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Methicillin-resistant Staphylococcus aureus (MRSA) represents a
serious threat to the health of hospitalized patients. Attempts to
reduce the spread of MRSA have largely depended on hospital
hygiene and patient isolation. These measures have met with
mixed success: although some countries have almost eliminated
MRSA or remained largely free of the organism, others have seen
substantial increases despite rigorous control policies. We use a
mathematical model to show how these increases can be explained
by considering both hospital and community reservoirs of MRSA
colonization. We show how the timing of the intervention, the
level of resource provision, and chance combine to determine
whether control measures succeed or fail. We find that even
control measures able to repeatedly prevent sustained outbreaks
in the short-term can result in long-term control failure resulting
from gradual increases in the community reservoir. If resources
do not scale with MRSA prevalence, isolation policies can fail
‘‘catastrophically.’’

Methicillin-resistant Staphylococcus aureus (MRSA) is one
of the most widespread and virulent nosocomial patho-

gens. It is usually resistant to multiple antibiotics, making
infections difficult to treat, and accounts for an increasing
proportion of staphylococcal infections among hospitalized pa-
tients in countries where it has become established. It appears to
add to the total burden of staphylococcal infection in hospitals,
rather than replacing methicillin-sensitive S. aureus (MSSA), and
is associated with a sharp rise in mortality attributable to
staphylococcal infection (1). Although S. aureus is carried
asymptomatically in �30% of healthy adults (the vast majority
being MSSA), it is a major cause of invasive disease among
hospitalized patients.

The recent emergence and transmission of strains with full
resistance to glycopeptides (2) (until recently, the only antibiotic
for which resistance had not been seen in vivo in S. aureus) and
reports of resistance to linezolid (3, 4), the only commercially
available oxazolidinone (the only new class of antibiotic for �20
years), make development of effective policies to control the
spread of MRSA an urgent priority.

At present, control policies primarily consist of the isolation of
both infected and colonized (asymptomatic) patients and in-
creased staff hygiene measures (principally handwashing com-
pliance). Both of these are intended to reduce patient-to-patient
transmission mediated by transiently colonized healthcare work-
ers. In the strongest form of isolation, patients carrying MRSA
are placed in dedicated isolation units (IUs). If operated appro-
priately with designated staff, such units should be effective at
preventing almost all transmission to patients elsewhere in a
hospital.

Despite a body of evidence that such measures can, in
combination, be effective at reducing transmission (5), they have

met with mixed success both at the hospital and national levels.
Some countries, such as Denmark and The Netherlands, have
succeeded in maintaining MRSA at very low levels by using
control policies based on the prompt isolation of MRSA-positive
patients (6, 7). In this situation, MRSA is limited to ‘‘epidemic’’
behavior; long periods without MRSA are punctuated by short
outbreaks of infection, often traceable to imported cases. Else-
where, similar approaches have failed and an endemic state is
attained (i.e., MRSA is continuously present). Thus, in England
and Wales, the ‘‘search and destroy’’ approach recommended by
national guidelines was abandoned by many hospitals in light of
limited resources (8). Subsequent guidelines (which advocated
an approach targeted to protect the most vulnerable patients)
were forced to recognize that higher MRSA levels had made the
original more stringent control measures infeasible (9). Over this
period, MRSA increased from �2% of S. aureus bacteraemias in
1990 to 42% in 2000 (10, 11).

Currently, MRSA as a proportion of invasive S. aureus isolates
ranges from �1% in hospitals in Denmark and the Netherlands
to 44% in the United Kingdom and Greece (data are from
European Antimicrobial Resistance Surveillance System, www.
earss.rivm.nl).

At the hospital level, stringent isolation measures in conjunc-
tion with other interventions appear, in some cases, to have
contributed to controlling MRSA, whereas in others, these
measures have been unable to prevent MRSA from becoming
endemic (5). Local control failure is often associated with
primary isolation facilities becoming overwhelmed (12–14).

Here we use a simple stochastic mathematical model of MRSA
transmission to explore the conditions under which isolation
policies can successfully control MRSA transmission, both pre-
venting an endemic state, and eradicating MRSA where it is
already endemic. The results show that control by isolation
induces bistability and that a switch from low to high prevalence
can be explained in terms of catastrophic failure of control. We
conjecture that this dynamic has relevance for all situations
where curtailment of the infectious period is used as a control
measure and the effort is resource-limited.

Methods
To capture transmission dynamics without isolation, we modeled
a fixed capacity hospital, where patients may either be MRSA
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positive (whether infected or colonized) and infectious, or
MRSA negative and susceptible to infection�colonization. We
assumed that all MRSA transmission took place in the hospital.
No explicit assumptions about the transmission route were
made, but new cases occurred at a rate proportional to the
product of the number of colonized�infected and susceptible
patients in the hospital (the mass action assumption) (15). When
discharged from the hospital, patients entered a population of
former patients, where they were either free of MRSA or
colonized with the organism. The rate of readmission of former
patients decreased as the time since hospital discharge increased,
in accordance with observed data (modeled by allowing former
patients to move into compartments with lower hospitalization
rates). Every discharged patient was immediately replaced by a
new admission from the community. We assumed no difference
in the rate at which MRSA carriage was lost between hospital-
ized patients and those in the community.

To investigate the impact of isolation, we considered the
addition of a fixed capacity IU. The unit was assumed to prevent
all transmission from isolated MRSA-positive patients to
MRSA-negative patients elsewhere in the hospital. All patients
were still admitted to the general hospital population, but
provided there was spare isolation capacity, the rate at which
MRSA-positive patients were isolated was set to the rate at
which these patients were detected. Otherwise, it was taken as
the minimum of the detection rate and the rate of discharge of

isolated patients. We assumed that a fraction of isolated patients
were successfully cleared of MRSA carriage at the time of
discharge from the IU. This model reduces to the previous model
if the number of isolation beds or the isolation rate is set to zero.

The differential equations specifying these models in deter-
ministic form are given in the appendix and the model illustrated
schematically in Fig. 1. In the stochastic formulation the differ-
ential equations were replaced by corresponding Poisson pro-
cesses with time-varying intensities. These stochastic models
were investigated with Monte Carlo simulation experiments
using standard techniques (16).

Estimates of Reproduction Numbers. In the early stages of an
epidemic when prevalence is very low or in settings without
endemic MRSA the depletion of susceptibles can be ignored and
the epidemic approximated by a branching process. If the
patients who are MRSA positive on admission can be distin-
guished from the new hospital-acquired cases this approximation
allows estimates of the reproduction number associated with a
single hospital admission (RA).

Standard approaches to estimating reproduction numbers
using the number of primary and secondary cases condition on
extinction of the epidemic, and are thus not suitable when the
reproduction number could be greater than one. The modified
approach we used overcomes this problem by considering out-
breaks above a threshold size to be censored (17). We assumed
a geometric distribution for the number of secondary cases
caused by each primary case and a threshold level of one case per
week to obtain a maximum likelihood estimate for RA.

Parameter Values. Parameter values were estimated from sources
identified by a systematic review of the MRSA control literature
(Table 1) (5). No published data were available for patient
readmission rates, and for these we used data from unique
patient episodes over 1 year from a 1,000-bed teaching hospital
(5). Maximum likelihood estimates were obtained for patient
discharge and readmission rates and persistence of MRSA
colonization.

Results
Dynamics Without Isolation Measures. In the absence of effective
isolation of patients carrying MRSA, two key numbers govern
the dynamics: RA, the single admission reproduction number,
and R0, the basic reproduction number. We define RA as the
average number of secondary cases caused by one primary case

Fig. 1. Flow diagram of the model with the IU.

Table 1. Parameters used in the model

Parameter Symbol Default values (range) Source

Transmission rate � Chosen to give R0 values
ranging from 1.1 to 1.3

Isolation rate, days�1 � 0.1 (0.02–0.1)
Number of beds in isolation unit ni 20 (5–30)
Number of beds in hospital n 1,000
Community population size Nc 1.7 � 105 Defined by other

parameters
Mean duration of carriage, days 1/� 370 Scanvic et al. (18)
Mean length of stay, days 1/� 8 Local data
Readmission rate

High, days�1 � 0.0057 Local data
Low, days�1 � 0.00063 Local data

Rate of change from high to low
readmission rate, days�1

� 0.030 Local data

Mean length of stay in isolation, days 1/� 20 Fitzpatrick et al. (19)
Proportion of isolated patients cleared

of MRSA
	 0.25 Fitzpatrick et al. (19)
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when other patients are susceptible during a single hospital
admission of the primary case. R0 is the average number of
secondary MRSA cases caused by one primary case over all
admissions of the primary case until carriage is cleared, again
assuming that all other patients are susceptible. RA corresponds
to the basic reproduction number used in previously published
hospital epidemiology models (20–22). In contrast, we explicitly
consider repeated admissions in calculating R0; these are im-
portant because MRSA carriage can persist for several months
(18). Clearly, RA 
 R0.

Three distinct patterns of behavior are possible. If 0 � R0 �
1, there can never be a major outbreak (regardless of the value
of RA). Although some transmission will still occur, it will be
restricted to sporadic self-limiting clusters of secondary cases
when primary MRSA cases are imported into the hospital. When
R0 � 1 and RA � 1, the admission of an MRSA-positive patient
to the hospital is able to cause an immediate major outbreak
leading to the rapid establishment of endemic MRSA. Faced
with repeated introductions, endemic MRSA will be inevitable.

The third scenario is especially pertinent (Fig. 2 a–c, e, and g).
When R0 � 1 but RA � 1, there will be insufficient transmission to
sustain an outbreak in the short term: again sporadic, self-limiting
transmission will be seen, and all outbreaks will appear to be
controlled. However, repeated admission provides an opportunity
for an infectious case to spark many such self-limiting outbreaks,
each potentially resulting in several further cases. There is now a
chance that the linked outbreaks become more frequent and of
greater duration, eventually resulting in endemic MRSA. If there
are repeated challenges, despite the short-term successes, eventual
long-term control failure is inevitable.

For the single run with the lowest transmissibility (Fig. 2 a–c,
blue line, R0 � 1.1), MRSA levels remain low for �2 years.
During this period, only clusters of limited extent are seen.
Eventually, as community prevalence rises and the number of
imported cases increases, MRSA becomes endemic to the hos-
pital. Similar patterns on a shorter time scale are seen for higher
R0 values. The 10th percentile lines show that many epidemics
remain at very low levels for several years before taking off.

There are three other important features of these results. First,
although MRSA prevalence approaches a steady endemic level
in a sigmoidal fashion, there are large stochastic f luctuations in
the hospital prevalence. Because these may appear as trends
even over time scales as long as 3 years, naı̈ve assessments of such
time series may mistakenly attribute these changes to external
causes (5). Second, although the increase in hospital prevalence
is driven by a build-up of cases in the community (Fig. 2 b and
e), the absolute community prevalence remains low. For the
scenario most representative of U.K. hospitals (blue line), the
predicted community prevalence of between 1% and 2% is in
accordance with estimated values (23). This stable community
prevalence is predicted even though all transmission is assumed
to occur in the hospital. Third, although the early stages of the
epidemic are dominated by hospital-acquired cases, over time,
the ratio of new nosocomial acquisitions to imported cases
decreases, approaching a stable level that is independent of the
within-hospital transmission rate (Fig. 2g).

Model with Isolation Measures. When a 20-bed IU is introduced to
control endemic MRSA that has reached equilibrium levels
(Figs. 2 d, f, and h), we find that, in the low and intermediate
transmissibility scenarios, MRSA is always eradicated eventu-
ally, although this takes several years. Again, stochastic f luctu-
ations mean that there are frequent and extended reversals in
trend. For the intermediate level of transmissibility, there is large
variation between simulation runs in the time to eradication,
which frequently exceeds 15 years. Eradication occurs even
though the IU is initially fully occupied (Fig. 2h, dashed lines),
and no effective control measures are in place for unisolated

patients. During the course of eradication, the proportion of
MRSA cases that are newly acquired decreases substantially
(Fig. 2h, solid lines).

In contrast, in the high transmissibility scenario the IU is again
initially fully occupied, but thereafter it remains at full capacity.
Eradication is not achieved, and the system reaches a new stable
endemic level only slightly lower than that achieved without
control measures.

An unusual and important feature of this system is that the
final state can depend critically on the timing of interventions
(Fig. 3). This is a consequence of the existence of two stable
equilibria over a wide range of parameter values. When isolation
is in place from the start of the epidemic (Fig. 3 Upper) the
system reaches the low stable equilibrium (total eradication, or

Fig. 2. Simulation output from the stochastic model with three R0 values: 1.1
(blue); 1.2 (red); and 1.3 (black). Respective RA values are 0.77, 0.85, and 0.92.
(a) Hospital prevalence over 2 years. Ten hospitalized patients were initially
colonized with MRSA. (b) Corresponding community prevalence. (c) The same
simulation runs over 20 years (solid lines). Dashed lines indicate 10th and 90th
percentiles calculated from 1,000 simulations conditioning on fadeout (i.e.,
extinction of the epidemic) not occurring (40, 16, and 9% of simulations faded
out by chance for R0 values of 1.1, 1.2, and 1.3, respectively). (d) Hospital
prevalence after opening a 20-bed IU starting from the endemic level reached
in c. Dashed lines indicate 10th and 90th percentiles from 1,000 simulations. (e
and f ) Community prevalence corresponding to c and d. (g and h) Ratio of new
hospital-acquired to imported cases corresponding to single runs in c and d (1
year moving average). Dashed lines in h shows the number of isolated patients
(1 year moving average).
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a very low level of MRSA). At this low equilibrium, the IU is
never full, and MRSA patients are isolated as soon as they are
identified. However, if the IU is introduced when MRSA is at a
high-level (Fig. 3 Lower), it will fill up immediately; now the rate
at which newly detected MRSA cases can be isolated is limited
by the rate at which patients leave the IU. Thus, the high
equilibrium level is unaffected by the detection rate, but de-
creases as the IU size increases. The greater patient turnover
associated with the larger IU enables faster patient isolation and
hence decreased transmission. In contrast, the level of the lower
equilibrium decreases with a higher detection rate, but is not
affected by the IU size because there is always spare capacity.

Although Fig. 3 represents the deterministic equilibria, in prac-
tice stochastic effects will be important in populations as small as
those under consideration here. These effects mean that there can
be a nonnegligible probability of the system jumping (by chance)
from the low to the high stable equilibrium (Fig. 4). Three runs are
shown, with identical starting conditions and parameter values. In
run A, a low prevalence is maintained for �10 years, despite
occasional episodes when the IU becomes full. However, unusually
large outbreaks lead to increases in the community prevalence,
resulting in more patients who are MRSA positive on admission.
Eventually, the IU becomes full on an almost permanent basis,
causing the time to effective isolation of patients to increase,
pushing the system to the high endemic state.

Run B shows that the system can stay in the low endemic state
over long periods, without explosive increases in MRSA num-
bers. In run C, a third pattern is seen: fadeout occurs (i.e., the
epidemic comes to an end) after �5 years. Even though, in this
case, an endemic state never becomes established, MRSA is able
to persist for a long time because of multiple reintroductions that
cause a series of clusters of cases.

The Fig. 4 Inset summarizes the behavior of 1,000 such
simulations. After 5 years, �36% of runs have faded out by
chance, as in run C. The rest are at the low stable level. With
time, the runs that have not faded out all have some probability
of moving to the high endemic level. After 20 years, in a
substantial proportion of the 41% of runs that have not faded
out, stochastic control failure has occurred and the system has
reached the high endemic level. Once at the high level, the
chance of moving to the low endemic level without further
intervention is negligible.

Estimates of RA and R0. To our knowledge, there are no studies
allowing direct estimates of R0 for MRSA. However, estimates
for RA can be obtained by using a branching process approxi-
mation when patients who are MRSA positive on admission can
be distinguished from the new hospital-acquired cases.

A systematic review identified two major studies allowing
direct estimates of RA (5). The first came from a report describ-
ing long-term successful control over a period of 10 years,
followed by ultimate control failure in a 1,000-bed tertiary
hospital employing an MRSA IU (Fig. 5) (12). We obtained a
maximum likelihood estimate for RA over the period 1985–1995
(and 95% confidence interval) of 0.57 (0.48, 0.68). The 1985–
1989 and 1990–1994 data alone gave RA estimates of 0.34 (0.23,
0.51) and 0.55 (0.41, 0.74), respectively.

Therefore, there is good evidence that RA remains below one
throughout the entire period for which it can be estimated. No
direct estimates of R0 values are possible with these data, but using
independent estimates of readmission and loss of carriage rates (see
Methods) gave 95% confidence intervals for R0 estimates over the
three periods of (0.68, 0.96), (0.32, 0.72), and (0.58, 1.04). These
results indicate that, for much of this period, R0 could have been
close to one. Thus, even before the explosive increase in MRSA
numbers seen after 1994, there was evidence that the local control
policy was vulnerable to long-term failure. Either the emergence of
a new strain with enhanced transmissibility or persistence, or
reduced effectiveness of isolation measures resulting from local
resources becoming overwhelmed (possibly initially because of
imported MRSA cases acquired at other hospitals) may have been
enough to hasten the transition to endemicity resulting in the
observed control failure. The estimated R0 values will be biased
toward zero if some transmission events were missed, if persistence

Fig. 3. Hospital prevalence at the stable equilibria (deterministic model) as
a function of IU size, isolation rate (�), and R0.

Fig. 4. Three simulation runs with the same parameter values [10-bed IU,
R0 � 1.2, isolation rate (�) � 0.02] and the same starting conditions (0.1% of
community population initially carrying MRSA, all with a low hospitalization
rate). Run A shows a stochastic transition from the low to high stable state; run
B shows persistence in the low stable state; run C shows stochastic fadeout.
Hospital (solid lines) and community (dotted line) prevalence are shown. Gray
bars underneath run A indicate periods when the IU is full. (Inset) Results at
5-year intervals of 1,000 simulations with the same parameters and starting
conditions. The percentage of simulation runs where stochastic fadeout has
not occurred is shown in the column headed Prev. � 0.
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of carriage was underestimated, or if the patients most likely to
acquire MRSA were also those most likely to be rapidly readmitted.
The branching process approximation will also cause some bias in
the same direction, although this is likely to be small in the early
stages of an epidemic (17). Together, these biases may mean that
the true R0 value was in fact above one for much of the study period.

The second source uses data from returned questionnaires
sent to all Dutch hospitals challenged with MRSA (24). The
experience in The Netherlands, where MRSA has been con-
trolled, provides an important contrast to the U.K. Esveld et al.
(24) reported that source cases of MRSA imported into hospitals
led to secondary spread on four of 73 occasions when patients
were immediately isolated according to national guidelines.
When there was a delay in isolation or national guidelines were
not followed, there was found to be at least one secondary case
in 19 of 95 cases. Estimated RA values (and 95% confidence
intervals) are 0.06 (0.02, 0.14) for patients who were isolated
immediately, and 0.25 (0.15, 0.40) when there was a delay.
Corresponding 95% confidence intervals for R0, calculated as
above, are (0.03, 0.20) and (0.21, 0.56). Thus, in this case, we can
be confident that R0 was below one, and MRSA strains should
be controlled in the long-term provided control measures are
flexible enough to cope with transient spikes and no large
increases in transmissibility or persistence of carriage are seen.

Discussion
For MRSA, as with all infectious diseases, ultimate control depends
on keeping the mean number of secondary cases caused by each
case below one. In a nonendemic setting, provided that control
measures are flexible enough to withstand transient increases in
pathogen numbers, if the average number of secondary cases is less
than one, all battles against MRSA will eventually be won and so
will the war. However, when carriage can persist for a long time, the
secondary cases caused by each case may be distributed over several
hospital admissions. Reducing only the secondary cases generated
during a single admission to below one will lead to control in the
short term, but if sufficient transmission occurs during readmis-
sions, an endemic state can occur by stealth: all battles against
MRSA will initially be won, but there will be some probability of
losing the war. We believe these results have much wider applica-
bility; the model structure is appropriate for any pathogen that is
primarily hospital-acquired but can be carried asymptomatically for
periods long enough to make reintroduction from the community
important.

Prompt and effective patient isolation can contribute to
control by reducing transmission. However, because the isolation

rate decreases when isolation capacity is exceeded, for a wide
range of parameters, high-level persistence can occur even
though the control measures could have prevented such a high
level from becoming established. This result should apply equally
to any effective intervention that fails to scale with the size of the
problem. In particular, isolation methods such as staff cohorting
(where staff numbers are the limiting factor), if effective at
reducing spread, should be subject to similar effects. More
generally still, any strategy to control infectious disease (in
hospitals or the community) by identification and removal of
infectious cases will be vulnerable to such catastrophic control
failure if the removal process is constrained.

We found that stochastic f luctuations in MRSA numbers
provided one mechanism able to account for transitions from the
low to high stable state. Control failure at nearby hospitals
provides another. Increases in MRSA numbers at one hospital
could be expected to lead to more imported MRSA cases at
neighboring hospitals (caused by transfers and overlapping
catchment areas). Such increases could cause a hospital to move
from low to high stable MRSA levels. This would explain the
observed spatial clustering of hospitals with high MRSA levels.

Limitations and Future Developments. The major simplification in
these models has been in treating the patient population as
homogenous. In practice, those most vulnerable may have longer
lengths of stay, higher readmission rates, and require more staff
contact, resulting in more transmission to other patients. Patient
heterogeneities are likely to increase the propensity of MRSA to
cause an epidemic, but, for a given R0, may give a reduced
prevalence. Targeting such high-risk groups for special attention
should increase the cost-effectiveness of any control program.

The assumption that there is no transmission in the commu-
nity cannot be strictly correct, although as a first approximation
we believe it is reasonable. Studies have repeatedly found little
evidence of sustained community spread of important nosoco-
mial MRSA strains, and most patients carrying MRSA in
community prevalence studies have had recent hospital exposure
(25, 26). Nonetheless, as Smith et al. (27) observe, even limited
community transmission, although difficult to detect, may pro-
foundly alter the dynamics. Quantifying such transmission is an
important area for future research.

Recently, MRSA strains have emerged that do seem to spread
well in the community. It seems that these have fewer antibiotic-
resistance determinants than common hospital strains, and
extensive hospital transmission has not been documented (28).
Their distinct epidemiology suggests that these strains should not
be considered in the same framework as nosocomial MRSA. For
strains where transmission in more than one setting is important,
the theoretical framework proposed by Smith et al. (27) would
be required.

We have assumed that only true MRSA carriers are isolated.
Further work is required to understand the dynamic conse-
quences of false positive and negative results, and their interac-
tion with screening effort.

Clinical and Policy Implications. Preventing control failure is a
matter of ensuring that sufficient resources can be made avail-
able to cope with transient outbreaks. In this regard, the optimal
allocation of resources should be determined at regional or
national rather than local organizational levels. A policy that
allows temporary reallocation of nonlocal resources (such as
isolation beds or staff time) when local resources became fully
engaged should use no more resources than a policy allocating
fixed resources to each hospital, but should have a much greater
ability to withstand such challenges.

Monitoring RA (and estimating R0), could represent an im-
portant component of routine surveillance activities in settings
free of endemic MRSA. Such key parameters can be estimated

Fig. 5. Time series of MRSA cases detected at a large teaching hospital
employing an IU to control MRSA (from Farrington et al., ref. 12). Dashed line
indicates the timing of a relaxation of the control measures necessitated by
the increasing MRSA numbers.
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even when detailed epidemiological and genotyping data are not
available (29, 30). By identifying policies vulnerable to long-term
failure, additional control measures could be taken at an early
stage. A similar approach has been advocated for monitoring
community pathogens (31).

The model emphasizes the importance of the readmission of
already-colonized MRSA patients in determining the long-term
dynamics and the role of prompt isolation in curtailing trans-
mission. This suggests that a policy of screening newly admitted
patients for MRSA coupled with rapid and effective isolation
and treatment could make a major contribution to controlling its
spread. Discharge screening followed by eradication therapy or
immediate isolation on readmission could also be an effective
strategy. We believe that the clinical importance of MRSA
should make the rigorous evaluation of such policies a research
priority.

Our results show that, although eradication of endemic MRSA
is possible, it is far easier to prevent it from becoming endemic
in the first place (Fig. 3). With this in mind, we note that MRSA
exhibits an ‘‘epidemic’’ population structure, characterized by
repeated waves of new successful clones (32). The observed
temporal patterns suggest that such clonal replacements are
likely to have been driven by external causes, such as changing
patterns of antibiotic use, rather than by direct competition. If so,
the beginning of each new wave, when prevalence is low,
provides an opportunity for isolation to prevent establishment of
a new clone, with ultimate eradication following as a result of
changing selection pressure. This may have occurred in Den-
mark, where the prevalence of the predominant MRSA phage
type 83A fell from 18% of all hospital S. aureus isolates in 1969
to 0.6% in 1989 (6). Similar reductions in the predominant
MRSA phage type were seen in the U.K. and elsewhere over the
same period. In Denmark, however, control policies were able to
prevent new strains from becoming established. In the U.K., as
elsewhere, new epidemic clones later emerged and became
endemic to many hospitals. To be effective, detailed surveillance
would be required to identify the epidemic threat posed by
emerging strains.

Appendix
The deterministic version of the basic model can be described by
the differential equations:

dy
dt

� �y�n � y� � �y  � yc  � y	c � �y [1]

dyc

dt
� �y � ��  �  ��yc [2]

dy	c
dt

� � yc � ��  ��y	c. [3]

Here, y represents the number of hospitalized (unisolated)
patients carrying MRSA, and yc and y	c represent the number of
MRSA carriers in the community with high and low readmission
rates, respectively. Definitions and default values of parameters
are given in Table 1. Expressions for R0 and RA are given in the
supporting information, which is published on the PNAS web
site.

For the model with isolation measures hospital and commu-
nity populations are not fixed and the full set of differential
equations is needed to model the system:

dy
dt

� �xy � �y  � yc  � y	c � �y � 
�y, z� [4]

dx
dt

� ��xy  �y  �xc  �x	c [5]

dz
dt

� 
� y, z�y � �z [6]

dyc

dt
� �y  ��1 � 	�z � ��  �  ��yc [7]

dxc

dt
� � x  �yc  �	z � ��  ��xc [8]

dy	c
dt

� � yc � ��  ��y	c [9]

dx	c
dt

� � xc  �y	c � ��  ��x	c. [10]

Here x represents the population size of those free of MRSA in
the hospital and xc and x	c the corresponding population sizes in
the community with high and low hospital admission rates. The
patient isolation rate, 
( y, z), is a function of the number of
isolated patients (z) and the number of colonized patients (y):


� y, z� � � � y if z � ni

min��y, �ni� if z � ni
. [11]
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