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Abstract: Linear regression with short source-detector separation channels 
(S-channels) as references is an efficient way to overcome significant 
physiological interference from the superficial layer for functional near-
infrared spectroscopy (fNIRS). However, the co-located configuration of S-
channels and long source-detector separation channels (L-channels) is 
difficult to achieve in practice. In this study, we recorded superficial 
interference with S-channels in multiple scalp regions. We found that 
superficial interference has overall frequency-specific and globally 
symmetrical patterns. The performance of linear regression is also 
dependent on these patterns, indicating the possibility of simplifying the S-
channel configurations for multiregional fNIRS imaging. 
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1. Introduction 

Functional near-infrared spectroscopy (fNIRS) is an emerging and promising brain imaging 
technique. It has become an important complement to functional Magnetic Resonance 
Imaging (fMRI) for measuring hemodynamic brain activities with several unique advantages: 
First, fNIRS is low-cost, salient and portable, making it possible for long-term monitoring and 
repeated measurements of brain activities in various situations [1–3]. Such properties also 
make fNIRS suitable for the pediatric population and patients who cannot be scanned in fMRI 
[4, 5]. Second, the compatibility of fNIRS with other electrical or magnetic systems, such as 
electroencephalography (EEG) [5, 6], favors multi-modal imaging of brain activities that is 
important for investigating the brain at multiple spatial and temporal scales simultaneously. 
Finally, fNIRS measures changes in oxygenated hemoglobin (HbO) and deoxygenated 
hemoglobin (HbR), delivering additional information concerning the cerebral metabolic state 
compared to the blood-oxygen-level dependent (BOLD) signal in fMRI [7, 8]. 

In fNIRS imaging, the near-infrared light is emitted by a source that is placed on the scalp. 
The light travels through the superficial layer (that is, the scalp and skull), then reaches the 
cortical tissues, and finally returns to a detector that is on the same side of the scalp. 
Therefore, the measured signal is sensitive not only to the hemodynamic activities in the 
brain, but also to the vascular fluctuations in the superficial layer. The latter mainly refers to a 
number of systemic physiological fluctuations arising from the cardiac pulsations (around 1 to 
2 Hz), respiration (around 0.2 to 0.4 Hz), Mayer waves (around 0.1 Hz), and other very low-
frequency fluctuations (0.01 to 0.05 Hz) [9]. These physiological fluctuations may induce 
significant interference to the desired signal from the cerebral tissues in both the resting state 
[10–13] and the task-evoked state [14–16]. Thus, the reduction of superficial interference is 
one of the main challenges in fNIRS. 

Linear regression of superficial interference is an effective method to address this issue 
[17]. In addition to long source-detector separation channels (L-channels where source-
detector separation is about 3 to 4 cm) that are sensitive to both the superficial layer and the 
brain, some short source-detector separation channels (S-channels where source-detector 
separation is about 0.5 to 1.5 cm) can be used to measure the physiological fluctuations 
within the superficial layer only [12, 18, 19]. By assuming that superficial interference 
measured by the S-channels is homogeneous to the corresponding components in the L-
channels [20], the components of superficial interference in the L-channels can be regressed 
out by using the S-channel as a reference. 

Although the effectiveness of this S-channel-based regression method has been proved 
empirically [12, 21–23], how to arrange the S-channels along with the L-channels is still 
debatable. Early studies conducting S-channel-based regression relied on the assumption that 
superficial interference is globally homogenous across the scalp. Single or a few S-channels 
were used for all L-channels [17, 21, 22]. This assumption was justified by some indirect 
evidence. For example, by correlating the fNIRS signals from several L-channels with the 
peripheral physiological signals measured by auxiliary devices, Franceschini et al. found that 
the L-channel fNIRS signals over the head were coherent with the peripheral physiological 
fluctuations [24]. A few studies using principle component analysis (PCA) [25] or 
independent component analysis (ICA) [26] also found that the physiological components 
derived from L-channel measurements were globally distributed. However, these studies were 
not focused on the physiological fluctuations in the superficial layer. In fact, the physiological 
components in the L-channel signals in the above studies originated from both the superficial 
layer and the brain. 

On the other hand, a few studies have suggested that superficial interference is spatially 
inhomogeneous across the scalp. Gagnon and his associates [27] reported that, the correlation 
between S- and L-channels and the denoising performance of S-channel-based regression 
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decreased as the relative distance between the S-channels and L-channels increased in the left 
motor cortex. They suggested that the relative distance between L-channel and its 
corresponding S-channel should be less than 1.5 cm. In a later study, they further suggested 
that ideally two S-channels should be used for one L-channel, one at the source optode and 
the other at the detector optode of the L-channel [28]. A study by Kirilina et al. [29] showed 
that task-evoked systemic artifacts in the forehead were not homogeneously distributed, but 
were rather localized in the scalp draining veins. Furthermore, based on Monte Carlo 
simulations, Erdogan et al. reported that the de-noising performance of linear regression was 
greatest when using both the global signals and the local S-channel signals as regressors for 
L-channel signals in the forehead, implying that superficial interference is spatially 
inhomogeneous at that location. Therefore, they concluded that maximizing the overlap 
between the S- and L-channels is of great importance [30]. However, these pioneering studies 
were conducted within a limited area (the left motor cortex or the forehead). To the best of 
our knowledge, it is still unknown whether the spatial inhomogeneity of superficial 
interference affects the entire human head 

In recent years, multiregional fNIRS imaging has become increasingly popular to map 
distributed brain function and networks [31]. However, the application of S-channel-based 
regression in multiregional fNIRS imaging has been hindered due to currently limited 
knowledge on the spatial similarity of superficial interference. The aim of the present study 
was to explore the spatial similarity of superficial interference at multiple scalp regions over 
the head using data acquired in a resting state and to get preliminary suggestions for 
configuring S-channels in multiregional fNIRS studies. Given that superficial interference has 
several physiological origins, that feature was also characterized in four frequency bands that 
are related to the cardiac pulsations, respiration, Mayer waves and very low-frequency 
fluctuations. Then, S-channel-based regression on data acquired during a motor task was 
conducted to prove the usefulness of the identified spatial similarity of superficial interference 
in configuring the S-channels for multiregional fNIRS imaging. 

2. Materials and methods 

2.1 Subjects 

Thirteen healthy adults were recruited for two separate experiments. Informed consents were 
obtained before the experiments according to the procedure approved by the Institutional 
Review Board at the State Key Laboratory of Cognitive Neuroscience and Learning, Beijing 
Normal University. 

2.2 Experiments 

In the first experiment, superficial interference was measured in the resting state using 
multiple S-channels to investigate spatial similarity across different scalp regions. The 
configuration of fNIRS probe is shown in Fig. 1(A). It consisted of 8 sources and 24 
detectors. The resultant 24 S-channels (source-detector separation was 1.5 cm) were located 
in four scalp regions that were symmetrical between the two cerebral hemispheres: the 
anterior, middle, lateral and posterior regions. According to the international 10–20 system 
[32], the S-channels in the anterior region were along the Fp1–Fp2 line, the S-channels in the 
middle and lateral regions were along the T3–C3–C4–T4 line, and the S-channels in the 
posterior region were along the O1–O2 line. 

Eight subjects (6 males and 2 females, age = 25.9 ± 4.1 years, all right-handed) 
participated in the first experiment. The subjects were instructed to sit still for 15 minutes 
during data collection with eyes closed and body relaxed. 
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Fig. 1. Geometry of fNIRS probe and types of S-channel pairs in the first experiment: (A) 
Schematic arrangement of the sources, detectors and channels in the probe to record superficial 
interference at multiple regions over the head; (B) Illustration of the local-level S-channel 
pairs. (C) Illustration of the three types of global-level S-channel pairs: symmetrical pairs (syS-
ch), ipsilateral pairs (ipS-ch), and contralateral-asymmetrical pairs (caS-ch). 

In the second experiment, brain activities during a resting state followed by a motor task 
session were measured with L-channels on the bilateral sensorimotor cortices and S-channels 
spread over the bilateral anterior, middle and posterior regions of the head. The fNIRS probe 
consisted of 10 sources and 24 detectors as shown in Fig. 2(A). According to the international 
10–20 system [32], the 20 L-channels (source-detector separation was 3 cm or 3.35 cm) were 
positioned around C3 and C4, respectively. These L-channels mainly covered the bilateral 
sensorimotor cortices. The four S-channels in the middle region were placed symmetrically 
around C3 and C4, too. The four S-channels in the anterior region were placed along the Fp1–
Fp2 line, and the four S-channels in the posterior region were placed along the O1–O2 line. 

 

Fig. 2. Geometry of fNIRS probe and types of S-channels (S-ch) in the second experiment. All 
the L-channels were located around the bilateral sensorimotor cortices. Using one L-channel 
(thick red line) as an example, all S-channels could be categorized into four types according to 
their locations: local S-channels (orange, in the same sensorimotor region as the selected L-
channel), symmetrical-middle S-channels (black, in the sensorimotor region symmetrical to the 
selected L-channel), posterior S-channels (blue), and anterior S-channels (green). 

Nine subjects (5 males and 4 females, age = 25.2 ± 4.8 years, all right-handed) 
participated in the second experiment; four of them had participated in the first experiment 
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previously. During the resting-state session, the subjects were instructed to sit still for about 
15 minutes with eyes closed and body relaxed, just as they did in the first experiment. The 
subsequent motor task session was in block design: In each block, each subject tapped the 
index finger of both hands in a random sequence according to visual cues presented on a 
computer screen. Specifically, a 4-letter cue consisting of “F” and “J” (e.g., “FFJJ” or “FJJF”) 
was presented for 2 seconds. The subjects were instructed to press the keyboard buttons “F” 
and “J” as quickly and correctly as possible by using their left and right index fingers, 
respectively. The same cue was repeated for 10–15 times (i.e., 20–30 seconds) randomly 
within each block, followed by a resting period that was in equal duration to the finger 
tapping period. The total length of the motor task session was about 6 minutes by including 
seven tapping-resting blocks. 

In both experiments, the CW6 system from TechEn, Inc. (Medford, MA, USA) [24] was 
used to collect data from the subjects. The absorption of near infrared light was measured at 
two wavelengths of 690 nm and 830 nm with a sampling rate of 25 Hz. Custom engineering 
was performed in construction of the fNIRS probes. Thin polyethylene strips were used to 
hold the optodes in the desired source-detector separations. Specifically, three polyethylene 
strips were made for each experiment: one was for the measurements in the bilateral anterior 
regions along the Fp1–Fp2 line; one was for the measurements in the bilateral middle-lateral 
regions along the T3–C3–C4–T4 line, and one was for measurements in the bilateral posterior 
regions along the O1–O2 line. The polyethylene strips were connected with self-grip Velcro 
and the separations between them were carefully adjusted according to the international 10–
20 measurements [32] of each individual’s head. 

2.3 Data preprocessing 

Prior to analysis, five channels in the first experiments (among eight subjects × 24 
channels/subject = 192 channels) and 30 channels in the second experiments (among nine 
subjects × 32 channels/subject = 288 channels) were excluded due to bad channel warnings 
from the CW6 system. Such warnings indicated poor or inadequate optical signals that 
usually resulted from hair absorption and/or imperfect contact of optodes to the scalp. 

For the qualified channels, changes in HbO and HbR concentrations were calculated 
based on the modified Beer-Lambert Law [33]. Two differential pathlength factors were 6.8 
at 690 nm and 5.8 at 830 nm. Then, the channel-wise changes of HbO and HbR were 
detrended by removing the 1st- and 2nd-order polynomial drifts. To further reduce motion 
artifacts and large instrumental noise, channels with high standard deviations of HbO and/or 
HbR time series were removed from any further analysis. The threshold was set as the top 
7.5% of the standard deviations of the time courses among all the channels and all the 
subjects (that is, 14 channels in the first experiment and 19 channels in the second experiment 
were removed) [12, 34]. Using Butterworth filters, the remaining data were low-pass filtered 
at 2 Hz to remove the noise at ultra-high frequencies and then high-pass filtered at 0.01 Hz to 
remove residual long-term drifts. This data set will be referred to as “whole-frequency data” 
hereafter. 

2.4 Identifying the spatial magnitude patterns of superficial interference 

Based on the whole-frequency data from the first experiment, we assessed the power of 
superficial interference in the four scalp regions (that is, the anterior, lateral, middle and 
posterior regions). First, we computed the power spectral densities of all S-channels using 
Welch's method with a Hamming window [35]. Then, the power of the four typical 
physiological fluctuations was extracted as a sum in their respective frequency bands: 0.01–
0.05 Hz for the very low-frequency fluctuations, 0.07–0.15 Hz for the Mayer waves, 0.2–0.4 
Hz for the respiratory waves, and 0.8–2 Hz for the cardiac pulsations [24]. Finally, we 
calculated the mean power of all S-channels within each of the four scalp regions. 
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2.5 Identifying the spatial similarity patterns of superficial interference 

For the first experiment, the cross-correlation function between every two paired S-channels 
was calculated from both the HbO and HbR time series of each subject. The time lags ranged 
from −50 to 50 seconds with an interval of 0.04 second. The degree of similarity between 
every two paired S-channels was defined as the maximum of their cross-correlation 
coefficients. Then, we evaluated the similarities of S-channel pairs at two different spatial 
levels: the local level (the two paired channels were on the same hemisphere and within one 
of the four regions: the anterior, middle, lateral and posterior regions) and the global level 
(the two paired channels were on different hemispheres and/or in different regions). At the 
local level, a total of 24 S-channel pairs within each of the four scalp regions (referred to as 
loS-ch, shown in Fig. 1(B)) were analyzed. At the global level, a total of 252 S-channel pairs 
across different hemispheres and/or regions were analyzed. According to their relative 
locations, as shown in Fig. 1(C), the global S-channel pairs were further categorized into 
three types: the symmetrical, ipsilateral, and contralateral-asymmetrical pairs. Specifically, 
there were 36 symmetrical pairs (syS-ch), 108 ipsilateral pairs (ipS-ch), and 108 contralateral-
asymmetrical pairs (caS-ch). Finally, we compared the similarity values among the local pairs 
and three types of global pairs across all the subjects using the two-tailed t test. 

This entire procedure was also repeated after band-pass filtering of the whole-frequency 
data to extract the four typical physiological fluctuations in different frequency bands. 
Specifically, the whole-frequency data was band-pass filtered between 0.01 and 0.05 Hz to 
extract the very low-frequency fluctuations, between 0.07 and 0.15 Hz to extract the Mayer 
waves, between 0.2 and 0.4 Hz to extract the respiratory waves, and between 0.8 and 2 Hz to 
extract the cardiac pulsations [24]. Then, we calculated the frequency-specific cross-
correlation coefficients between every two S-channels in the same way as we did on the 
whole-frequency data. Finally, we compared the similarity values of the four typical 
physiological fluctuations among the local pairs and three types of global pairs across all the 
subjects using the two-tailed t test. 

For the similarities described above, values of ≥0.9 were considered very high; 0.7 to 0.9 
were considered high; 0.5 to 0.7 were considered moderate, and <0.5 were considered low. 

2.6 Evaluating the denoising performance of linear regression with respect to the spatial 
similarity patterns of superficial interference 

Based on the whole-frequency data collected during the motor task in the second experiment, 
removal of superficial interference from the L-channels was conducted by using the S-
channels at multiple scalp regions as regressors. Specifically, linear regression was performed 
according to the formula below: 

 Y Xβ ε= +  (1) 

where Y represents the signal from an L-channel; X represents the signal from an S-channel 
with a suitable time lag [17]; and ε represents the residual of linear regression that is also 
referred to as the denoised result of the L-channel. In this study, the time lag between S-
channel and L-channel was set as the one showing the maximum cross-correlation coefficient 
between the two time courses. 

According to the relative locations of each S-channel to an L-channel, all S-channel 
regressors were categorized into four types: (1) the S-channels adjacent to each L-channel (≤ 
5 cm, referred to as Local S-ch regressors), as illustrated by the orange circles in Fig. 2 with 
the thick red line representing the interested L-channel; (2) the S-channels at the middle 
region that were symmetrical to the interested L-channel (referred to as Sym-Mid S-ch 
regressors), as illustrated by the black circles in the same figure; (3) the S-channels at the 
posterior regions (referred to as Posterior S-ch regressors), as illustrated by the blue circles in 
the same figure; and (4) the S-channels at the anterior regions (referred to as Anterior S-ch 
regressors), as illustrated by the green circles in the same figure. Additionally, we also used 
the global mean of all S-channels over the head as a single regressor. 
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Because the results derived from the real experiment had a lack of ground truth in terms of 
task-evoked responses, we referred to the results with local regressors as a standard because 
of their excellent denoising performance, which had been proven previously [27, 28]. To 
determine the regions of interest (ROIs) of task-evoked responses, we first computed the 
block-averaged motor response with local regressors (the standard) for each L-channel and 
subject. Then based on the block-averaged motor responses, we calculated the mean values 
from 5 to 20 seconds after task onset as the amplitudes of task-evoked responses. Finally, we 
selected two channels from each hemisphere that had maximum amplitudes as the ROIs for 
each subject and for each of the HbO and HbR signals. To evaluate the denoising 
performance of linear regression, within the identified ROIs, we calculated: (1) the Pearson’s 
correlation coefficient (R) between the denoised real-time time series with local regressors 
(the standard) and the denoised time series with global regressors for each individual subject 
and (2) the mean square error (MSE) between them for each individual subject. The Fisher's 
transformation was then applied to convert R values to Z values: 

 
1 1

ln( )
2 1

R
Z

R

+=
−
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The mean values and the standard deviations of Z and MSE values were computed for 
each of the three types of global regressors: the Sym-Mid S-ch, Posterior S-ch, and Anterior 
S-ch regressors. Then the Z values were inversely transformed to R values. Finally, the 
differences between different types of global regressors were estimated by applying a two-
tailed t test on their Fisher-transformed R values and MSE values. 

3. Results 

3.1 Spatial magnitude patterns of superficial interference 

Figure 3 shows the power (N = 8) of the four physiological fluctuations in the anterior, 
middle, lateral and posterior regions, which was calculated based on the resting-state data in 
the first experiment. The power of very low-frequency fluctuations, Mayer waves and cardiac 
pulsations were of the same order, and all such fluctuations were much greater than the power 
of the respiratory waves. All four physiological fluctuations had relatively homogeneous 
magnitudes across the four scalp regions, and no spatial variation was seen at a significance 
level of p < 0.01. Furthermore, for all of the four physiological fluctuations, the power of 
HbO-related components was much greater than that of HbR-related components, indicating 
that these physiological fluctuations were primarily related to changes in arterial blood flow. 

 

Fig. 3. Power (mean ± standard error) of the four physiological fluctuations measured by the S-
channels in multiple scalp regions: (A) power of HbO-related components, and (B) power of 
HbR-related components. In each graph, “A” represents the anterior region, “L” represents the 
lateral region, “M” represents the middle region, and “P” represents the posterior region. 

3.2 Spatial similarity patterns of superficial interference 

Figure 4 shows the spatial similarity patterns of superficial interference at both the local level 
and the global level, which was calculated based on the whole-frequency data in the first 
experiment. For HbO, the local-level similarities were very high in each of the anterior, 
middle, lateral and posterior regions (0.91 ± 0.05). The global-level similarities were high in 
the symmetrical pairs (0.76 ± 0.11), moderate in the ipsilateral (0.56 ± 0.15) and in the 

#236645 Received 23 Mar 2015; revised 25 May 2015; accepted 16 Jun 2015; published 8 Jul 2015 
(C) 2015 OSA 1 Aug 2015 | Vol. 6, No. 8 | DOI:10.1364/BOE.6.002786 | BIOMEDICAL OPTICS EXPRESS 2793 



contralateral-asymmetrical pairs (0.56 ± 0.15). The t test at the group level (N = 8) showed 
that the local-level similarities were significantly higher than all three types of global-level 
similarities (p < 0.001, Bonferroni corrected). Furthermore, among the three types of global-
level similarities, the symmetrical pairs had significantly higher similarities than those of 
asymmetrical (both ipsilateral and contralateral-asymmetrical) pairs (p < 0.001, Bonferroni 
corrected). The difference between the ipsilateral and contralateral-asymmetrical similarities 
was insignificant (p > 0.05). For HbR, the local-level similarities were high at each of the 
anterior, middle, lateral and posterior regions (0.84 ± 0.09); the symmetrical similarities were 
moderate (0.54 ± 0.19), and the ipsilateral (0.34 ± 0.19) and contralateral-asymmetrical 
similarities (0.34 ± 0.19) were low. The local-level similarities were significantly higher than 
all three types of global-level similarities (p < 0.001, Bonferroni corrected). The difference 
between symmetrical similarities and asymmetrical (both ipsilateral and contralateral-
asymmetrical) similarities was also significant (p < 0.001, Bonferroni corrected). The 
difference between the ipsilateral and contralateral-asymmetrical similarities was insignificant 
(p > 0.05). 

 

Fig. 4. Similarities of superficial interference in the whole-frequency domain (<2 Hz) 
measured by S-channels in multiple scalp regions. (A) Spatial distributions of S-channel pairs 
with similarities > 0.4 that were calculated based on HbO data. The colored lines represent the 
S-channel pairs in different ranges of similarity values. (B) Spatial distributions of S-channel 
pairs with similarities > 0.4 that were calculated based on HbR data. The colored lines 
represent the S-channel pairs in different ranges of similarity values. (C) Grand-averaged 
similarities of superficial interference at the local level and global level based on HbO data. 
(D) Grand-averaged similarities of superficial interference at the local level and global level 
based on HbR data. The error bars in (C) and (D) represent the standard deviations. 

Figure 5 shows the spatial similarity patterns of the four typical physiological fluctuations, 
which were calculated based on the band-pass filtered HbO data in the first experiment. All of 
these physiological fluctuations demonstrated decays of similarity from the local-level pairs 
to the global-level pairs, and from the globally symmetrical pairs to the globally asymmetrical 
(both ipsilateral and contralateral) pairs. All of these decays were statistically significant (p < 
0.001, Bonferroni corrected). The difference between the ipsilateral pairs and the 
contralateral-asymmetrical pairs was statistically insignificant (p > 0.05). Specifically, the 
cardiac pulsations had very high similarity values at both the local level and the global level 
(local = 0.99 ± 0.01, symmetrical = 0.96 ± 0.03, ipsilateral = 0.94 ± 0.04, and contralateral-
asymmetrical = 0.94 ± 0.04). 
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Fig. 5. Similarities of superficial interference in four specific frequency bands based on HbO 
data: (A) the very low-frequency fluctuations between 0.01 and 0.05 Hz, (B) the Mayer waves 
between 0.07 and 0.15 Hz, (C) the respiratory waves between 0.2 and 0.4 Hz, and (D) the 
cardiac pulsations between 0.8 and 2 Hz. In each respective graph, the colored lines represent 
the S-channel pairs in different ranges of similarity values, and the error bars represent the 
standard deviations. 

For HbR data, the spatial similarity patterns of the four physiological fluctuations are 
shown in Fig. 6. All of them demonstrated significant decays of similarity from the local-level 
pairs to the global-level pairs and from the globally symmetrical pairs to the globally 
asymmetrical pairs (p < 0.001, Bonferroni corrected), which were consistent with the results 
based on HbO data. Furthermore, the similarities calculated based on HbR data were lower 
than their counterparts based on HbO data. It was presumably because the HbR-related 
components in these physiological fluctuation had lower power (Fig. 3). As a result, the 
extracted HbR data were more vulnerable to measurement noise which subsequently reduced 
the similarity values. 
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Fig. 6. Similarities of superficial interference in four specific frequency bands based on HbR 
data: (A) the very low-frequency fluctuations between 0.01 and 0.05 Hz, (B) the Mayer waves 
between 0.07 and 0.15 Hz, (C) the respiratory waves between 0.2 and 0.4 Hz, and (D) the 
cardiac pulsations between 0.8 and 2 Hz. In each respective graph, the colored lines represent 
the S-channel pairs in different ranges of similarity values, and the error bars represent the 
standard deviations. 

Figures 5 and 6 also indicate that the global-level similarities of the four physiological 
fluctuations across different scalp regions are quite different. Thus, we further evaluated the 
cross-region similarities of the four physiological fluctuations, which are shown in Fig. 7. For 
the Mayer waves, respiration and cardiac pulsations, the similarities between the anterior 
region and all the other regions were lower than the similarities between any two non-anterior 
regions (the lateral, middle, and posterior regions). This difference was statistically significant 
for the respiration (p < 0.01, Bonferroni corrected) and cardiac pulsations (p < 0.001, 
Bonferroni corrected). For the Mayer waves, the similarity difference between the anterior 
region and the non-anterior regions also tended to be significant in HbO data. Overall, these 
results indicate that these three physiological fluctuations in the anterior region are relatively 
“isolated” from the other scalp regions. 

The time lags of superficial interference among all of the local-level and global-level S-
channel pairs were also investigated. For every S-channel pair, we recorded the absolute time 
lag (ranging from 0 to 50 sec) that showed the maximum cross-correlation coefficient. As 
summarized in Table 1, for the whole-frequency data, the absolute time lags were nearly zero 
among the local-level pairs, and gradually increased among the symmetrical pairs and the 
asymmetrical (both ipsilateral and contralateral-asymmetrical) pairs. Similarly, the absolute 
time lags for the low-frequency oscillations, Mayer waves and respiratory waves also 
demonstrated an overall increase from the local pairs to the symmetrical pairs and then to the 
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asymmetrical pairs. The cardiac pulsations did not show remarkable time lags across different 
scalp regions, especially in HbO data. 

 

Fig. 7. Cross-region similarities of superficial interference (the two paired S-channels were 
located in two different scalp regions). (A) and (C): The frequency-specific mean similarity 
matrices that were based on the HbO and HbR data, respectively. As shown in the legend, the 
upper triangular part of the similarity matrix is for the regions within the same hemisphere 
(ipsilateral pairs), and the lower triangular part is for the regions between two hemispheres 
(contralateral pairs). (B) and (D): Comparisons between the cross-anterior similarities (one of 
the two paired channels in similarity calculation was located in the anterior region) and not-
cross-anterior similarities (neither of the two paired channels in similarity calculation was 
located in the anterior region). The error bars in (C) and (D) represent the standard deviations. 

In Table 1, the absolute time lags estimated from HbR data consistently show greater 
mean values and standard deviations than their counterparts from HbO data. A close 
inspection showed that the HbR data were overall noisier than the HbO data due to their 
difference in power (referred to Fig. 3). Thus, the absolute time lags estimated from HbR data 
were more variable. 

Table 1. The absolute time lags (mean ± standard deviation, in seconds) of superficial 
interference for the whole-frequency data and the four typical physiological 

interferences. 

  Local Symmetrical Ipsilateral Contralateral All 
Whole- frequency HbO 0.01 ± 0.02 0.19 ± 0.67 0.48 ± 1.91 0.59 ± 2.44 0.44 ± 1.95 

HbR 0.26 ± 1.02 2.18 ± 5.16 6.16 ± 8.47 7.24 ± 10.40 5.51 ± 8.87 
Very low-frequency HbO 0.91 ± 1.79 2.49 ± 6.39 8.37 ± 11.49 9.23 ± 12.06 7.24 ± 11.04 

HbR 0.99 ± 1.02 6.18 ± 10.87 12.66 ± 12.02 12.53 ± 11.47 10.68 ± 11.70 
Mayer waves HbO 0.35 ± 1.01 0.83 ± 1.36 2.03 ± 4.11 1.91 ± 3.11 1.67 ± 3.31 

HbR 0.67 ± 1.43 3.87 ± 7.88 7.58 ± 11.68 6.95 ± 11.69 6.21 ± 10.89 
Respiration HbO 0.18 ± 0.37 3.40 ± 7.26 2.89 ± 7.10 3.10 ± 7.23 2.80 ± 6.89 

HbR 0.23 ± 0.54 2.28 ± 4.05 4.47 ± 8.73 4.58 ± 8.27 3.83 ± 7.75 
Cardiac pulsations HbO 0.01 ± 0.032 0.03 ± 0.04 0.03 ± 0.03 0.03 ± 0.03 0.03 ± 0.03 

HbR 0.06 ± 0.13 1.90 ± 6.70 1.51 ± 5.84 1.56 ± 5.97 1.45 ± 5.76 

3.3 Denoising performance of linear regression 

As a representative example, Fig. 8 shows the block-averaged motor responses in the second 
experiment for one subject, which were averaged across the L-channels within the identified 
ROI. A robust increase of HbO and decrease of HbR in the sensorimotor cortices are seen 
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during the period of finger tapping. In particular, the block-averaged time courses with the 
local regressors (the standard) and the block-averaged time courses with the symmetrical-
middle regressors are very close to each other; both return to baseline after the task. In 
contrast, the block-averaged time courses with the bilateral posterior regressors and bilateral 
anterior regressors are inconsistent with the standard and do not return to baseline after the 
task. Figure 8 also shows the block-averaged motor responses by using the global mean of all 
S-channels as a regressor, which are close to those with the local regressors and symmetrical-
middle regressors and better than those with the bilateral posterior and anterior regressors. 

 

Fig. 8. Block-averaged motor responses from the L-channels within ROI for a representative 
subject. In each graph, the solid curves represent the block-averaged time courses, and the 
shaded areas indicate the standard errors across the seven blocks. Please note that the duration 
of finger tapping varied from 20 to 30 seconds among the seven blocks. 

 

Fig. 9. Denoising performance of linear regression in the second experiment: (A) R values 
between the denoised HbO time series using the four global regressors and the standard HbO 
time series using the local regressors. (B) MSE values between the denoised HbO time series 
using the four global regressors and the standard HbO time series. (C) and (D) R and MES 
results from the HbR data. The error bars in each graph represent the standard deviations. 

At the group level (N = 9), Fig. 9 shows the denoising performance of the four types of 
global regressors (symmetrical-middle, bilateral posterior, bilateral anterior and global mean) 
by comparing with the standard time series denoised by the local regressors. For HbO data, 
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the symmetrical-middle regressors had the best denoising performance with highest R values 
and lowest MSE values; the bilateral anterior regressors had the worst denoising performance 
with lowest R values and highest MSE values. The denoising performance of the bilateral 
posterior regressors and global mean regressor was moderate. For HbR data, the symmetrical-
middle regressors also had the best denoising performance whereas the global mean regressor 
had the worst denoising performance. The denoising performance of the bilateral posterior 
regressors and bilateral anterior regressors was moderate. Furthermore, Fig. 9 also shows 
linear regression has overall worse denoising performance on HbO data. It might be because 
the physiological fluctuations are primarily related to changes in arterial blood blow (Fig. 3), 
which have greater influence on HbO data. 

4. Discussion 

In the current study, we investigated the similarity of superficial interference in multiregional 
fNIRS imaging in a whole-frequency domain (< 2 Hz) as well as in four specific frequency 
bands. In the whole-frequency domain, two major findings are summarized as follows: First, 
superficial interference showed very high similarities at the local level, whereas its 
similarities at the global level are significantly lower. This finding is consistent with the 
reports by Gagnon and his associates [27], which showed the correlation of superficial 
interference within a local area (< 1.5 cm) was greatest while the correlation of superficial 
interference between the motor area and the frontal area was much lower. Second, among the 
three types of S-channel pairs at the global level, the symmetrical pairs were found to have 
moderate to high similarities, which were significantly higher than those from the 
asymmetrical (both ipsilateral and contralateral-asymmetrical) pairs. This finding agrees with 
the previous reports about a symmetrical correlation pattern of fNIRS data [24] as well as 
blood pressure variance and heart rate variance in the same study. 

In a further step, we investigated the similarity of superficial interference in four specific 
frequency bands that are related to the very low-frequency fluctuations, Mayer waves, 
respiration, and cardiac pulsations. All of these physiological fluctuations showed a gradual 
decay in similarity from the local S-channel pairs to the globally symmetrical pairs and then 
to the globally asymmetrical pairs. In particular, the cardiac pulsations showed very high 
similarities across all of the scalp regions in terms of HbO-related components. HbR-related 
components in the cardiac pulsations were not considered since the cardiac pulsations mainly 
induce changes in arterial blood flow, which is nearly 100% saturated. This finding indicates 
that the cardiac pulsations are globally homogeneous over the entire head, which also agrees 
with previous reports [15, 27]. 

Interestingly, for the Mayer waves, respiratory waves and cardiac pulsations, we found 
that the similarities of the anterior region with all the other regions were significantly low. 
This phenomenon is not likely due to measurement artifacts because the power of these three 
physiological fluctuations in the anterior region is largely the same as in the other regions 
(Fig. 3). It implies that these three physiological fluctuations in the anterior region are 
relatively “isolated” from the other regions. The anatomical basis of this phenomenon needs 
to be further studied. A study by Kirilina et al. [29] has shown that task-evoked superficial 
artifacts in the prefrontal cortex are not homogeneously distributed, but are instead localized 
in the scalp draining veins. Their results are a helpful contribution to the study of the 
anatomical origin of superficial interference in the anterior region. Furthermore, although 
such a phenomenon is not found in the very low-frequency fluctuations, it does not mean the 
very low-frequency fluctuations are more homogeneous between the anterior region and the 
other regions. In fact, we noted from Fig. 7 that the cross-region similarities of the very low-
frequency fluctuations were lower than the other three physiological fluctuations. Therefore, 
the very low-frequency fluctuations are indeed more inhomogeneous in the human head. 

This study’s observed spatial patterns of similarity pertaining to superficial interference 
provide an explanation as to why adjacent and remote S-channels lead to different denoising 
performance in regression of superficial interference, which has been noted but not explained 
in previous reports [27]. In general, the hemodynamic activities in the brain are slow, and 
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operate within a very low-frequency band (0.01-0.05 Hz) for a block-designed experiment 
and in the low-frequency band (0.05 – 0.15 Hz) for an event-related experiment. Moreover 
the resting-state studies revealed a frequency range of functional connectivity from about 0.01 
to 0.1 Hz [36–38]. The results in this study demonstrate all three slow physiological 
fluctuations (very low-frequency fluctuations, Mayer waves and respiratory waves) with a 
gradual similarity decay from the local S-channel pairs to the globally symmetrical S-channel 
pairs and then to the globally asymmetrical (ipsilateral and contralateral-asymmetrical) S-
channel pairs. Therefore, the different denoising performance of linear regression obtained by 
using different types of S-channels is reasonable and expected. This conclusion was further 
validated by the second experiment. 

The results from this study also indicate that it is possible to simplify the configurations of 
S-channels in multiregional fNIRS imaging. As discussed in the beginning of this paper, the 
co-located configuration of S-channels and L-channels has proven to be optimal in regression 
of superficial interference. However, such a configuration is difficult to achieve in 
multiregional fNIRS imaging because it requires a large number of S-channels to be co-
located with L-channels. Given the limited number of measurement channels that the current 
fNIRS systems have, reducing and simplifying the S-channels will always be an objective. A 
simplified fNIRS probe configuration will also reduce the preparation time and discomfort of 
subjects during experiments. According to the spatial similarity patterns of superficial 
interference identified in this study, superficial interference also has moderate to high 
similarity across the globally symmetrical S-channel pairs in addition to the local S-channels. 
Therefore, the globally symmetrical regions could share S-channels while maintaining an 
acceptable efficiency in regression of superficial interference. In this way, the number of S-
channels can be reduced. 

A few limitations in the current study should be noted. First, while a short source-detector 
separation (ideally ≤1 cm) for S-channels is always desired to ensure perfect specificity to the 
superficial layer [27], our S-channel separation of 1.5 cm was constrained by the optode size 
in the CW6 system. Nevertheless, the 1.5-cm separation of S-channels has been used in 
previous fNIRS studies to regress out superficial interference [16, 17]. Based on a finite 
element mesh (FEM) head model [39], we calculated the sensitivities of S-channels and L-
channels to the brain tissues. We found that the averaged sensitivity of S-channels to the brain 
was only 0.47% ± 0.14% when source-detector separation ranged from 1.4 to 1.6 cm. In 
contrast, the averaged sensitivity of L-channels to the brain was 3.55% ± 1.55% when source-
detector separation ranged from 2.8 to 3.2 cm. Therefore, we are confident that the S-channels 
in the current study primarily measured superficial interference rather than brain activities. 
Furthermore, the very low sensitivities of S-channels to the brain indicate that linear 
regression of superficial interference using these S-channels will not reduce the amplitude of 
brain activities measured by the L-channels. A further demonstration on this issue is seen in 
the Appendix. Second, we extracted the typical physiological fluctuations from the scalp-
recorded fNIRS data according to their frequency bands. If we could record the peripheral 
physiological signals directly with auxiliary devices (such as pulse oximetry, respiratory belt 
and blood pressure monitor) and correlate them with the present fNIRS data from multiple 
scalp regions, it would enhance and expedite current comprehension of the spatiotemporal 
properties of these physiological fluctuations [24, 40]. This is a planned objective for future 
work. Lastly, the current study only measured superficial interference in selected scalp 
regions rather than the entire head, and only investigated the task-evoked activations at the 
sensorimotor cortex. In future research, the results from the current study will be replicated 
and validated by covering even larger scalp regions and by inducing other brain activations 
besides the sensorimotor cortex. 

Appendix 

The source-detector separation of S-channels is a key issue in linear regression of superficial 
interference. In this study, the source-detector separation of S-channels was 1.5 cm, which 
was constrained by the optode size in the CW6 system. Given the fact that the S-channels 
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over the sensorimotor cortices could definitely detect certain brain activations in the second 
experiment, it is plausible to think that linear regression with local S-channels might remove 
more true brain activations than the non-local S-channels and the global mean regressor. 
Because the results derived from the real experiment were lack of ground truth in terms of 
task-evoked brain activations, we tested this scenario in a simulative experiment. 

In the simulative experiment, the real physiological noises were represented by the 
resting-state data in the second experiment, which was acquired prior to the motor tasks. The 
true brain activations were modeled by convolving a synthetic hemodynamic response 
function (HRF) with the stimulation function. In this way, a real controlled environment 
could be tested. Specifically, the synthetic HRF was generated as the sum of two Gamma 
functions. The amplitude ratio of the first Gamma function (peak time = 5 seconds) to the 
second Gamma function (peak time = 15 seconds) was 6:1, same as the canonical HRF in 
SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The amplitude of the synthetic HRF was set to be a 
0.08-μM increase in HbO and a 0.023-μM decrease in HbR, which were estimated from the 
deconvoluted HRF in the motor tasks of the second experiment. The synthetic impulse 
responses were then convolved with an onset/offset time course of the motor tasks to yield the 
expected task-evoked hemodynamic responses in the brain (that is, the “ground truth”). The 
onset/offset time course of tasks here was identical to the real motor task in the second 
experiment. Then, we selected four L-channels, two at the center of left sensorimotor cortex 
and the other two at the center of right sensorimotor cortex, as the ROIs. The simulated 
hemodynamic responses were added to the HbO and HbR data that were acquired from the 
four L-channels in the ROIs in the resting state. To simulate the small portion of brain 
responses detected by the local S-channels, we also added the simulated hemodynamic 
responses to four S-channels within the ROIs. Please note that, according to our calculation 
based on a FEM head model, the sensitivities of S-channels to the brain were about 1/7.5 of 
the sensitivities of L-channels to the brain. Therefore, the amplitudes of simulated 
hemodynamic responses added to the S-channels were 1/7.5 of those added to the L-channels. 

For the simulated data series, linear regression was conducted on each L-channel in the 
ROIs by using every available S-channel as a regressor, same as it was carried out in the real 
experiment. The denoising performance of linear regression was evaluated with the R values 
and MSE values. 

 

Fig. 10. Block-averaged motor responses from the four L-channels within the ROIs for a 
representative subject. In each graph, the red line represents the true task-evoked brain 
response, the non-red line represents the recovered task-evoked brain response after line 
regression, and the shaded areas indicate the standard errors of the recovered brain response 
across the seven blocks. 

Figure 10 shows the block-averaged motor responses in the simulative experiment for a 
representative subject. They were averaged across the four L-channels within the ROIs. The 
recovered task-evoked brain responses with the local regressors and the symmetrical-middle 
regressors are very close to the ground truth. In contrast, the recovered task-evoked brain 
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responses with the bilateral posterior, bilateral anterior regressors and global mean regressor 
appear to be inconsistent with the ground truth. 

 

Fig. 11. Grand-averaged motor responses from the L-channels within ROIs for all the nine 
subjects. In each graph, the red line represents the true task-evoked brain response, the non-red 
line represents the recovered task-evoked brain response after line regression, and the shaded 
areas indicate the standard errors of the recovered brain response across the seven blocks. 

At the group level (N = 9), Fig. 11 demonstrates that the local regressors did not reduce 
the amplitudes of recovered task-evoked brain response obviously. Figure 12 shows the 
results of R values and MSE values between the true and recovered task-evoked brain 
responses across all subjects (N = 9). The local regressors appear to have the best denoising 
performance, although their differences to the other regressors are statistically insignificant (p 
> 0.1). These results implies that superficial interfernce is the dominat component in the S-
channels data series. Therefore, the linear regression operation mainly fitted and removed 
superficial interfernce from the L-channel data series. 

 

Fig. 12. Denoising performance of linear regression with different regressors in the simulative 
experiment: (A) and (C) R values between the true task-evoked brain responses and the 
recovered task-evoked brain responses; (C) and (D) MSE values between the true task-evoked 
brain responses and the recovered task-evoked brain responses. 

In summary, the results from the simulative experiment demonstrated that although the S-
channels at 1.5-cm source-detector separation contained certain components from the brain, it 
did not lead to reduction of true brain activation from L-channels, and the denoising 
performance of linear regression with the local regressors was still the best. 
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