithmic er-

FIG 2 Multiple sequence alignments of erm41 showing features of M. massiliense M139 and 5S strains compared to those of the type strains of M. abscessus ATCC
19977T, M. massiliense CCUG 48898T, and M. bolletii BDT. The M. massiliense signatures are (i) deletions at positions 64 and 65 and (ii) a 274-bp deletion after
position 159.
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rors, only the consensus sequences from both programs were ex-
tracted and used as the final list of orthologs. Nonduplicated con-
served protein orthologs were aligned in MAFFT (12).

The protein sequence alignments were used as the reference for
codon alignments in PAL2NAL (13). The aligned nucleotide se-
quences were concatenated into supersequences for phylog-
enomic analysis using the Neighbor-Net algorithm implemented
in SplitsTree4 (14). This algorithm was considered the best for the
resolution of complex taxonomy (15). To assess the subspecies
classification derived from our network tree, we looked for sub-
species-specific polymorphisms previously described for the
erythromycin ribosome methyltransferase (erm41) and 16S to 23S
internal transcribed spacer (ITS) genes.

Our network-based phylogenomic tree showed reticulated
branches leading to three clearly distinctive monophyletic groups
representing the three subspecies of M. abscessus (Fig. 1). The
M139 and the 5S strains (5S-0421, 5S-0422, 5S-0708, 5S-0817,
5S-0921, 5S-1212, 5S-1215, and 5S-0304) clustered with the other
M. massiliense strains. None of the branches in any of the three
major clusters bifurcated to the other two clusters. The presence of
3-dimensional-like splits within the branches indicated incom-
patible phylogenetic signals that are likely to be the result of re-
combination following the horizontal transfer of genetic material
among strains. Indeed, the recombination among our M. absces-
sus strains is statistically supported by the pairwise homoplasy
index (PHI) (P � 0) (16). The incompatible signals occurred at
random points in the tree, suggesting that recombination has oc-
curred in ancestral states and within the respective subspecies. We
also noticed unusual conflicting signals within the M. massiliense
cluster, appearing as a major reticulation connecting the M.
massiliense strains and suggesting a higher degree of genetic re-

combination in M. massiliense compared to that in the other two
subspecies. To test the validity of this network phylogenomics
approach, we used it on three members of the M. avium complex
and found a clear separation of Mycobacterium avium subsp. para-
tuberculosis, Mycobacterium avium subsp. hominissuis, and Myco-
bacterium avium subsp. avium into three distinctive monophyletic
groups, as observed with the M. abscessus complex (see Fig. S1 in
the supplemental material).

M. massiliense is known to be different from the other two
subspecies in having a truncated erm41 with nucleotide deletions
at the 64th to 65th and 159th to 432nd positions, as well as muta-
tions in the ITS (a A to G substitution at the 60th position and a C
insertion at the 102nd position) (2). M139 and the eight 5S strains
previously classified as M. massiliense and appearing as M. massil-
iense in our phylogenomic tree did not show the erm41 features
associated with M. massiliense (Fig. 2). M139 additionally lacked
the ITS mutations characteristic of M. massiliense and did not
show inducible resistance to macrolides (17). Overall, however,
there was good concordance (83%) between the subspecies clas-
sifications by erm41 signatures and by the network tree.

In the multiple sequence alignment of the orthologous pro-
teins from our 53 strains, we noted 46 proteins with at least one
amino acid that can be used to differentiate the three subspecies
(see Table S2 in the supplemental material) and another two pro-
teins (thymidylate kinase [tk] and 30S ribosomal protein S3 [S3])
that can differentiate M. massiliense from the other two subspecies
(Fig. 3 and 4). We used BLAST to search the amino acid sequences
of tk3 and S3 against all Mycobacterium genomes in the NCBI
database and found them in 37 and 44 species, respectively. After
realigning against these mycobacterial species, we confirmed the
amino acid signatures of tk (RALTRRSISQGLS at position 20 to

FIG 3 Consistent protein signatures in M. massiliense identified in multiple alignments of thymidylate kinase from M. abscessus and other selected mycobacteria:
*23 strains of M. abscessus subsp. abscessus; ** 2 strains of M. bolletii; ***28 strains of M. massiliense.
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30) and S3 (ETGGNTSAEAPAETSTES at position 260 to 277) to
be specific for M. massiliense (Fig. 3 and 4). The presence of these
signatures in M139 and the 5S strains supported their classifica-
tion as M. massiliense, in agreement with the classification by the
phylogenomic network. They will need to be experimentally ver-
ified as suitable biomarkers for the identification of M. massiliense
in clinical material.

It is well known that M. abscessus subspecies exhibit different
clinical and epidemiological features (18, 19). M. massiliense is
more susceptible to antibiotics but is also more often associated
with clinical infections. M. bolletii, on the other hand, is rarely
isolated from clinical material but is more highly antibiotic resis-
tant. While the reasons behind these differences are still unclear,
there is sufficient justification for subspecies identification in pa-
tient care. Our analyses support the division of M. abscessus into
three subspecies and the reinstatement of M. massiliense as a taxon
independent of M. bolletii. The specific identification of these two
subspecies which show different antibiotic susceptibilities will en-
able the clinician to prescribe appropriate antibiotics for the effec-
tive treatment of infections.
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