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Complexity of cardiac signals for 
predicting changes in alpha-waves 
after stress in patients undergoing 
cardiac catheterization
Hung-Chih Chiu1,*, Yen-Hung Lin2,*, Men-Tzung Lo3,4, Sung-Chun Tang6, Tzung-Dau Wang2, 
Hung-Chun Lu2, Yi-Lwun Ho2, Hsi-Pin Ma1 & Chung-Kang Peng4,5

The hierarchical interaction between electrical signals of the brain and heart is not fully understood. 
We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in 
encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate 
variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical 
model. To overcome these limitations and increase the predictive accuracy of human relaxing states, 
we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale 
entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and 
nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to 
quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha 
waves were analyzed using change-score analysis and generalized additive models. In conclusion, the 
complexity of cardiac electrical signals can be used to predict EEG changes after stress.

The relationship between the human brain and human heart is comparable to that between a rider and a 
horse. Using a bridle, the rider controls the pace of his horse, whether trotting or cantering. Conversely, 
by observing the pace at which the horse moves, onlookers can deduce the method that the rider uses 
to control the horse as well as his thought processes. It is generally believed that a human being’s heart 
and brain are hierarchically connected such that the heart receives the brain’s commands through a 
central autonomic network1. The autonomic nervous system (ANS) correlates with the physiological and 
pathological states2–4, in which changes typically reflect the heartbeat and brainwaves that communicate 
through regulatory central nervous system (CNS) signals. Because electroencephalography (EEG) alter-
ations affect the physiological response pattern, the use of EEG has been proposed in practical applica-
tions to evaluate physiological responses5,6. In addition to EEG, a methodology for identifying relaxing 
states based on patterns from the heart rate and skin conductance has been investigated over the past 
decade7,8. However, medication and environmental factors may interfere with the results obtained for the 
skin conductance and heart rate. Hence, machine learning with the capacity to select features associated 
with physiological and pathological states has been used to identify emotion recognition systems9,10. 
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According to methods that are acceptable in the field, the clinical applications of these measurements are 
limited by their multiple signals and complex mathematical models for physiological signals.

Compared with the previously proposed models, this study used a regression model and machine 
learning technique, which are referred to as change score analysis and generalized additive models, to 
evaluate relaxing states. These techniques require purely parametric values that are associated with the 
heart and brain. Our aim was to determine the optimal fitting of change score analysis using the differ-
ence between the pretest and post-test values obtained for electrocardiography (ECG) and EEG signals.

Researchers have begun assessing the human physiological states and ANS because ANS activity can 
be easily monitored through wearable sensors11. Hence, heart rate variability (HRV) analyses can be used 
to noninvasively assess autonomic function. Time- and frequency-based metrics12,13 have been demon-
strated to have prognostic value and can be linked to other clinical or biological prognostic metrics14–16. 
However, conventional linear HRV analyses, which are based on both time and frequency analysis, have 
several limitations due to the complex autonomic function of heartbeat dynamics, which consist of inter-
connected feedback loops17. For instance, although numerous researchers have performed a spectral esti-
mation of biomedical signals, this estimate cannot sufficiently display the nonlinear and nonstationary 
properties of complex biological systems12,18.

Recently, the sciences of complexity and classification algorithms have been closely related to HRV 
analysis, which characterizes nonlinear dynamics19,20. The present study investigated heartbeat features 
using two innovative analysis methods that are derived from nonlinear and nonstationary processes. The 
first method was a multiscale entropy (MSE) measurement method21, which was applied using a non-
linear algorithm that provides the regularity pattern of a time series by analyzing the interplay between 
quantitative connotations and the correlations among individual subjects. The second method is called 
detrended fluctuation analysis (DFA)22  and is used to evaluate the fractal correlation that causes a heart 
rate fluctuation originating from the interactive regulatory mechanisms. In addition, the short-term (∝ 1) 
and long-term (∝ 2) correlation exponents derived from the DFA analysis of heartbeat time series were 
calculated to clarify the fractal correlation property in a physiological system23.

Although previous studies have yielded considerable valuable information that can be used to assess 
the human physiological states, many of the factors that can predict relaxation remain unexplored. The 
changes in the relaxing state of energy in EEG alpha bands are a critical indicator of the processes24,25 
associated with brain waves. Fourier-based spectral analysis has been widely used to investigate the 
spectra of EEG signals. However, the conventional Fourier transform only provides a coarse frequency 
estimate, which is unsuitable for short wavelengths. Hence, time-frequency transforms are used to cal-
culate the alpha activity from clinical EEG data, and numerous methods are thus applied to estimate 
the time–frequency density of biomedical signals26,27. In particular, a short time window is applied to 
biomedical signals, and Fourier transforms are performed within this window as it slides across the range 
of data. This technique was incorporated in the change score analysis that was proposed in the present 
research, which could accurately predict people’s relaxing states.

During the embryonic stage, the heart begins to beat before the brain is formed. It is not completely 
understood how the electrical signals between the brain and heart interact hierarchically. In this study, 
we tested the hypothesis that the complexity of cardiac electric activity can be used to predict the changes 
in encephalic electricity after stress. We adopted linear and nonlinear cardiac electrical activity features 
and the parameters associated with EEG alpha bands to recognize relaxing states.

Results
Study patient demographics. A total of 117 patients were enrolled in the study. All patients tol-
erated the procedure well, and no clinical complications were noted during the index procedure or 
admission. Among them, thirty-three patients were excluded because of poor data recording and incom-
plete EEG recording, and the remaining 84 patients were selected for the final analysis. The clinical 
information of all patients (n =  84) are presented in Table  1. The mean age was 64.1 ±  11.8 years, and 
69 were men. Sixty-five patients underwent both cardiac catheterization and coronary artery interven-
tion (including stent implantation) in the index procedure (revascularization group). Nineteen patients 
underwent cardiac catheterization alone (nonrevascularization group) owing to the lack of significant 
stenosis in the index procedure.

Serum neurotransmitter measurement and ECG/EEG parameters in the revascularization 
and nonrevascularization groups. The differences in the serum neurotransmitter levels, HRV met-
rics and EEG parameters are presented in Table 2. In terms of serum neurotransmitters, the dopamine 
level was high in the revascularization group (231.60 ±  224.09 vs. 148.96 ±  201.66; p =  0.047). The dif-
ferences in the orphanin FQ and serotonin levels between the groups were not statistically significant. In 
the EEG reading, the pre-procedure alpha activity, post-procedure alpha activity, and difference in the 
pre/post procedure alpha activity were comparable in both groups. The HRV metrics of pNN20 (pre-) 
and log-pNN20 (pre-) in the revascularization group were significantly different (0.4974 ±  0.2553 vs. 
0.3567 ±  0.2267.66; p =  0.026 and − 0.87 ±  0.68 vs. − 1.27 ±  0.77; p =  0.026). The other HRV parameters 
were comparable in both groups.
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Experimental framework. Figure 1 shows the proposed framework, which consists of multiple anal-
ysis steps, including an overall variation analysis method (time- and frequency-based analysis), statistical 
method, and clinical data. Each ECG and EEG segment, with a time series of 4 min, was used for signal 
processing and statistical analysis. The novel ideal of the procedure is emphasized, and details of the 
procedure are presented in the Methods section. This procedure is completely based on the linear and 
nonlinear analysis of the pre- and post-test heartbeat. To improve the procedure and enhance the accu-
racy of predicting human’s relaxing states, we included the post-catheterization EEG alpha waves and 
clinical data. In particular, we used STFT when there was a change in the encephalic electricity.

The statistics on the heartbeat and brainwaves were obtained using change-score analysis. Before 
model fitting, the continuous ECG and EEG parameters were analyzed using Spearman’s rank correlation 
to remove a confounding variable, and GAMs were used to increase the prediction accuracy.

Data classification and definitions. ECG parameters were computed using two metrics, i.e., linear 
and nonlinear methods, as shown in Supplementary Table S1. Some HRV metrics showed strong interac-
tions between HRV and EEG, with a correlation coefficient of 0.8 (see Supplementary Table S4 and S5 for 
details). The correlation between MSE and conventional HRV analysis was nonsignificant for all patients. 
The EEG alpha activity was determined using STFT. The experiment involved the use of 52 continuous 
variables to investigate the role of relaxing states (post-test alpha activity). To enhance personalization 
and improve the investigation accuracy, the change score analysis derived 11 discrete variables of clinical 
data and 3 continuous serum neurotransmitter variables.

Before multiple regression model fitting, the continuous parameters of ECG and EEG were analyzed 
using Spearman’s rank correlation to remove confounding variables from the test for continuous varia-
bles, which resulted in 23 continuous variables. Supplementary Table S2 shows the pretest, and the dif-
ference between the pre- and post-test was considered after determining the Spearman’s rank correlation. 
To determine the prognostic value for the recognition of relaxed states, we proposed the following three 
methods: change-score analysis, change-score analysis using GAMs, and change-score analysis using 
GAMs without considering the EEG data obtained before stress (cardiac catheterization).

Change-score analysis. Table  3 shows the 84 patients who were analyzed using the change-score 
analysis. Six multiple regression parameters were evaluated. The pre-alpha activity, pre-meanNN, and 

Total patients (n = 84)

Revascularization treatment

Without 
revascularization 

treatment (n = 19)

With 
revascularization 

treatment (n = 65)

Male/female 70/14 12/7 58/7 P =  0.0133

Age 64.2 ±  11.9 62.6 ±  10.7 64.6 ±  12.3 P =  0.5634

Body mass index 26.8 ±  3.6 28.2 ±  3.6 26.3 ±  3.50 P =  0.0563

Estimated 
glomerular filtration 
rate

1(24)/0(60) 1(19)/0(46) 1(5)/0(14) P =  1

Fasting glucose 135 ±  37 167 ±  51 131 ±  34 P =  0.1088

Triglyceride 166 ±  88 168 ±  90 165 ±  88 P =  0.9531

Total cholesterol 167 ±  38 173 ±  28 166 ±  41 P =  0.1473

Uric acid 8.7 ±  15.5 9.4 ±  11.0 8.5 ±  16.7 P =  0.1472

Mean arterial 
blood pressure 
(before cardiac 
catheterization)

96.4 ±  12.2 93.7 ±  11.3 97.2 ±  12.5 P =  0.3522

Mean arterial 
blood pressure 
(after cardiac 
catheterization)

92.5 ±  11.8 92.1 ±  9.6 92.6 ±  12.4 P =  0.8937

Hypertension 1(75)/0(9) 1(17)/0(2) 1(58)/0(7) P =  1

Diabetes mellitus 1(34)/0(50) 1(4)/0(15) 1(30)/0(35) P =  0.06447

High cholesterol 1(66)/0(18) 1(13)/0(6) 1(53)/0(12) P =  0.2228

Current smoker 1(49)/0(35) 1(10)/0(9) 1(39)/0(26) P =  0.6046

Heart failure 1(12)/0(72) 1(3)/0(16) 1(9)/0(56) P =  1

Peripheral arterial 
occlusive disease 1(2)/0(82) 1(0)/0(19) 1(2)/0(63) P =  1

Table 1.  Demographic data of the patients.
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Total patients (n = 84)

Revascularization treatment

Without 
revascularization 

treatment (n = 19)
With revascularization 

treatment (n = 65)

Serum neurotransmitter

 Dopamine 212.9 ±  220.8 148.96 ±  201.66 231.60 ±  224.09 P =  0.0470

 Orphanin-FQ 86.7 ±  75.8 77.51 ±  80.45 89.44 ±  74.77 P =  0.7003

 Serotonin 176.8 ±  140.8 153.76 ±  150.69 183.56 ±  138.26 P =  0.2049

EEG

 Alpha activity (pre-) 12.8 ±  6.1 13.3 ±  6.2 12.7 ±  6.2 P =  0.6629

 Alpha activity (post-) 14.8 ±  4.9 16.7 ±  2.7 14.2 ±  5.4 P =  0.2321

 Alpha activity (Difference-) 1.9 ±  5.5 3.4 ±  5.2 1.6 ±  5.5 P =  0.2870

ECG (Linear variable)

 meanNN (pre-) 910.5 ±  141.1 954.3  ±  127.6 897.7 ±  143.2 P =  0.0932

 meanNN (post-) 903.0 ±  147.2 942.1 ±  102.3 891.6 ±  156.8 P =  0.1290

 Log-meanNN (pre-) 6.8  ±  0.2 6.9 ±  0.1 6.8 ±  0.2 P =  0.0932

 Log-meanNN (post-) 6.7 ±  0.2 6.8 ±  0.1 6.8 ±  0.2 P =  0.1290

 sdNN (pre-) 97.1 ±  63.8 118.8 ±  69.8 90.8 ±  61.0 P =  0.0871

 sdNN (post-) 98.8 ±  66.8 115.1 ±  62.2 94.1 ±  67.8 P =  0.0708

 Log-sdNN (pre-) 4.4 ±  0.6 4.6 ±  0.7 4.3 ±  0.6 P =  0.0871

 Log-sdNN (post-) 4.4 ±  0.5 4.6 ±  0.5 4.3 ±  0.6 P =  0.0708

 pNN20 (pre-) 0.3885 ±  0.2393 0.4974 ±  0.2553 0.3567 ±  0.2267 P =  0.0262

 pNN20 (post-) 0.3829 ±  0.2550 0.5 ±  0.2 0.4 ±  0.3 P =  0.0708

 Log-pNN20 (pre-) − 1.19 ±  0.77 − 0.87 ±  0.68 − 1.27 ±  0.77 P =  0.0262

 Log-pNN20 (post-) − 1.30 ±  0.98 − 0.9 ±  0.6 − 1.4 ±  1.0 P =  0.0708

 pNN50 (pre-) 0.1619 ±  0.2271 0.2414 ±  0.2911 0.1387 ±  0.2016 P =  0.1111

 pNN50 (post-) 0.1689 ±  0.2286 0.2158 ±  0.2442 0.1552 ±  0.2239 P =  0.0912

 Log-pNN50 (pre-) − 2.78 ±  1.52 − 2.39 ±  1.83 − 2.89 ±  1.41 P =  0.1111

 Log-pNN50 (post-) − 2.71 ±  1.52 − 2.20 ±  1.29 − 2.86 ±  1.55 P =  0.0912

 rMMSD (pre-) 111.3 ±  99.9 136.4 ±  109.3 104.0 ±  96.7 P =  0.2755

 rMMSD (post-) 113.8 ±  103.6 126.5 ±  91.0 110.1 ±  107.4 P =  0.3359

 Log-rMMSD (pre-) 4.4 ±  0.8 4.6 ±  0.9 4.4 ±  0.7 P =  0.2755

 Log-rMMSD (post-) 4.4 ±  0.8 4.6 ±  0.8 4.4 ±  0.8 P =  0.3386

 LF (pre-) 2158.9 ±  6160.9 4465.3 ±  11862.0 1484.7 ±  2758.8 P =  0.2311

 LF (post-) 6704.0 ±  10244.4 11857.8 ±  15274.0 5197.5 ±  7765.2 P =  0.0517

 Log-LF (pre-) 6.4 ±  1.5 6.8 ±  1.8 6.3 ±  1.4 P =  0.2311

 Log-LF (post-) 8.0 ±  1.3 8.6 ±  1.4 7.8 ±  1.3 P =  0.0517

 HF (pre-) 4112.9 ±  15952.1 6344.1 ±  18366.6 3460.8 ±  15271.9 P =  0.4542

 HF (post-) 8774.7 ±  14684.1 13801.1 ±  20361.2 7305.4 ±  12383.2 P =  0.2755

 Log-HF (pre-) 6.5 ±  1.7 6.8 ±  2.1 6.4 ±  1.6 P =  0.4542

 Log-HF (post-) 8.0 ±  1.5 8.5 ±  1.6 7.9 ±  1.5 P =  0.2755

 LF/HF (pre-) 1.0 ±  0.5 1.1 ±  0.5 1.0 ±  0.5 P =  0.5212

 LF/HF (post-) 1.1 ±  0.6 1.3 ±  0.8 1.0 ±  0.5 P =  0.2616

 Log-LF/HF (pre-) − 0.1127 ±  0.5095 − 0.0133 ±  0.4433 − 0.1416 ±  0.5268 P =  0.5212

 Log-LF/HF (post-) − 0.0402 ±  0.5222 0.1148 ±  0.5398 − 0.0856 ±  0.5123 P =  0.2616

 meanNN (Difference-) − 7.4 ±  94.73 − 12.2 ±  62.4 − 6.1 ±  102.6 P =  0.7322

 Log-meanNN (Difference-) − 0.01 ±  0.10 − 0.01 ±  0.06 − 0.01 ±  0.11 P =  0.5782

 sdNN (Difference-) 1.73 ±  45.1 − 3.7 ±  59.9 3.3 ±  40.2 P =  0.7810

 Log-sdNN (Difference-) 0.011 ±  0.432 0.026 ±  0.474 0.008 ±  0.416 P =  0.9318

 pNN20 (Difference-) − 0.01 ±  0.17 − 0.021 ±  0.149 0.001 ±  0.181 P =  0.6767

Continued
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Total patients (n = 84)

Revascularization treatment

Without 
revascularization 

treatment (n = 19)
With revascularization 

treatment (n = 65)

 Log-pNN20 (Difference-) − 0.12 ±  0.63 − 0.03 ±  0.38 − 0.14 ±  0.69 P =  0.5212

 pNN50 (Difference-) 0.01 ±  0.16 − 0.02 ±  0.19 0.02 ±  0.15 P =  0.5782

 Log-pNN50 (Difference-) 0.07 ±  1.06 0.19 ±  1.14 0.03 ±  1.04 P =  0.3924

 rMMSD (Difference-) 2.4 ±  64.3 − 9.9 ±  91.0 6.1 ±  54.6 P =  0.6457

 Log-rMMSD (Difference-) 0.0036 ±  0.5814 0.0142 ±  0.6444 0.0005 ±  0.5671 P =  0.7322

 LF (Difference-) 4545.1 ±  11820.4 7392.5 ±  20403.7 3712.8 ±  7810.5 P =  0.0932

 Log-LF (Difference-) 1.6 ±  1.7 1.8 ±  1.9 1.5 ±  1.6 P =  0.2802

 HF (Difference-) 4661.7 ±  21113.67 7457.0 ±  28693.2 3844.7 ±  18535.9 P =  0.3253

 Log-HF (Difference-) 1.5 ±  1.8 1.7 ±  2.0 1.5 ±  1.7 P =  0.6380

 LF/HF (Difference-) 0.09 ±  0.52 0.21 ±  0.63 0.06 ±  0.48 P =  0.0891

 Log-LF/HF (Difference-) 0.07 ±  0.43 0.12 ±  0.45 0.06 ±  0.42 P =  0.1415

ECG (Nonlinear variable)

 Slopes 1–5 (pre-) 0.0029 ±  0.0713 − 0.0122 ±  0.0843 0.0073 ±  0.067 P =  0.4738

 Slopes 1–5 (post-) 0.0037 ±  0.0819 0.0253 ±  0.0970 − 0.0025 ±  0.0767 P =  0.2898

 Slopes 6–20 (pre-) 0.0049 ±  0.0166 − 0.0011 ±  0.0179 0.0067 ±  0.0159 P =  0.1136

 Slopes 6–20 (post-) 0.0096 ±  0.0173 0.0060 ±  0.0187 0.0106 ±  0.0169 P =  0.2947

 Area 1–5 (pre-) 4.07 ±  1.44 4.47 ±  1.72 3.95 ±  1.34 P =  0.3359

 Area 1–5 (post-) 3.94 ±  1.52 4.28 ±  1.89 3.84 ±  1.39 P =  0.2616

 Log_Area 1–5 (pre-) 3.1 ±  4.9 2.58 ±  3.43 3.3 ±  5.2 P =  0.4607

 Log_Area 1–5 (post-) 3.1 ±  5.1 2.8 ±  4.6 3.2 ±  5.2 P =  0.3749

 Area 6–20 (pre-) 14.7 ±  6.8 15.7 ±  6.5 14.4 ±  6.9 P =  0.4938

 Area 6–20 (post-) 14.9 ±  7.2 16.3 ±  7.8 14.5 ±  7.1 P =  0.1995

 Log_Area 6–20 (pre-) 2.8 ±  0.3 2.8 ±  0.3 2.7 ±  0.4 P =  0.7892

 Log_Area 6–20 (post-) 2.7 ±  0.4 2.8 ±  0.6 2.7 ±  0.4 P =  0.2149

 ∝ 1 (pre-) 0.75 ±  0.19 0.78 ±  0.21 0.74 ±  0.18 P =  0.5422

 ∝ 1 (post-) 0.78 ±  0.21 0.83 ±  0.22 0.76 ±  0.20 P =  0.2708

 Log_∝ 1 (pre-) − 0.32 ±  0.29 − 0.28 ±  0.29 − 0.33 ±  0.30 P =  0.5422

 Log_∝ 1 (post-) − 0.29 ±  0.32 − 0.21 ±  0.28 − 0.32 ±  0.33 P =  0.2708

 ∝ 2 (pre-) 0.78 ±  0.13 0.78 ±  0.14 0.77 ±  0.13 P =  0.6611

 ∝ 2 (post-) 0.75 ±  0.12 0.72 ±  0.13 0.75 ±  0.12 P =  0.2898

 Log_∝ 2 (pre-) − 0.27 ±  0.16 − 0.26 ±  0.18 − 0.27 ±  0.16 P =  0.6611

 Log_∝ 2 (post-) − 0.31 ±  0.17 − 0.34 ±  0.17 0.29 ±  0.17 P =  0.2898

 Slopes 1–5 (Difference-) 0.0008 ±  0.0776 0.0375 ±  0.0878 − 0.0098 ±  0.0716 P =  0.0833

 Slopes 6–20 (Difference-) 0.0046 ±  0.0168 0.0072 ±  0.0171 0.0038 ±  0.0168 P =  0.6611

 Areas 1–5 (Difference-) − 0.13 ±  1.25 − 0.19 ±  1.13 − 0.11 ±  1.29 P =  0.8979

 Log_Areas 1–5 (Difference-) − 0.0044 ±  1.2235 0.2118 ±  1.4369 − 0.0676 ±  1.1587 P =  0.6845

 Areas 6–20 (Difference-) 0.2 ±  4.7 0.6 ±  4.2 0.1 ±  4.9 P =  0.8223

 Log_Areas 6–20 (Difference-) − 0.01 ±  0.41 − 0.008 ±  0.418 − 0.009 ±  0.414 P =  0.6304

 ∝ 1 (Difference-) 0.02 ±  0.17 0.05 ±  0.14 0.02 ±  0.18 P =  0.2997

 Log-∝ 1 (Difference-) 0.03 ±  0.25 0.071 ±  0.175 0.013 ±  0.263 P =  0.3253

 ∝ 2 (Difference-) − 0.03 ±  0.13 − 0.06 ±  0.13 − 0.02 ±  0.13 P =  0.2482

 Log- ∝ 2 (Difference-) − 0.04 ±  0.18 10.074 ±  0.175 − 0.030 ±  0.179 P =  0.3306

Table 2.  Effect of the revascularization treatment on the autonomic activities, brain waves and serum 
neurotransmitter.
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difference-meanNN were the three main predictive factors used to recognize relaxing states on the 
basis of difference-alpha activity. Moreover, the pre-test alpha activity could influence the occurrence 
of difference-alpha activity because of its direct effect on the difference-meanNN and its indirect effect 
on pre-meanNN. Furthermore, the age, pre-log-Slopes 1–5, and pre-Slopes 1–5 were minor predictive 
factors for the difference-alpha activity. The results of the six regression parameters shed light on the 
mechanism of the major predictive factors of the difference-alpha activity, and the multiple R-squared 
value was 0.6509. This proposed method achieved an overall accuracy of 80.7% in recognizing changes 
in the EEG alpha waves.

Change-score analysis using generalized additive models. The GAMs were used to detect the 
nonlinear effects of continuous covariates and identify appropriate cutoff points for discretizing a con-
tinuous covariate. GAMs enable the direct observation of the partial effect of a continuous covariance; 
therefore, the cutoff points can be easily selected. Supplementary Table S3 shows the continuous ECG 
parameters that were analyzed using the GAMs. The GAM of all patients is shown in supplementary 
Figs S1 to S19.

After stepwise variable selection, five GAM variables were included in the change-score analysis, 
and the multiple R-squared value increased to 0.7485, as shown in Table 4. The pre-alpha activity and 
difference-meanNN were the predominant predictive factors of difference-alpha activity. Furthermore, 
the difference-meanNN, difference-the ratio of LF over HF and GAM’s HF were minor x values for 
difference-alpha activity. The proposed method achieved an overall accuracy of 86.5% in recognizing 
changes in EEG alpha waves.

Figure 1. Overview of the experimental design for signal processing and statistical analysis. (a,b) 
Conventional HRV metrics were calculated in the time and frequency domains. (c) STFT is a type of 
spectral analysis with a fixed-width window and yields an instantaneous estimate of the time-varying energy. 
(d) Clinical information on the control and coronary artery disease (CAD) patients. (e) The continuous ECG 
and EEG parameters were analyzed using Spearman’s rank correlation to remove confounding variables. (f,g) 
Statistical analyses were performed using the stepwise variable selection method, change-score analysis, and 
GAMs.

Parameter

Total patients (N = 84)

Estimate Std. Error t value p-value

(Intercept) 3.2361 3.0405 1.064 p =  0.2905

meanNN (Pre-) 0.0124 0.0029 4.350 p <  0.0001

Slope1_5 (Pre-) − 12.6317 5.4399 − 2.322 p =  0.0229

Log_Area 1_5 (Pre-) 0.1948 0.0760 2.562 p =  0.0124

Alpha_activity (Pre-) − 0.5329 0.0611 − 8.717 p <  0.0001

meanNN (Difference) 0.0201 0.0043 4.688 p <  0.0001

Age − 0.0963 0.0329 − 2.931 p =  0.0045

Table 3.  Multiple regression analysis of the difference-alpha activity. Residual standard error: 3.3572 on 
77 degrees of freedom. Multiple R-squared: 0.6509, Adjusted R-squared: 0.6237. F-statistic: 23.9266 on 6 and 
77 DF, p-value <  0.0001.
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Change-score analysis using generalized additive models without electroencephalography 
data obtained before stress (cardiac catheterization). This model was developed for weara-
ble sensor nodes that, based on change-score analysis, identified linear and nonlinear indices of HRV, 
hypertension, and neurotransmitter levels without considering the electroencephalography data obtained 
before stress. As shown in Table  5, 12 multiple regression parameters were evaluated. Slopes 1–5 were 
the main predictive factors of the difference-alpha activity. In contrast to the change-score analysis and 
the change-score analysis using GAMs, nonlinear analyses are useful for predicting the difference-alpha 
activity. Furthermore, the difference-meanNN and difference-the ratio of LF over HF were minor predic-
tive factors for the difference-alpha activity. In addition, the serum neurotransmitter levels, hypertension, 
and serotonin were included in the model. After stepwise variable selection, the multiple R-squared value 
was 0.4988. The proposed method achieved an overall accuracy of 70.6% in recognizing changes in EEG 
alpha waves. Although the prediction accuracy was relatively low, continuous EEG parameters need not 
be considered. Hence, HRV analyses are sufficient for assessing the autonomic function.

Parameter

Total patients (N =  84)

Estimate Std. Error t value p-value

(Intercept) 0.9668 2.7122 0.356 p =  0.7225

meanNN (Pre-) 0.0104 0.0026 3.992 p =  0.0002

Slope1_5 (Pre-) − 15.7228 4.9149 − 3.199 p =  0.0021

Alpha_activity (Pre-) − 0.5704 0.0555 − 10.278 p<  0.0001

meanNN (Difference) 0.0219 0.0039 5.597 p<  0.0001

LF_HF (Difference) − 2.8915 0.7175 − 4.030 p =  0.0001

0.017 ≤ pNN50(Pre-) ≤ 0.176 1.9557 0.6820 2.867 p =  0.0054

1.229 ≤ LF/HF (Pre-) ≤ 1.98 1.9867 0.8599 2.310 p =  0.0237

2.183 ≤ Log -Area(Pre-) ≤ 2.895 2.0038 0.7134 2.809 p =  0.0064

− 0.164 ≤ pNN20 (Difference) ≤ 0.007 1.5934 0.6858 2.323 p =  0.0230

HF (Difference) ≤ 376.933 and HF 
(Difference) ≥ 25327.388 2.5186 0.6999 3.598 p =  0.0006

Age − 0.0776 0.0309 − 2.506 p =  0.0145

Table 4.  Multiple regression analysis of the difference-alpha activity using GAMs. Residual standard 
error: 2.9466 on 72 degrees of freedom. Multiple R-squared: 0.7485, Adjusted R-squared: 0.7101. F-statistic: 
19.4842 on 11 and 72 DF, p-value: 0.

Parameter

Total patients (N = 84)

Estimate Std. Error t value p-value

(Intercept) − 7.3293 3.5819 − 2.046 p =  0.0444

meanNN (Pre-) 0.0091 0.0037 2.449 p =  0.0170

sdNN (Pre-) 0.0369 0.0168 2.193 p =  0.0326

pNN20 (Pre-) − 9.8173 4.4838 − 2.190 p =  0.0320

Slope1_5 (Pre-) − 36.8229 9.0475 − 4.070 p =  0.0001

meanNN (Difference) 0.0176 0.0057 3.102 p =  0.0028

LF/HF (Difference) − 2.7241 0.9346 − 2.915 p =  0.0048

3.81 ≤ Log_rMSSD (Pre-) ≤ 5.348 2.6421 1.0521 2.511 p =  0.0143

1.229 ≤ LF/HF (Pre-) ≤ 1.98 2.6666 1.2603 2.116 p =  0.0379

Log_Area 1~5 (Pre-) ≤ 1.007 − 4.2005 1.7325 − 2.425 p =  0.0179

HF (Difference) ≤ 376.933 and HF 
(Difference) ≥ 25327.388 2.7330 1.08173 2.526 p =  0.0138

Hypertension − 3.5953 1.3556 − 2.652 p =  0.0099

Log-Serotonin 0.5052 0.2083 2.426 p =  0.0178

Table 5.  Change-score analysis performed using GAMs without considering the pre-alpha activity. 
Residual standard error: 4.1893 on 71 degrees of freedom. Multiple R-squared: 0.4988, Adjusted R-squared: 
0.414. F-statistic: 5.8875 on 12 and 71 DF, p-value: 0.
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Discussion
In movement control, the brain commands the motor system to produce the desired movements. The 
brain appears to control the motor system, but the afferent input from the motor system may strengthen 
or weaken the synaptic connections, thereby reorganizing the brain and leading to functional and struc-
tural changes in the brain. We posited that the brain interacts similarly with the heart. In our previous 
study17, we demonstrated that there are correlations between the signal complexity of cardiac and cere-
bral activities. In the present study, we used cardiac catheterization as a stress event to evaluate the pre-
dictive power of post-stress brain activity by considering the ECG complexity parameters. As mentioned 
previously, EEG alpha waves represent a relaxing index28. Therefore, we developed three methods, which 
primarily involve ECG and EEG parameters, for assessing the human relaxing state after stress.

A numerical study of estimating the human relaxing state was developed in the literature4. The present 
method requires purely parametric values, and the human relaxing state can be calculated dynamically. 
This method mainly requires HRV metrics and the instantaneous power spectrum of EEG during the 
estimated relaxing states. Because this method was further incorporated with clinical data, such as the 
personal profile, diagnosis or serum neurotransmitter, it should be able to accurately characterize the 
relaxation response.

Two nonlinear methods, MSE and DFA, were used to quantify the heartbeat complexity and varia-
bility of heartbeat time series to provide information about the autonomic function. Because the con-
nection between brain and cardiac activity has been demonstrated to be highly complex, HRV is a 
conventional metric for the pathophysiology and psychopathology29. Although conventional HRV met-
rics are reliable for predicting human relaxing states, the prediction accuracy is limited in the presence 
of frequent arrhythmias30. In this study, MSE and DFA were used to derive nonstationary and nonlin-
ear dynamic changes from the heart rate time series17,31,32. The short-fitted slope (Slopes 1–5) of the 
curve obtained using MSE was considered when the change-score analysis was used in the change-score 
analysis. Moreover, when we used generalized additive models to increase the prediction accuracy, the 
short-fitted area (Areas 1–5) and long-fitted area (Areas 6–20) were used. Compared with conventional 
linear HRV indices, the nonlinear indices of the employed method had higher prediction ability for 
cardiac catheterization.

Previous studies have indicated that alpha activity reflects the selective cortical inhibition that is 
involved in global neural integration33,34. This feature of alpha activity has received considerable attention 
in cognitive neuroscience. The cognitive literature suggests that alpha activity is potentially involved in 
various other physiological processes, such as relaxing, or in specific regions of the brain35. Therefore, we 
hypothesized that alpha power is correlated with the relaxing state because the effect of neural inhibi-
tion could change emotions according to the physiological and pathological states. Therefore, short-time 
Fourier transform was used to quantify the spectral power of alpha activity from a 4-min time series 
of alpha activity. Our results showed that when the post EEG alpha waves were considered in the 
change-score analysis, the predictive accuracy increased from 70.6% to 80.7%.

Although we employed change-score analysis to estimate the human relaxing state after stress, numer-
ous nonlinear HRV metrics (listed in Supplementary Table 3) were not considered. Consequently, the 
generalized additive models were fit to detect the nonlinear effects of continuous covariates36. In this 
study, generalized additive models were used to visualize the relationship of nonlinear HRV metrics 
with the difference between the pre- and posttest alpha wave responses. On the basis of graphical visu-
alization, nonlinear HRV metrics can be used to identify the appropriate cutoff points for discretizing a 
continuous covariate (see Supplementary Fig. S1–S19). Our results for the ratio between the LF and HF 
and for the HF were considered in the prediction methods after fitting the generalized additive models. 
A comparison between the proposed prediction model and the proposed prediction model, without the 
generalized additive models, showed that the time-domain HRV metrics were the only parameters that 
could be considered to predict human relaxing states.

In this study, an innovative aspect of the method is the use of HRV and EEG to fit the regression 
model and the observed data for effect estimation and outcome prediction. Three methods were used 
for assessing the difference between the pre- and post-test alpha wave response. A change-score anal-
ysis model identified six mathematical parameters in the HRV and EEG that may facilitate predicting 
post-stress alpha waves. Conventional linear HRV analysis involves two metrics, the meanNN (pre-) and 
meanNN (difference), which provide positive and considerably low estimates. In addition, MSE analysis 
involves two metrics, Slopes 1–5 (pre-) and Log-areas 1–5 (pre-). Among the clinical parameters, only 
age was associated with high predictability. Furthermore, the change-score analysis model using GAMs 
identified 11 regression metrics, and five GAM variables were included in the predictive model. All GAM 
estimated values of the HRV analysis were positive at specific cutoff points. In addition, five predictive 
parameters that had been identified in previous studies were retained. Considering the practical applica-
tion on wearable sensor nodes11, the EEG data obtained before stress (cardiac catheterization) were not 
used in the change-score analysis. Five regression metrics are used in conventional linear HRV analysis. 
In the present study, sdNN(pre-), pNN20 (pre-), and LF/HF (difference) were new metrics that were 
added to the predictive model. The variables associated with clinical parameters included hypertension. 
An estimated value of serotonin was, for the first time, considered personalized in change-score analy-
sis. Drugs that alter the serotonin levels are used to treat depression and generalized anxiety disorder. 
Therefore, it is reasonable for serotonin to be included in this model. This model shows that when we 
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did not include the prestress alpha activity, the difference between the pre- and posttest alpha wave 
responses require more parameters to estimate the relaxing states. Of note, three predictable models 
did not include the treatment category of clinical data, which means that our proposed method can be 
applied to healthy subjects.

This study had numerous limitations. First, there was no control group in the entire relaxing condi-
tion, such in a home setting. All study subjects were patients with a relative anxiety status. Therefore, 
another study is needed to investigate the relationship between the brain and heart in subjects with a 
relaxing condition. Second, all ECG and EEG data were recorded in normal “free running” conditions, 
which implied the possible existence of interfering factors (e.g., physical activities and different relaxing 
states). Third, the database was based on data collected for a period of 1 h. Hence, dynamic noise or 
nonstationary artifacts might have affected the signal properties. Although the segments of ECC and 
EEG were detrended using a deterministic nonlinear method (empirical mode decomposition) discussed 
in previous studies37, we did not assess the noise features or noise level to obtain more detailed informa-
tion. Finally, some parameters related to the inhibitory characteristics reflected by EEG, such as cortical 
inhibitory mechanisms, were not considered in this study38. Therefore, it is necessary to develop a specific 
mathematical algorithm for quantifying global neural integration.

In conclusion, the method of predictive analysis demonstrates the potential of the interrelations 
between heartbeat and neural communication networks by using an accurate quantification equation 
involving change-score analysis, which is lacking in most previous studies. Accordingly, to increase the 
probabilistic accuracy, we developed a method to test our hypothesis. In this method, although conven-
tional HRV analysis enables the quantification of a heartbeat, nonlinear methods provide additional infor-
mation about the heartbeat complexity and fractal correlation. The proposed method achieved an overall 
accuracy of 80.7 and 86.5% in recognizing alpha-wave changes after stress basis on the change-score 
analysis and GAMs, respectively. Therefore, the complexity of cardiac electrical signals could be used to 
predict changes in the EEG alpha waves after stress.

Methods
The ethics committee on human research of National Taiwan University Hospital (NTUH) approved 
the study (IRB-201206070RIC). All participants or their surrogates gave written informed consent. The 
investigation conformed to the principles of the Declaration of Helsinki.

Data collection. Patients with angina and positive stress tests who had undergone cardiac catheter-
ization uneventfully were enrolled in this study from August 2012 to May 2014. One day before and 
immediately after cardiac catheterization, these patients underwent 1-hour EEG (Neuron-Spectrum-3, 
Neurosoft Company; Digital Neurophysiological Systems, Russia) monitoring with a sampling rate of 
512 Hz and resolution of 16 bits. Continuous ECG recordings were extracted from the resting awake EEG 
for each patient. The RR interval (RRI) of ECG was determined using an automated detection algorithm, 
and the annotated file was carefully inspected and corrected for the extraction of the RRIs. Surface EEG 
was conducted using 19 electrodes of the international standard 10–20 system (FP2, F3, F4, FZ, C3, C4, 
CZ, P3, P4, PZ, O1, O2, F7, F8, T3, T4, T5, and T6). All patient data, including artifacts, such as eye 
movements, blinks, and muscle activities, were saved in text files for offline analysis on a laptop, and 
4-min segments of the time-series were chosen from each file. Medical history, including demography 
and medication, was carefully recorded. Blood was sampled during cardiac catheterization.

Time- and frequency-based analysis. Conventional HRV metrics were calculated in the time and 
frequency domains according to the guidelines developed by the Task Force of the European Society of 
Cardiology12.

The patients were diagnosed using metrics in the time and frequency domains. The time domain 
metrics were as follows: the mean value of RRI time series (meanNN), standard deviation of the RRI 
time series (sdNN), root mean square of the differences between successive RRIs (rMSSD), percent-
age of absolute differences greater than 20 ms in normal RRIs (pNN20), and percentage of absolute 
differences greater than 50 ms in normal RRIs (pNN50). The frequency domain metrics were as fol-
lows: high-frequency component (HF, 0.15–0.4 Hz), low-frequency component (LF, 0.04–0.15 Hz), and 
the ratio between the low-frequency and high-frequency components (LF/HF), which were computed 
according to the average power spectrum.

Multiscale entropy analysis. MSE analysis can be used to estimate the complex pattern of a time 
series and evaluate the complexity of physiological signals on multiple time scales21.

The MSE analysis method consists of two main steps: coarse-graining of the signals into different 
time scales and quantifying the degree of irregularity in each coarse-grained time series using sample 
entropy (SpEn)39. Coarse-graining yields a one-dimensional discrete time series {{x1,…, xi,…, xN}. In 
addition, the consecutive coarse-grained time series, {yτ}, which corresponds to the scale factor τ, can 
be constructed. To construct a coarse-grained series, the original time series should first be divided into 
N/τ nonoverlapping windows of length τ. Subsequently, the data points within each window should be 
averaged. Generally, each element of the coarse-grained series is calculated as follows:



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:13315 | DOi: 10.1038/srep13315

∑τ
τ= , ≤ ≤ /

( )
τ

τ

τ
( )

=( − ) +

y x j N1 1
1j

i j

j

i
1 1

With a scale factor of one, which corresponds to τ =  1, the coarse-grained series ( )yj
1  is exactly the same 

as the original one.
In addition, the MSE curve can be divided into long- and short-term curves. The different complex-

ities of the scales can be useful for clinical categorization and can be divided into four types of param-
eters: (a) when only slope is considered, the first 5 scales are defined as the short-fitted slope (Slopes 
1–5), and the final 15 scales are defined as the long-fitted slope (Slopes 6–20); and (b) when only the 
area is considered, the first 5 scales are defined as a short-fitted area (Areas 1–5), and the final 15 scales 
are defined as a long-fitted area (Areas 6–20). Although MSE analysis has been applied to physiological 
signals, the entropy values are sensitive to very-low-frequency noise and nonstationary artifacts, espe-
cially trends. Accordingly, the de-trending process should be performed prior to MSE analysis37. In the 
present study, the ensemble empirical mode decomposition method was adopted to remove the trend 
of the RRI signals.

Detrended fluctuation analysis. DFA can be used to quantify nonstationary and nonlinear dynamic 
changes in the heart rate time series. Recently, DFA has been widely used to analyze cardiac problems 
by inputting patients’ RRI signals40. To calculate the scaling exponents in DFA, a given time series x(i), 
1 ≤  i ≤  N, which should first be integrated as follows:
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where xave is the mean of time series x(i). Subsequently, the integrated time series is divided into boxes of 
equal length n. Each box contains a least square line for fitting the divided time series, and the time series 
can be detrended by subtracting the local trend. The root-mean-square fluctuation of the integrated time 
series can be obtained as follows:
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where the average fluctuations F(n) are represented as a function of the box size. The average fluctuations 
of the data sets indicate whether the crossover phenomenon exists between short- and long-term scales.

The short-term (< 11 beats, alpha_1) and long-term (> 11 beats, alpha_2) fractal correlation expo-
nents were calculated to obtain a clearer understanding of the fractal correlation property of the biolog-
ical system23. In addition, the heartbeat dynamics were characterized by a scaling exponent ∝ , and the 
slope of the linear relationship was estimated according to the log-log plot of fluctuations versus box 
sizes.

Electroencephalography analysis using short-time Fourier Transform. In STFT, a short time 
window is applied to biomedical signals41,42 and a series of Fourier transforms are performed within 
this window as the window slides across all data; STFT provides a time-frequency representation of 
the biomedical signal (Fig. 2). STFT can provide an instantaneous estimate of the time-varying energy 
because the Fourier transform can be adapted for analyzing a localized signal. Mathematically, STFT is 
defined as follows:

∫τ τ τ( ) ( , ) = ( , ) = ( ) ( − ) ( )
π

−∞

∞
(− )STFT x t f STFT f x t w t e df{ } 4x

j ft2

Figure 2. STFT along with a spectrogram and fixed window size can be used for localizing signals. w(t) 
and x(t) denote the window and EEG signal, respectively, and the EEG signals are expressed in the time–
frequency domain.
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where w(t) is a symmetric window function and x(t) is the signal to be transformed. STFTx(τ, f) uses 
a complex exponential basis function as the basis. The squared magnitude of STFT is referred to as a 
spectrogram:

τ τ( ) ( , ) = ( , ) ( )Spectrogram x t f STFT f{ } 5x
2

where τ is discrete and f is continuous.
All analyses were performed using MATLAB (The MathWorks, Natick, MA, USA). The data were 

low-pass filtered with a cutoff frequency of 55 Hz to remove power line noise, and the power changes in 
the EEG following movement execution were estimated for all patients using a fast Fourier transform 
with windows of 1024 samples, a Hanning window with a width of 0.5 s, and a 70% overlap until all the 
EEG signals were analyzed.

The objective of using STFT is to assess the relaxing state of a subject exclusively through EEG analysis. 
Hence, the alpha activity is an essential metric for assessing relaxed wakefulness when visual processes 
are engaged by opening the eyes43. In the present study, we calculated only the alpha-activity-ratio related 
EEG signals using time–frequency analysis. The alpha-activity-ratio (AAR) obtained through EEG was 
investigated by comparing the alpha band (8–12 Hz) to the full-band EEG (1–55 Hz). Mathematically, 
the AAR is defined as follows:

( )( ) ( )∑ ∑ ∑= , , ( )= = =
AAR

N
E t f E t f1

6k
N

i k i i k i1 8
13

1
55

where E(tk, fi) is the spectrum of the i-th bin in STFT, tk denotes the time indices, and N is the total time 
length. On the basis of the obtained AARs, a significant level (AARth) can be identified to quantify the 
intensity of the alpha waves.

In this study, we proposed a framework for calculating significant changes in the average time–fre-
quency power density. This method consists of the following steps: (a) calculating the time–frequency 
power density, (b) dividing the time–frequency plane in which the alpha wave power density is calcu-
lated, (c) selecting a threshold for all channels, and (d) determining the energy change at the significant 
level for all channels. The process flow block diagram is presented in Fig. 3.

Serum neurotransmitter measurement. The levels of serum neurotransmitters, including orpha-
nin FQ, dopamine, and serotonin, were measured. The orphanin FQ level was measured using an ELISA 
Kit (MyBioSource, San Diego, CA, USA), the serotonin level was measured using a serotonin ELISA Kit 
(Abcam, Cambridge, United Kingdom), and the dopamine level was measured using high-performance 
liquid chromatography.

Statistical analysis. Statistical analysis was performed using the R 3.1.1 software (R Foundation for 
Statistical Computing, Vienna, Austria). A two-sided p value less than 0.05 was considered statistically 
significant. Data were expressed as the mean ±  standard deviation. Differences in the serum neurotrans-
mitter levels between the groups of patients were assessed using the Mann-Whitney U Test. Continuous 

Figure 3. Functional alpha activity computation flowchart. (a) The input EEG signals were obtained 
from 19 electrodes of the international standard 10–20 systems. (b) The data were passed through a low-
pass filter (LPF) with a cutoff frequency of 55 Hz. (c) STFT is presented as a spectrogram. (d) The AAR 
was investigated by comparing the alpha band (8–12 Hz) with the full-band EEG (1–55 Hz). (e,f) AARth is a 
threshold and (g,h) denotes the energy change at a significant level for all channels.
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data were assessed using the Mann-Whitney U Test, and categorical data were assessed using Fisher’s 
exact test. The statistical analysis consisted of Spearman’s rank correlation, a stepwise variable selection 
method, and change-score analysis.

The objective of conducting a regression analysis of the change scores (i.e., the difference between 
the pre- and posttest response) was to determine one or a few parsimonious regression models that fit 
the observed data well for effect estimation and outcome prediction. To ensure that the analysis quality 
was high, basic model-fitting techniques for variable selection, change-score analysis of pre- and posttest 
data, and regression diagnostics and remedies (e.g., ensuring that multicollinearity was not present and 
detecting influential cases) were applied. Before model fitting, the continuous ECG and EEG parameters 
were analyzed using Spearman’s rank correlation to remove confounding variables. The significance level 
for the confounding effects was set to be greater than 0.8.

The stepwise variable selection procedure (with iterations between the forward and backward steps) 
was used to identify the optimal candidate final regression model. All relevant univariate significant 
and nonsignificant covariates (listed in Tables 1 and 2) and some of their interactions were included in 
the variable list to be selected. The significance level for entry and stay was conservatively set to 0.15. 
Subsequently, the optimal candidate final regression model was manually identified by dropping the 
covariates with p values greater than 0.05, one at a time, until all regression coefficients were significantly 
different from zero.

The change-score analysis was used for changing subject i by Δ Yi =  Yi1 −  Yi0, where Yi0 and Yi1 are 
the measured continuous pre- and posttest response variables, respectively44. Furthermore, the regression 
analysis of the mean change between two groups can be defined as follows:

∆ = − = ∝ + ∝ + ∝ + (∝ + + ∝ ) + ( ), −

⁎Y Y Y Grou p Y X X 7i i i i i i k i k i1 0 0 1 2 0 3 1 2

where Group =  0 denotes the control group and Group =  1 denotes the treatment group; mathematically, 
∝ − = ∝⁎12 2. Xi1, Xi2, ..., Xik are the other covariates that can affect the mean of the continuous response 
variable and i is the random error. As a general rule, when Δ Yi =  Yi1 −  Yi0 is specified as the response 
variable, the baseline response Yi0 must be introduced on the right-hand side of the regression 
equation.

The R2 statistic (0 ≤  R2 ≤  1) for a linear regression model represents the correlation between the 
observed and predicted response values and indicates how much of the response variability is explained 
by the covariates in the linear regression model.

Finally, generalized additive models (GAMs)45 were used to increase the prediction accuracy. The 
GAMs were fit to detect the nonlinear effects of continuous covariates and identify appropriate cutoff 
points for discretizing a continuous covariate. Thus, we obtained unbiased estimates of the covariates’ 
effects and more accurate response predictions.
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