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P
lants are of pivotal importance to
sustain life on Earth because they
supply oxygen, food, energy, and
many valuable metabolites. All

plant constituents, including secondary
metabolites, some of which are used as
flavors, fragrances, colorants, or pharma-
ceuticals, are ultimately derived from pri-
mary products of photosynthesis through
multiple enzymatic steps encoded by the
genome of each plant. However, our
knowledge of how both primary and sec-
ondary metabolites are synthesized and
which genes are involved is far from com-
plete. A better understanding of metabo-
lite synthesis and the regulation thereof
will be increasingly important for improv-
ing the sustainability and efficiency of
useful plant production. Recently, the
availability of entire genome sequences of
Arabidopsis thaliana and rice and the de-
velopment of functional genomics tools
have allowed the elucidation of metabolite
syntheses by a systems biology approach
(1–3). The mining and exploitation of the
data obtained from genomics and the
related research areas of genomewide
transcriptomics, proteomics, and metabo-
lomics will bring us into a new era of un-
derstanding of biological systems (Fig. 1).

Sulfur is one of the essential nutrients
for all plants, required to synthesize the
key amino acids cysteine and methionine,
which in turn are needed to produce func-
tional proteins and many secondary me-
tabolites (4). Approximately 90% of the
reduced S is bound through these amino
acids. Sulfur is also needed in the func-
tional groups of coenzymes, such as biotin
and CoA. Many parts of the world have
low contents of sulfur in the soil. Al-
though plants have adapted to live under
sulfur-deficient conditions, the knowledge
of how this adaptation is accomplished
has been rather limited (5). Obviously, a
better understanding of the mechanisms
underlying this adaptation will allow us to
improve crop yields in poor soils.

In this issue of PNAS, Hirai et al. (6)
show significant progress exploring cellu-
lar processes by combining genomewide
transcriptomics and metabolomics under
deficiency of sulfur and nitrogen in the
model plant A. thaliana. This contribution
is one of the very first articles successfully
bringing our current knowledge closer to
understanding the important link between
genomic data and the function of metabo-

lites in plants. DNA array transcriptome
analysis was combined with metabolite
profiling and more specific targeted quan-
titative analysis. Both ‘‘-omics’’ approaches
generated a huge amount of data. The
authors had to develop novel bioinformat-
ics tools to integrate the data sets and to
generate gene-to-metabolite networks.
Although the article mainly deals with
primary metabolism, interesting conclu-
sions were also obtained for secondary
S-containing health beneficial metabolites,
such as glucosinolates and alliins. An ap-
proach similar to that of Hirai et al. (6),
but focusing entirely on secondary
metabolites, was introduced recently by
Goossens et al. (7), who combined cDNA-
amplified fragment length polymorphism
(AFLP) transcript profiling with targeted
metabolite analysis to map the biosyn-
thetic genes involved in alkaloid metabo-
lism. Because sequence information for
many medicinal plants is very limited, the
cDNA-AFLP transcript profiling provided
a very powerful tool to identify many can-
didate genes involved in the production of
secondary metabolites. Functional analysis
of these candidate genes will generate a
lot of data and might help to find not
only the biosynthetic genes of a particular
plant pathway but also master regulators
such as transcription factors that are in-
volved in plant secondary metabolism in
general. Such information is crucial for
applications to overcome, e.g., the low
product yield using cultivated plant cell
cultures (8).

The general problems encountered
when characterizing the plant metabolome
are the highly complex nature and the
enormous chemical diversity of the com-
pounds. The metabolome cannot be
computed from the genome (9). Plants
produce �200,000 metabolites (10), many
of which play specific roles in allowing
adaptation to specific ecological niches. It
has been estimated that 25–30% of the
genes of Arabidopsis encode enzymes of
metabolism (1). The range of chemical
properties sets a challenge to the analyti-
cal tools both for profiling multiple me-
tabolites in parallel and for quantitatively
analyzing the selected ones. This has
especially become obvious in secondary
metabolite analysis, which is far more
complex than metabolite profiling of pri-
mary metabolites. Metabolites have very
different chemical natures, which influ-

ence their extractability in various sol-
vents, pH requirements, and sensitivity for
extraction conditions (e.g., temperature,
pressure, time). As a consequence, if ap-
plying one general extraction system, it is
very likely that many metabolites remain
in the plant matrix and cannot be profiled.
On the other hand, if the accuracy of the
extraction systems is increased, fewer me-
tabolites are analyzed.

One of the key challenges of metabolite
profiling therefore is finding an optimal
balance between the accuracy and cover-
age of metabolite measurements. This can
be achieved by first splitting the metabolo-
mics platform into subgroups of
compounds sharing common chemical
properties from the perspective of extrac-
tion conditions and chromatography (Fig.
1). A similar strategy has already been
proposed in the domain of drug discovery
(11). Advances in instrumentation for me-
tabolite analyses are empowering us with
the ability to increase the coverage of me-
tabolites within a single analysis. For ex-
ample, Hirai et al. (6) used the Fourier
transform–ion cyclotron MS, with mass
resolution �100,000 and accuracy �1
ppm, which enables analysis and separa-
tion of complex metabolite mixtures based
on isotopic mass alone. More commonly,
GC�MS- and liquid chromatography
MS-based approaches have been applied
in plant metabolomics applications (10).

Following analytical measurements, the
role of data processing algorithms is to
detect the peaks in spectral data, match
the corresponding peaks across multiple
samples, and correct the peak intensities
caused by instrumental variability (nor-
malization). These methods enable us to
track differentially the metabolite levels
across multiple environmental conditions
or time points, even if some of the com-
pound identities are not known. Although
progress has been made in our ability to
differentially track large numbers of peaks
(11, 12), advances are still needed to
integrate spectral analysis with prior
(compound) information and improve
quantitative estimates by combining tradi-
tional analytical approaches with new
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statistical algorithms. The latter is particu-
larly important if integrating metabolom-
ics data across multiple platforms. In
addition, multivariate analyses of metabo-
lite data rely on some kind of distance (or
correlation) measure between the com-
pound profiles or with other data types.
Poor normalization may therefore bias the
correlation structure of data and lead to
erroneous conclusions (13). Once pro-
cessed, metabolite profile data can be rep-
resented as a matrix (Fig. 1) and can be
combined with other types of data such as
transcriptional profiles and explored for
major trends and associations by reducing
the dimensionality of data through linear
or nonlinear mappings. Hirai et al. (6)
used successfully the principal component
analysis and batch-learning self-organizing
maps for that purpose.

When studying plant secondary metab-
olites and their role in physiological re-
sponses to various environmental stress
conditions, we are also interested in find-
ing and identifying compounds that are
either unknown or not previously ana-
lyzed, so there is insufficient data avail-
able from the profiling experiment alone
for accurate identification. The data pro-
cessing methods outlined above may play
an essential role in elucidating the biologi-
cal role of such compounds, and multivar-
iate approaches combining the profiles of
unknown compounds with known metab-
olite, transcriptional, proteomic, and phe-
notype information may help us to direct
the process of identifying most relevant
compounds, based on their correlations
with known compounds and specific bio-
logical processes (Fig. 1). This is particu-

larly important because the process of
identification can be very difficult, and it
is unlikely that all peaks found in spectral
data can be identified with sufficient con-
fidence. The study of plant secondary
metabolites is a demanding task, and no
single lab can pursue this alone. There-
fore, one of the challenges ahead is the
development of standards for data ex-
change, which can also help the construc-
tion of databases containing information
relevant for compound identification from
spectral data.

Advances in metabolomics and its inte-
gration into systems biology research are
being made possible by combining exper-
tise from biology, chemistry, instrumenta-
tion, computer science, physics, and
mathematics. Given that the era of such
true interdisciplinary cooperation is only
starting, many exciting discoveries are to
be expected in the coming years.
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Fig. 1. A schematic representation of a plant metabolomics platform using a systems biology approach. The platform is divided into multiple analytical
approaches aimed at increased coverage of the metabolome. Data processing methods enable us to track both known and unknown metabolites, which can
then be integrated from across multiple platforms. Multivariate analyses are used to find trends in data and select most relevant unknown compounds for further
identification.
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