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Abstract: We present an easily implemented wavefront correction scheme 
that has been specifically designed for in-vivo brain imaging. The system 
can be implemented with a single liquid crystal spatial light modulator 
(LCSLM), which makes it compatible with existing patterned illumination 
setups, and provides measurable signal improvements even after a few 
seconds of optimization. The optimization scheme is signal-based and does 
not require exogenous guide-stars, repeated image acquisition or beam 
constraint. The unconstrained beam approach allows the use of Zernike 
functions for aberration correction and Hadamard functions for scattering 
correction. Low order corrections performed in mouse brain were found to 
be valid up to hundreds of microns away from the correction location. 
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1. Introduction 

Two-Photon Excited Fluorescence (2PEF) microscopy is widely used in the field of 
neuroscience, owing to its large penetration depth compared to confocal microscopy. Despite 
this, wavefront error introduced by the sample ultimately limits the achievable 2PEF signal to 
noise ratio (SNR) and resolution with increasing depth in the sample. 

This degradation is caused primarily by aberration and scattering of the excitation beam. 
Aberrations can be introduced not only by the sample’s inhomogeneous refractive index but 
also by imperfections and misalignment of the optical system as well as the refractive index 
mismatch between the immersion medium and the sample. High numerical aperture (NA) 
systems, common in 2PEF microscopy, are especially prone to aberrations. 

Wavefront correction, as it is applied to 2PEF microscopy, represents a set of techniques 
that attempt to compensate for light scattering and aberrations. Since most 2PEF systems use 
a non-descanned detector to collect all emitted fluorescent light, the effects of aberrations on 
the emission light are minimal compared to the effects on the excitation light. While many 
different wavefront correction schemes have been reported, the common goal is to find a 
correction for the wavefront of the excitation beam that yields an optimally focused beam. 

One way of estimating the optimal wavefront involves directly measuring the wavefront 
of fluorescent light originating from a localized fluorescent object using a wavefront-sensor. 
While this approach has been demonstrated in relatively non-scattering samples like zebrafish 
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[1] or drosophila embryo [2], the emitted fluorescent light is in the visible wavelength band 
and is prone to scattering effects and hence this approach is not well suited for highly 
scattering samples such as mouse brain. 

This limitation of direct wavefront sensing can be overcome by using wavefront-
sensorless methods to determine the optimal wavefront. In these methods, the wavefront of 
the incident beam is modulated in a systematic way and either the 2PEF signal [3, 4] or some 
image property such as the mean intensity [5] or image displacement [6, 7] is used as 
feedback to drive an algorithm that determines the optimal wavefront. In addition to being 
compatible with highly scattering samples, wavefront-sensorless methods offer the further 
advantage that no new optics need to be implemented on the detection arm of the microscope. 
However, wavefront-sensorless methods demonstrated so far have suffered from limitations 
such as requiring serial image acquisition [6], requiring the introduction of fluorescent beads 
to measure image displacement [7], long optimization times [3, 7] or have generated 
corrections that are valid over only a small volume [4]. 

Here, we present a simple 2PEF signal-based wavefront correction scheme that does not 
require image acquisition or beam constraint, can use intrinsic structures in the brain as signal 
sources for optimization and has modest hardware requirements. The scheme is especially 
suited for microscope setups that utilize liquid crystal spatial light modulators (LCSLMs) for 
patterned illumination and can be implemented on microscopes that already utilize an 
LCSLM for beam-shaping [8, 9] without additional modification. 

Our scheme is distinct from several other previously demonstrated wavefront-sensorless 
in-vivo schemes [3, 4, 7] in that it uses a modal rather than a zonal approach. In zonal 
schemes, measurements are used to determine the optimal value at each pixel or a subset of 
pixels of the modulator. In modal approaches, the correction is determined across the whole 
pupil at each iteration, which speeds up the optimization. Even though modal schemes have 
been demonstrated before [5, 10], and have been shown to be useful for in-vivo imaging [11], 
the model free approach we present exploits the non-linear dependence of two-photon 
excitation to optimize focal quality based only on the measured 2PEF intensity [12, 13] to 
achieve correction without the need for beam constraint or image acquisition. The scheme we 
present can also compensate for scattering by using the Hadamard basis in addition to the 
commonly used Zernike basis. We present results of optimizations performed in various 
phantoms and biological samples including in-vivo mouse brain. 

The optimization scheme we present progressively increases the 2PEF signal at each 
iteration, and hence requires a signal source that is not only stable but is also relatively 
immune to photobleaching. We demonstrate that Sulforhodamine 101 labeled astrocytes have 
these properties and can be effectively used as intrinsic guide-stars throughout the rodent 
cortex for signal-based optimization. 

2. Methods 

2.1 Corrections based on the two-photon signal 

The peak intensity of a focused, pulsed laser beam is given by: 

 
2
0

2 ave
peak

p

P
I

f wτ π
=  (1) 

Where Pave is the average laser power, τp is the pulse duration, f is the pulse repetition rate and 
w0 is the Gaussian beam-width. 2PEF emission scales as the square of incident intensity, such 
that the signal should be optimized when both τp and w0 have minimum possible values, as 
would be achieved when all beamlets forming the focus are both spatially and temporally 
aligned [12]. This property would not be true for single-photon excitation, which has no 
dependence on pulse duration, and a linear dependence on incident intensity. 
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These 2PEF dependencies on beam properties allow the use of the 2PEF signal as a 
feedback for beam optimization, under the constraint that decreasing the beam size doesn’t 
cause a compensating reduction in the number of fluorescent molecules in the excited 
volume. This condition only breaks down when the object generating the signal is much 
thicker than the Rayleigh range of the excitation beam 2

0Rz n wπ λ=  (in which case the 2PEF 

signal becomes independent of the beam-width [14]). Thus, by selecting structures that are of 
the same order as ZR, the 2PEF signal can be used as a feedback signal for optimization. 

2.2 Modal optimization without beam constraint 

In modal optimization, the optimal wavefront φcorr is expressed as a superposition of basis 
functions Fi so that ( , )corr i ib F x yϕ = . Each iteration of the algorithm attempts to determine 

one of the coefficients bi. Previous modal implementations of wavefront correction for 2PEF 
microscopy [5, 10] have relied on a constrained beam approach. In such an approach, the 
correction functions used for optimization are either derived [5] or experimentally calibrated 
[10] so that wavefront modulation does not translate the focus. Experimental calibration 
involves measuring the amount of translation introduced by different basis functions and 
adding tip, tilt or defocus to each basis function in order to prevent beam translation. This 
approach prevents apparent signal improvement due to simply moving the focus to a 
shallower depth. However, in practice, when the beam is constrained in this way, the 2PEF 
signal is not reliable for feedback since it can sometimes be increased by expanding the focal 
volume, if the new volume includes a nearby region of higher fluorophore concentration [15]. 
We demonstrate that it is possible to achieve corrections without any kind of beam constraint. 
Also, the need for image acquisition exposes a large field of view to excitation light while the 
optimization is being performed, which can cause photobleaching in the entire region that is 
being imaged. 

In our scheme, we have found that beam constraining is unnecessary if a discrete object 
can be used as a signal source for the optimization process. This recognizes that optimization 
will both translate the beam to find the point of highest fluorescence, and then optimize 
spatiotemporal focusing on this point [13]. Since the 2PEF signal itself can be used as a 
measure of beam quality, we eliminate the need for both image acquisition and experimental 
function calibration or special functions. This model-free approach also allows us to freely 
vary the functions used for optimization. While previously demonstrated modal schemes have 
used Zernike functions to correct low-order aberrations, our scheme can achieve corrections 
in highly-scattering samples through the use of Hadamard functions. 

In addition, our approach provides the versatility of being able to perform optimization in 
either a dwelling beam or a sweeping beam configuration, where the beam either dwells at a 
single point, or is swept across a small (~10 μm x 10 μm) region during optimization. The 
dwelling beam approach delivers superior SNR, while the sweeping beam approach is useful 
for avoiding photobleaching a single point. We note that it is important for the sweeping 
beam to scan only a small area encompassing a single cell to avoid unpredictable beam 
translation effects and that the laser power used is much less than that used in wavefront 
correction schemes that require sequential acquisition of clear images. On a practical note, 
since repeated image acquisition and analysis is not required, the microscope software itself 
does not need to be modified and the wavefront correction system interacts with the 
microscope only through the signal from one of the photomultiplier tube detectors (PMTs). 

2.3 Optical setup 

An existing home-built 2PEF microscopy platform [16–18] was modified to permit 
modulation of the excitation beam wavefront by a reflective LCSLM (Pluto, Holoeye). A 
schematic of the beam path is shown in Fig. 1. The x and y galvanometer mirrors (Cambridge 
Technologies), the LCSLM and the back aperture of the objective are all on conjugate image 
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planes. This prevents beam motion on the LCSLM or the back aperture of the objective 
during scanning. The beam is expanded to fill the vertical extent of the modulator and de-
magnified to fill the back aperture of the objective (Olympus LUMPlan FLN 60x, NA = 1.0, 
water immersion). 

Excitation light is provided by a mode-locked Ti:Sapphire laser (Mai Tai HP DeepSee, 
Spectra Physics). The pulse repetition rate is ~80 MHz with a pulse width of ~100 fs. Emitted 
fluorescence signal is detected using three PMTs (R3896, Hamamatsu) separated by dichroic 
filters to detect three spectral bands (<505 nm, 505-560 nm and 560-690 nm). The signal 
from each PMT is converted to a voltage and filtered using a transimepdence amplifier 
(SR570, Stanford Research), and digitized via an analog to digital converter (PCI 6133, 
National Instruments). 

PBSBD

G

G

LCSLM

OBJ

WP

PMT PMT

PMT

F F

DCM

L

L          :  Laser
G     : Galvanometer Scanning Mirror
WP      : Half-wave plate
PBS      : Polarizing Beam Splitter
BD        : Beam Dump/ Beam Block
LCSLM : Liquid Cystal Sptial Light Modulator
F     : Filter
DCM     : Dichroic Mirror
OBJ       : Objective
PMT      : Photomultiplier Tube

G
Mirror

Lens

Conjugate Image Plane

 

Fig. 1. Optical Setup. The x and y galvanometer mirrors (G), the spatial light modulator 
(LCSLM) and the back aperture of the objective (OBJ) are in conjugate planes. 

The LCSLM has a total of 1920x1080 pixels, a bit depth of 8 bits and a refresh rate of 60 
Hz. The beam is centered so that a 1080 pixel diameter circular region is used for modulation. 
The wavefront correction system runs independently of the microscope on a separate 
computer (Intel Core2 Duo with 4 GB of RAM). The LCSLM is addressed using a video 
signal from a graphics board (GeForce 9500 GT, Nvidia). All software is implemented as 
custom-written code in MATLAB (Mathworks). Reliable addressing of the LCSLM was 
achieved using Psychophysics toolbox extensions for MATLAB [19–21]. The optimization 
feedback signal was digitized using a data-acquisition board (PCIe-6359, National 
Instruments). 

2.4 Optimization scheme 

In our optimization scheme, the system starts off with a flat wavefront as the first estimate for 
the correction. Each new iteration of the algorithm perturbs the previous correction to 
generate several new trial wavefronts. The scheme decides whether to accept one of these 
trial wavefronts as the new correction by comparing the 2PEF signal associated with the new 
wavefronts with that of the previous correction. This scheme is shown in Fig. 2. 
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+
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Fig. 2. Wavefront Optimization Scheme. At the beginning, the basis index i and the scale 
factor j are set to 1. Steps 1,2: A set of correction functions and parameters W (maximum 
weight), ∆W (step size), and α (acceptance threshold are chosen). Step 3: N weight values wn 
(which includes 0) are generated based on the parameters set in step 2. These weight values are 
scaled by an integer j based on the results of the previous iteration. Step 4: The ith basis 
function is loaded and scaled by the weight values generated above to generate N functions. 
Step 5: The N functions generated in the previous step are summed with the correction of the 
previous iteration and phase wrapped to generate N trial solutions Φn. Step 6: The functions 
are up-scaled and addressed one by one and the corresponding 2PEF signal Si is recorded. Step 
7: The ratio between the maximum signal Smax to the signal S0 corresponding to a weight of 0 
is compared to α. Step 9: (optional) attempts to detect incorrect decisions caused by signal 
fluctuations. Step 10-11: If step 7 yielded a positive result, the function corresponding to the 
maximum signal is set as the current correction and the scaling factor j is incremented by 1. 
This causes the scheme to perform another optimization cycle using the same basis function 
but with the weight values scaled by 1/j. Step 8: If step 7 did not yield a positive result, the 
variable i is incremented and the scale-factor j is reset so that the scheme moves on to the next 
basis function. 

The acceptance threshold (α) is an important feature of the scheme presented here. The 
2PEF signal, while being a suitable feedback signal, does suffer from signal fluctuations. 
These are more pronounced during in-vivo experiments due to breathing and heart-beat. One 
strategy to deal with fluctuations involves increasing integration time to average them out. 
However, large integration times slow down the optimization process. Inclusion of an 
acceptance threshold allows the wavefront correction system to discard steps that do not 
measurably improve the solution, and thus ignore signal fluctuations. Only signal changes 
greater than α are considered valid. For best corrections, α is set to the percentage of 
fluctuation expected on the measured signal. Inclusion of this allows the scheme to achieve 
corrections in-vivo based on the signal alone without long signal integration times. To 
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experimentally determine α, a number of 2PEF signal measurements are performed without 
changing the wavefront addressed to the LCSLM, and the maximum fluctuation compared to 
the mean is set equal to α. 

2.5 Phase-wrapping 

Wavefront correction has been demonstrated using LCSLMs [6, 7, 12, 13, 22], deformable 
mirrors (DMs) [4, 5, 10] or a combination of both [3]. While having slow refresh rates 
compared to DMs, LCSLMs offer a large number of pixels and are typically used in the field 
of neuroscience to perform photo-stimulation by holographic light shaping [8, 9]. We 
designed our optimization scheme to be compatible with such light patterning applications. 

The optimization scheme operates sequentially, so that the best known wavefront from the 
previous cycle is carried forward to the next cycle. Since the LCSLM only offers ~2.7π of 
maximum phase modulation at 8-bit resolution, the number of wavefronts that can be directly 
summed is limited. Implementing phase-wrapping can solve this problem, permitting a large 
number of corrections to be summed, but is computationally intensive to calculate for all 
1920 x 1080 pixels on the LCSM. Instead, we found that corrections could still be achieved if 
calculations were performed at lower pixel resolutions. Previous studies have achieved 
corrections using various numbers of distinct segments of a phase modulator ranging from 
256 to 1200 [4, 12, 13, 22]. In our scheme, we performed computations using 64, 256 or 
10,000 segments. These wavefronts were then up-sampled to match the modulator resolution 
as they are being addressed. This approach lowers the computation time by a factor of ~140. 

2.6 Optimization functions 

While it is possible to optimize a large number of basis functions to generate corrections, fast 
corrections can be achieved by matching the functions to the expected shape of the correction 
wavefront. As will be shown in the results section, if the correction functions are chosen 
judiciously, using only a small number (5-20) functions can yield significant improvements in 
beam focusing. 

While our optimization scheme can adaptably use any chosen basis functions, our current 
demonstration focuses on Zernike and Hadamard bases. Zernike functions are commonly 
used to describe wavefront aberrations induced by optical systems and sample geometries 
[23, 24] and have been previously used in modal schemes [5, 10]. Reported results of zonal 
optimization schemes in mouse brain contain symmetries that might be easily represented 
using simpler Zernike functions [7]. Scattering has a more random effect on wavefront shape 
[12, 13] which is better represented by Hadamard basis functions [22]. Our choice of basis 
function was determined by the expected type of aberration in each sample. Function 
definitions and indexing schemes are provided in Appendix 1. 

2.7 Sample preparation 

Various phantoms were used in this study to characterize the performance of our optimization 
scheme. The epoxy resin phantom was created by adding titanium dioxide (PM-1 pigment, 
Alec Tiranti Ltd) at a concentration of 1 µL of pigment per 1 mL of two-part epoxy [25] to 
yield an approximate μs’ of 1 mm−1 at 800 nm. 4 µm diameter fluorescent beads (Invitrogen 
F-8859, Life Technologies) were suspended in the epoxy prior to hardening. Tape (Transpore, 
3M) and raw chicken tissue were also used as scattering samples. For the agar phantoms, the 
fluorescent beads were suspended in a 0.5% agarose solution and placed on a glass slide with 
a coverslip on top. 

For in-vivo experiments, adult C57BL/6J mice weighing 20-30 g were anesthetized with 
isoflurane, then IP urethane, secured in a stereotaxic frame, and a small section of the skull 
was removed to expose the cortex. With the dura intact, Sulforhodamine 101 (12 µM in 
artificial cerebrospinal fluid) was applied using gelfoam for 5-20 minutes and rinsed. In some 
cases, 4 µm fluorescent beads were applied to the surface of the dura. A #1.5 glass coverslip 
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was then placed over a drop of 0.5% agarose in ACSF on the brain and sealed with dental 
acrylic to the surrounding skull. During 2PEF imaging, the mouse’s head was held in place 
using a metal bar glued to the back of the skull. All procedures detailed here were approved 
by the Columbia University Institutional Animal Care and Use Committee. 

3. Results 

In order to evaluate our optimization scheme, experiments were performed in a range of 
different samples. In all experiments, axial image stacks were acquired with and without the 
correction applied and the 2PEF intensity of discrete objects was compared in each case. 
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Fig. 3. In and out-of-focus corrections: Aberration correction performed on a 4 micron 
diameter bead embedded in a scattering epoxy phantom at a depth of ~100 μm with the bead 
initially in-focus (left panel) and out-of-focus (right panel). Axial stacks were acquired with 
and without the correction applied. Optimization was achieved for both the in-focus and out-
of-focus bead. In both cases, the optimized focus was formed near the center of the bead. (A,B) 
Schematics showing the optimization process. (C,D) Max intensity projections of the axial 
stack to the x-y plane (MIP-xy). (E,G) Peak signal measured at each plane with and without 
the correction applied as a function of depth. ‘^’ marks the approximate location of the focus 
prior to optimization. (F,H) Final correction applied to the LCSLM. (I) Schematic of the 
sample. Scale bars = 10 µm. λ = 755 nm. Configuration: Sweeping Beam. 

Optimization and imaging were performed at the same excitation wavelength. An 
improvement in beam focusing is expected to yield an increase in the 2PEF intensity, thus 
signal enhancement percentage was computed as SE = 100 ( ) /on off offS S S× − , where Son and 

Soff refer to the 2PEF intensity measured with and without the correction applied respectively. 

3.1 In and out-of-focus corrections 

Figure 3 shows optimization performed for both an in-focus and an out-of-focus object. The 
sample was a scattering epoxy resin phantom with embedded 4 μm beads, imaged through a 
glass coverslip as shown in (I). Aberrations are thus expected due to scattering and refractive 
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index differences between water used for immersion, glass and the epoxy material (refractive 
index ≈1.55) [26–28]. Zernike functions were chosen for optimization. 

Optimizations were performed for the same bead, but starting from either a point at the 
approximate center of the bead (A) or slightly above the bead (B). In both cases, axial image 
stacks were acquired to monitor for axial shift as well as signal improvement. Max intensity 
projections to the x-y plane (MIP-xy) with and without the correction applied are shown in 
(C) and (D) for the in-focus and out-of-focus case respectively. As shown in the axial peak-
signal plots (E,G), when optimization was started on an object that was not within the same 
axial plane as the focus, wavefront optimization both adjusted the depth of the focal point to 
coincide with the center of the bead, and optimized and improved peak signal similarly to the 
case where optimization was started at the correct axial position. The differences seen in the 
final corrections (F) and (H) can be accounted for by the fact that in the out-of-focus case, the 
wavefront adds axial translation in addition to performing correction. This result shows that 
optimization can be achieved without beam-constraints so long as a discrete object is present. 
In all subsequent experiments, the reference object used for optimization was brought into 
focus before starting the optimization process. 

3.2 Comparing Zernike and Hadamard functions 

To test whether our signal-based scheme can be utilized to correct for the effects of heavy 
scattering, the coverslip in the above experiment was replaced with a piece of scattering tape 
as shown Fig. 4(J). As can be seen in (A), in this case, the heavy scattering makes the bead 
difficult to resolve. As described previously, Hadamard functions would be expected to better 
represent the wavefront compared to Zernike functions in a scattering sample. Figure 4 thus 
compares corrections obtained with Zernike and Hadamard functions. In both cases, both a 
fast optimization (16 functions) and a slower optimization (60 functions) were performed for 
comparison (see Appendix 1 for function details). 

For the fast correction, Zernike function optimization took ~24 seconds, but shows no 
significant improvement in the image (B). However, Hadamard function optimization, which 
took 22 seconds, yielded a SE≈230% (C). For a slower correction, optimizing with 60 
Zernike functions yielded noticeable enhancement (SE≈50%) as seen in (D), which took 73 
seconds while a 70 second Hadamard function optimization yielded a superior enhancement 
(SE≈357%) as shown in (E). When comparing the corrections (F-I), it can be seen that 
Hadamard functions are able to capture the randomness of the wavefront better than the 
Zernike functions. The Hadamard optimization was performed using low order functions 
represented by only 256 distinct segments on the LCSLM. This is consistent with other 
studies which show that measurable enhancement can be achieved even when using a small 
number of segments [22, 29]. While using higher order Hadamard functions is likely to yield 
better results, optimizing over a larger number of functions will increase computation time. 
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Fig. 4. Comparing bases for scattering corrections: Comparing optimization performed with 
Zernike vs. Hadamard functions on a scattered excitation beam. Short optimization: Correcting 
function set Z16 (Zernike) and H256-16 (Hadamard). Long Optimization: Correcting function 
set Z60 (Zernike) and H256-60 (Hadamard). (A-E) are maximum intensity projections to the x-
y plane (MIP-xy). (A) Uncorrected. (B) After fast optimization using Zernike and (C) 
Hadamard functions. (D) After slow optimization with Zernike and (E) Hadamard functions. 
(F-I) are the corrections corresponding to (B-E) respectively. (J) shows the sample setup and 
(K) shows the axial peak signal variation with depth before and after correction. λ = 850 nm. 
Configuration: Standing Beam. Scale bars = 10 µm. 

3.3 Sample-specific correction functions 

One advantage of using a modal approach is that specific types of wavefront error can be 
targeted by choosing specific optimization functions. Figure 5 shows three cases where 
optimization functions have been chosen based on the sample. (A) shows an agar and glass 
composite sample that mimics a typical window used for in-vivo brain imaging experiments. 
(B) shows a case where high refractive index mismatch is present while (C) shows corrections 
achieved when imaging through scattering chicken tissue. Sets of Zernike functions were 
used for the first two samples, while Hadamard functions were used for the final sample 
(function sets Z16, ZR and H64 respectively, as defined in Appendix 1). Both the 
optimization time and the final enhancement vary by sample. 

The system and coverslip correction yielded an enhancement of SE≈25%. The spherical 
aberration correction yielded an enhancement of SE≈100%, and the chicken tissue scattering 
correction yielded an enhancement of SE≈95% as measured using a 4 micron diameter bead. 
The optimization time in each case was 16.1 seconds, 4.5 seconds and 96 seconds 
respectively. One important result here is that for samples where spherical aberration is 
present, significant improvements can be achieved in a short (~5 second) correction using the 
function set ZR. This is in agreement with Booth et al. [27], who have shown computationally 
that the wavefront error introduced by refractive index mismatch can be well approximated 
by several orders of Zernike spherical aberration functions. 
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Fig. 5. Comparison of optimizations performed on 4 micron diameter beads embedded in 
various samples: The functions were picked to match the expected wavefront error. (A) System 
and coverslip correction. (B) Spherical aberration correction. (C) Scattering induced by 
chicken tissue. Axial stacks were acquired with and without the correction applied. Each 
column shows the sample schematic (row 1), maximum intensity projection to the x-y plane 
(MIP-xy) (row 2), peak signal variation with depth (row 3) and the correction applied to the 
LCSLM (row 4). λ = 755 nm (A, B) and λ = 850 nm (C). Configuration: Sweeping Beam 
(A,B) and Standing Beam (C). Scale bars = 10 µm. 

3.4 In-vivo corrections 

Our correction method does require the presence of some fluorescent contrast that is 
physically constrained. Ideally, these sources of signal should be well distributed in all areas 
that are being imaged. In addition, they should provide a stable 2PEF signal. While 
fluorescent beads can be used for this purpose, introducing beads requires injection, which 
can disturb the brain, or in-utero surgery [7]. 

Rather than introduce external sources, we focused on utilizing structures already present 
in the brain as signal sources. We identified both astrocytes and blood vessels as possible 
candidates. We first attempted to use blood vessels carrying dextran-conjugated FITC 
(Fluorescein isothiocyanate), however the movement of red blood cells resulted in high levels 
of signal fluctuations. Instead, we chose to use astrocytes, which are distributed widely in the 
cortex, and can be easily loaded with a cell-specific red fluorophore (Sulforhodamine, SR101) 
via simple topical, or even intraperitoneal labeling [30–32]. Since SR101 is distributed via 
astrocytic gap junctions, it can spread to astrocytes > 500 microns deep into the brain within 
30-60 minutes of application. The excitation and emission spectrum of SR101 are 
complementary to GFP, GCaMP or Oregon Green labeling of neurons [33]. 

3.4.1 Window-only corrections 

As previously shown in Fig. 5(A), performing a correction using a bead imaged through a 
coverslip yielded ~25% improvement in signal, corresponding to correction of system and 
coverslip aberrations. Since the windows used for in-vivo imaging were made using a single 
coverslip, as shown in Fig. 6(A), it was expected that performing such a correction would also 
yield improved signal in-vivo. To test this correction, we introduced 4 µm diameter beads 
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onto the surface of the dura, under the cranial window during its construction. When 
comparing the axial image stacks with and without correction, the window correction itself 
shows improved 2PEF signal as seen in (B) and (C). 

The correction shown in (D), was achieved in ~18 seconds and yielded enhancement of 
SE≈56% as measured on the bead (F). When the same correction was applied to two 
astrocytes at a depth of z = 65 µm in the brain, enhancement values of SE≈22% and SE≈15% 
were obtained compared to an uncorrected excitation beam as shown in (E-H). 
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Fig. 6. Cranial window corrections: A correction was performed using a 4 µm diameter bead 
placed underneath the window on the surface of the dura. The correction obtained using the 
bead was applied to image astrocytes near the surface of the brain. Axial stacks were acquired 
with and without the correction applied. (A) Schematic showing the sample setup. (B) 
Maximum intensity projections to the x-z plane of the bead used for optimization. (C) Peak 
signal variation with depth for the bead. (D) The final correction applied to the LCSLM. (E,G) 
Max intensity projections to the x-y plane of astrocytes at a z≈65 µm with and without 
correction. (F,H) Signal variation along the dashed lines in (E) and (G). Optimization time was 
18 seconds. λ = 850 nm. Configuration: Sweeping Beam. Scale bars = 10 µm. 

3.4.2 Brain and window corrections using intrinsic guide-stars 

While just correcting for aberrations related to the cranial window is seen to be beneficial, 
next we set out to perform wavefront corrections to account for both window and brain 
induced aberrations. Figure 7 shows corrections achieved using astrocytes at various depths 
as the reference object. In each case, an astrocyte was chosen as an intrinsic guide-star and 
optimization was run to maximize the two-photon signal. In all cases, the optimized focus of 
the beam remained on the chosen astrocyte despite dense labeling of local somata and 
processes. Figures 7(A1-3) demonstrate that a single correction can improve imaging of 
astrocytes throughout the imaged volume. Figures 7(B)-7(D) show corrections optimized on 
single astrocytes. The correction shown in (C) on an astrocyte at a depth of z = 250 µm was 
achieved using the function set ZR, which targets spherical aberration and is seen to improve 
both signal as well as the visibility of processes. (D) shows a worst case scenario. Even 
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though the astrocyte is weakly labeled and is barely discernible over the background, the 
optimization process still provided some improvement in both signal and image quality. 
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Fig. 7. In-vivo corrections using astrocytes at various depths: (A) A correction was performed 
using the astrocyte at the center of the field of view (indicated by a ‘*’ in A0). An axial stack 
of this field of view (approximately 120x120x19 µm) was then acquired with and without this 
correction. (A0) shows the max-intensity projection to the x-y plane (MIP-xy). (A1-A3) shows 
the MIP–xy and signal cross sections of three astrocytes in the volume located at z≈35 µm, 
z≈40 µm and z≈25 µm respectively, showing that the correction remains valid across the 
volume. In (B,C,D), a correction was performed on the same astrocyte as imaged, for a range 
of astrocytes at different depths. The final LCSLM correction pattern is shown next to the 
signal variation plot. Function sets used for optimization were: (A) Z16, (B) Z16 followed by 
ZR, (C) ZR and (D) ZR. Optimization time was (A) 19 seconds, (B) 37 seconds, (C) 6 seconds 
and (D) 6 seconds. λ = 850 nm. Configuration: Sweeping Beam. Scale bars = 10 µm. 
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3.5 Physical extent of in-vivo correction applicability 

Figure 7(A) demonstrated our ability to improve signal and image quality for objects within 
the same field of view as the astrocyte used for optimization. However, broader applicability 
of a correction optimized at one location over the surrounding volume will reduce the number 
of repeated corrections that need to be calculated during in-vivo imaging. 

lateral coordinate [µm]
0 5 10

0.5
1

1.5
2

Si
gn

al
 [A

.U
.]

(A1) Reference Astrocyte

(A2)

0

1

2

CorrectedUncorrected

M
IP

 ( 
x-

y)

 

 

[r
ad

]

0

1

2

3

4

5

Co
rr

ec
tio

n

0

0.5

1
(C1) Partially Underneath Vessel

(C2)

0 2 4 6 8
0.2
0.4
0.6
0.8

1

Si
gn

al
 [A

.U
.]

lateral coordinate [µm]

M
IP

 ( 
x-

y)

CorrectedUncorrected

(B1) Underneath Vessel

(B2)

0 2 4 6 8

0. 2
0.25
0. 3
0.35

Si
gn

al
 [A

.U
.]

lateral coordinate [µm]

0

0.2

0.4

M
IP

 ( 
x-

y)

CorrectedUncorrected

0
1
2

0 5 10

0.5

1

1.5

Si
gn

al
 [A

.U
.]

lateral coordinate [µm]

CorrectedUncorrected

(D1) An astrocyte 478 µm away

(D2)

M
IP

 ( 
x-

y)

 

 

lateral coordinate [µm]  

 
0 2 4 6 8

0.4
0.8
1.2
1.6

Si
gn

al
 [A

.U
.]

0
0.5
1
1.5

z=30 µm z=120 µm z=240 µm (F1) (G1) (H1)

CorrectedUncorrected
0

1

2

CorrectedUncorrected

 

0 5 10

0.5

1

1.5

Si
gn

al
 [A

.U
.]

lateral coordinate [µm]  

0

1

2

CorrectedUncorrected

0 5 10
0.5

1
1.5

2

Si
gn

al
 [A

.U
.]

lateral coordinate [µm]

M
IP

 ( 
x-

y)

LATERAL APPLICABILITY

A

B

C
478 µm

A D

240 µm 

120 µm 

z=30 µm 

AXIAL APPLICABILITY

(E)

 

Fig. 8. Spatial applicability of a single correction. Lateral: The image on the top left is a 3-D 
rendering showing the imaged volume indicating three astrocytes and a blood vessel (outlined 
in dashed white lines). A correction generated using an astrocyte (A) was applied to the same 
astrocyte (A), two nearby astrocytes (hidden by a vessel) (B,C), and another astrocyte ~478 
µm away laterally (D). The corresponding correction is (E). Optimization time was 22 
seconds. Axial: A correction generated at z = 30 µm was applied at two other depths (G,H). 
The corresponding correction is shown in Fig. 7(A). λ = 850 nm. Configuration: Sweeping 
Beam. Scale bars = 10 µm. 

The extent of validity of a correction can depend on sample properties as well as the type 
of correction performed. Figure 7(A) showed how a correction performed on an astrocyte at 
the center of the field of view remains valid over a volume. Figure 8(A), 8(B), 8(C) shows a 
similar situation where a correction made using one astrocyte provides some improvement 
when applied to two nearby astrocytes hidden by a vessel. When the same correction was 
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applied to another astrocyte 478 µm away as shown in (D), image quality improved and 
yields SE≈40%. Re-optimizing at the same location yielded a higher enhancement of 
SE≈60% as previously shown in Fig. 7(B). These results show that while local structure can 
have an effect on corrections, they can remain valid laterally for hundreds of microns. 

Figure 8 also shows the axial validity of a correction generated at z≈30 µm. The 
correction is still found to be valid at z≈120 µm and z≈240 µm, but is seen to become less 
effective with increasing depth. These in-vivo corrections were achieved in a relatively short 
amount of time of 5-37 seconds. 

4. Discussion 

We have demonstrated a simple in-vivo two-photon wavefront correction scheme which 
generates corrections quickly, without image acquisition or beam constraint. The function 
type used for correction can be freely varied to match the sample, so the scheme can correct 
both aberrations as well as scattering. Low order corrections performed in in-vivo mouse 
brain were found to be valid over hundreds of microns from the point of optimization. 

The benefits of our approach make it well suited for in-vivo brain imaging, where 
adaptive optics promises to improve penetration depth and resolution without requiring 
greatly increased laser power. In-vivo brain imaging studies focusing on functional recording 
of neuronal activity require multiple regions to be surveyed within a given experiment. 
Animals are either anesthetized or, increasingly, awake and head fixed, both of which impose 
constraints on the duration of imaging experiments. Both of these factors make it 
inconvenient to utilize wavefront correction schemes that take a long time to optimize. 

Another concern when performing adaptive optimization is that the process requires 
additional sample exposure to the excitation light. In our approach, corrections can be 
generated at much lower excitation power levels than are typically used for imaging: in most 
cases the power was lowered during optimization so that the 2PEF signal was 2-10 times 
lower than for imaging. In addition, since corrections are valid over hundreds of microns, and 
because optimization is performed without image acquisition, additional light exposure can be 
localized to small regions, potentially outside of the required field of view. Thus, while our 
scheme does not provide orders of magnitude improvements in signal, its ability to be 
recalculated at different sites in less than 60 seconds, yielding up to 100% signal 
improvements makes it feasible for routine in-vivo use. 

In exploring the types of aberrations affecting signal and the effects of each correction, we 
note that in many cases, just correcting for spherical aberration can produce marked 
improvements, and can be achieved in around 5 seconds using a simple object at the surface 
of the brain. Rather than utilize a single spherical aberration correction, we found it useful to 
correct up to five orders of spherical aberration with the function set ZR. This recognizes that 
the standard optical window configurations used in in-vivo brain microscopy cause marked 
aberrations that are well suited to Zernike function correction. For example, we have found 
that wavefront corrections performed on thicker windows made of two coverslips yielded 
>100% enhancement when correcting only for the coverslips. Hence spherical aberration 
should be the first aberration to be corrected for. In cases where an objective with a correction 
collar is used, adjusting the collar will reduce spherical aberration, before starting the 
optimization process. In addition to spherical aberration, we performed corrections using 16 
low order Zernike functions. We found Hadamard functions to be useful when there were 
obvious signs of scattering as seen in Fig. 4(A), where the image of a single bead appears as 
many beads. In the case of Hadamard functions, we did not choose specific functions. In 
principal, it is also possible to combine multiple types of bases, such as Hadamard and 
Zernike to correct for both aberrations and scattering. 

In our in-vivo results, we did not explicitly single out the wavefront error coming from the 
microscope and the window itself, however for the results shown in Figs. 7 and 8, Zernike 
functions were used, with minimal improvements being seen with Hadamard functions, 
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suggesting that the dominating effects were aberrations. This is consistent with the fairly long 
range validity of our corrections within the brain, since the correction for aberrations within 
the microscope and the cranial window will be valid independent of the location within the 
sample. However, the smaller variations in the validity of corrections shown in Fig. 8 do 
highlight some sample-location specificity in our corrections suggesting that brain induced 
wavefront error was also corrected. In terms of limitations, the corrections generated by our 
optimization scheme depend on its acceptance threshold, which in turn is based on signal 
fluctuations. Because setting a high acceptance threshold only picks out the corrections that 
contribute strongly to signal improvement, the optimization scheme might not achieve the 
best possible correction for a given location. On the positive side, only picking out the most 
dominant parts of the correction seems to yield corrections that are valid over a large volume. 

In the scheme presented here, optimization times of 5-37 seconds are demonstrated to 
provide useful corrections over large field of view in in-vivo mouse brain. While a 2-photon 
signal-based optimization scheme that can achieve higher order corrections in around 5 
seconds has been demonstrated previously in fixed mouse brain tissue [4], these corrections 
were valid for only small fields of view, increasing the number of times optimization needed 
to be performed to image a larger volume. Comparing to image and scanning-beamlet based 
segmented pupil approaches demonstrated previously for in-vivo mouse brain imaging [3, 7], 
our faster modal approach achieves similar corrections while also requiring a less complex 
experimental setup. 

In conclusion, we have demonstrated a simple signal-based wavefront correction scheme 
that uses the 2PEF signal as the feedback. The optimization scheme has modest hardware 
requirements and can be implemented on a single LCSLM in a configuration compatible with 
standard patterned photo-activation [8, 9]. 

Appendix 1: Function definitions 

The correction functions used in our scheme were generated using the definitions presented 
below and in both cases the minimum and maximum value of each function was mapped to 
the lowest and the highest phase retardation value of the modulator. 

Zernike functions m
nZ  as defined by Thibos et al. [24] were used. The definitions are 

reproduced below: 
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Here, ρ and θ are the radial and angular coordinates. Each Zernike function m
nZ  is described 

by an order n and an azimuthal frequency m. The order n takes integer values with 0 being the 
minimum. For a given order n, the only allowed values of m vary from –n to n in steps of 2. 
Since each function is described by two indices n and m, the index k used to describe the 
functions using a signal index. We set the normalization constant N = 1 for all functions in 
order to avoid phase-wrapping the initial set of functions used for optimization. 

The nth order Hadamard matrix is defined by the relation [34]: 

 T
n n nH H nI=  (5) 
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where all the elements of H are either +1 or −1. 
Relevant orders of Hadamard matrices can be generated using: 

 2
n n

n
n n

H H
H

H H

 
=  − 

 (6) 

To generate the Hadamard correction functions with n discrete elements, The nth order 
Hadamard matrix was generated and each column was rearranged into a 2-dimensional matrix 

of dimensions n  x n  to represent wavefronts. Functions were indexed so that the kth 
column of the Hadamard matrix formed the kth correction wavefront. 

Since various functions were used, they are identified in Table 1 below. The number of 
segments used to compute the wavefronts is indicated in the ‘Segments’ column. 

Table 1. Functions used for optimization 

Identifier Basis Segments Functions 
ZR Zernike 10,000 k = (12,24,40,60,84) 
Z16 Zernike 10,000 k = 5 to 20 
Z60 Zernike 10,000 k = 1 to 60 
H64 Hadamard (order = 64) 64 k = 1 to 60 

H256-60 Hadamard (order = 256) 256 k = 1 to 60 
H256-16 Hadamard (order = 256) 256 k = 5 to 20 

In the case of Zernike functions, specific sets of functions were chosen based on the 
sample. For Hadamard functions, no special functions were selected. 
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