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Behavioral displays or physiological responses are often influenced by intrinsic and extrinsic mechanisms in the
context of the organism's evolutionary history. Understanding differences in transcriptome profiles can give in-
sight into adaptive or pathological responses.We utilize high throughput sequencing (RNA-sequencing) to char-
acterize the neurotranscriptome profiles in both males and females across four strains of zebrafish (Danio rerio).
Strains varied by previously documented differences in stress and anxiety-like behavioral responses, and gener-
ations removed from wild-caught individuals. Here we describe detailed methodologies and quality controls in
generating the raw RNA-sequencing reads that are publically available in NCBI's Gene Expression Omnibus data-
base (GSE61108).
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Direct link to deposited data

The raw FASTQ files can be accessed through the Gene Expression
Omnibus.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61108.
2. Experimental design, materials and methods

In this study we analyzed the whole-brain transcriptome profiles of
male and female zebrafish (Danio rerio) in four different strains [1,2]. In
. This is an open access article under
brief, 17 week old zebrafish were quickly sacrificed and whole-brains
were removed and processed for RNA-sequencing. Sequencing reads
were subsequently aligned, analyzed, and quantified using open-
source software. We also conducted technical and biological validation
and replication of the RNA-sequencing results using quantitative
reverse-transcriptase PCR (for overview of procedures, see Fig. 1).

2.1. Animal subjects

Zebrafish cohorts were generated and reared using previously de-
scribed methods [3]. All fish were kept in mixed sex 100-liter tanks.
Tanks were on a custom-built recirculating filtration system with
water temperature kept at 28 °C and on a 12:12 light:dark cycle. Fish
were fed twice daily with commercial feed (Tetramin). The AB and Sci-
entific Hatcheries (SH) zebrafish strains originated from commercial
suppliers (Zebrafish International Resource Center and Scientific Hatch-
eries, respectively). Although theAB and SH strainswere bred in labora-
tory conditions for many generations at their respective stock centers,
these strains were maintained in our laboratory for four and one gener-
ations, respectively. The two other strains (High Stationary Behavior
(HSB); Low Stationary Behavior (LSB)) of zebrafish originated from ap-
proximately 200 wild caught individuals and were six generations re-
moved from the wild (see [3] for additional selective breeding details).

2.2. Tissue collection

We collectedwhole brains from160 individual zebrafish (n=20 for
each sex for each strain) that were 17weeks post-fertilization. Between
09:00–12:00 we quickly removed fish from their home tanks, deeply
anesthetized with tricaine methanesulfonate, followed by decapitation.
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Fig. 1. Workflow for collecting and processing the neurotranscriptome in each zebrafish strain.
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Whole brainswere removedwithin 3min of being caught and placed in
RNAlater (Ambion). After storing the samples at 4 °C overnight, we re-
moved all RNAlater and stored brains at −80 °C until RNA extraction.
Sex was assigned by observation of testes or ovaries on dissection.

2.3. RNA isolation

Weextracted total RNAusing columnpurification (RNeasy PlusMini
Kit, Qiagen). Brains were homogenized for 3 min at maximum speed
with 50–100 μl of zirconiumoxide beads (Bullet Blender, Next Advance)
in 0.6 ml of Buffer RLT (Qiagen) with 2-mercaptoethanol (Sigma). We
then added 100 μl of chloroform,mixed, and incubated at room temper-
ature for 5 min.We subsequently centrifuged the samples at 12,000 ×g
for 15min at 4 °C. The supernatant was transferred to the RNeasy geno-
mic DNA column (Qiagen) and then we proceeded according to the
manufacturer's instructions. All samples were eluted with 30 μl of
DEPC-treated water (Ambion).

2.4. RNA-sequencing library preparation and sequencing

For each strain we pooled 1 μg of total RNA from 10 same sex indi-
viduals into a biological replicate. This generated four biological repli-
cates for each strain (two biological replicates for each sex). We
analyzed the quantity and quality of the RNA for the 16 samples with
a 2100 Bioanalyzer (Agilent). All samples were of high quality
Table 1
RNA characteristics of biological replicates as measured by a 2100 Bioanalyzer (Agilent).

Sample name in GSE61108 Strain Sex

AB female rep1 AB Fem
AB female rep2 AB Fem
AB male rep1 AB Male
AB male rep2 AB Male
SH female rep1 Scientific Hatcheries Fem
SH female rep2 Scientific Hatcheries Fem
SH male rep1 Scientific Hatcheries Male
SH male rep2 Scientific Hatcheries Male
LSB female rep1 Low Stationary Behavior Fem
LSB female rep2 Low Stationary Behavior Fem
LSB male rep1 Low Stationary Behavior Male
LSB male rep2 Low Stationary Behavior Male
HSB female rep1 High Stationary Behavior Fem
HSB female rep2 High Stationary Behavior Fem
HSB male rep1 High Stationary Behavior Male
HSB male rep2 High Stationary Behavior Male
(RIN N 8.0, Table 1). Using 1 μg of total RNA from the pooled samples
we generated cDNA libraries following the manufacturer's protocol
(TruSeq RNA Sample Prep V2, Illumina). We ligated a unique Illumina
Index adapter to each biological replicate to allow for multiplexing.
After cDNA library synthesis we submitted samples to the Genomic Sci-
ences Laboratory at North Carolina State University for 72 bp single-end
RNA sequencing (Illumina GAIIx). We followed a balanced block design
[4] and multiplexed all 16 samples and ran them across 16 lanes.

2.5. Data processing

With reads that passed default quality controls (Illumina), we com-
bined across lanes for each biological replicate. Total read counts varied
between 34–65 million reads (Table 2). We utilized the open source
software GSNAP [5] to align the reads to the zebrafish genome. We
first built GSNAP genomic andGSNAP known and novel splice site data-
bases using the Zv9 (release 71) D. rerio genome and gene sets, respec-
tively (Ensembl). For each biological replicate we successfully aligned
over 99% of the reads (assessed by SAMtools [6]) to the zebrafish ge-
nome using the default GSNAP parameters (Table 2).

2.6. Validation and replication with quantitative reverse-transcriptase PCR

Weperformed both technical validation of RNA-sequencing libraries
and independent biological replication (HSB and LSB strains) through
RNA concentration (ng/μl) RNA integrity number

ale 69.88 8.5
ale 70.58 8.5

67.76 8.5
73.16 8.6

ale 66.12 8.6
ale 90.58 8.5

118.38 8.7
105.76 8.7

ale 88.8 8.4
ale 69.88 8.4

54.14 8.7
57.52 8.4

ale 71.48 8.5
ale 89.62 8.7

82.3 8.5
75.62 8.5

ncbi-geo:GSE61108


Table 2
Sequenced library characteristics.

Sample name in GSE61108 Strain Sex Read count Reads aligning to zebrafish genome (%)

AB female rep1 AB Female 63,333,522 99.2863542
AB female rep2 AB Female 48,539,389 99.194584
AB male rep1 AB Male 52,400,106 99.2919213
AB male rep2 AB Male 42,245,840 99.2484941
SH female rep1 Scientific Hatcheries Female 65,493,707 99.257547
SH female rep2 Scientific Hatcheries Female 60,919,457 99.2179313
SH male rep1 Scientific Hatcheries Male 59,127,323 99.2323989
SH male rep2 Scientific Hatcheries Male 44,528,195 99.2321562
LSB female rep1 Low Stationary Behavior Female 43,983,674 99.1853227
LSB female rep2 Low Stationary Behavior Female 49,943,584 99.2696399
LSB male rep1 Low Stationary Behavior Male 57,927,979 99.2060158
LSB male rep2 Low Stationary Behavior Male 53,242,350 99.2381685
HSB female rep1 High Stationary Behavior Female 55,298,353 99.2311091
HSB female rep2 High Stationary Behavior Female 34,150,835 99.2296909
HSB male rep1 High Stationary Behavior Male 60,575,809 99.2129366
HSB male rep2 High Stationary Behavior Male 44,987,343 99.2242418
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quantitative reverse-transcriptase PCR (qPCR). We quantified the reads
for each protein-coding gene by using the “union”mode in HTSeq [7] in
all of our RNA-sequencing libraries. Read counts were then normalized
to the library size in edgeR [8]. We selected eight genes (msmo1, oxt,
gabbr1a, comta, sell, prodha, hsd11b2, gapdh) for technical validation
and 14 genes (msmo1, oxt, gabbr1a, comta, sell, prodha, hsd11b2, gapdh,
cyp19a1b, dio2, pmchl, cfos, gabbr1b, igf1) for independent biological
replication (see [1,2] for detailed primer characteristics and qPCR reac-
tion parameters).

After normalizing each gene's expression to ef1a, an endogenous ref-
erence gene [9], we confirmed a significant correlation between
gene expression measured by RNA-sequencing and qPCR. Using the
same material from cDNA libraries that were submitted for RNA-
sequencing, we found a significant correlation between normalized
read count (RNA-sequencing quantification) and cycle threshold
(qPCR quantification) for the eight genes examined (technical valida-
tion; n=64, Spearman's ρ=−0.278 p=0.026; Fig. 2). Using indepen-
dent samples (n=9 for each sex in each of the LSB andHSB strains), we
similarly observed a significant correlation between expression mea-
surements from the two techniques (RNA-sequencing and qPCR) for
14 genes (independent biological replication; n = 56, Spearman's
ρ = −0.406 p = 0.002). Of note, we also observed consistent patterns
of differential gene expression between sexes and stress coping styles
(see [1,2] for details).
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Fig. 2. Technical validation of RNA-sequencing results using qPCR. Each point represents a
gene expression value for one of eight genes in each of the biological replicates in the HSB
and LSB strains. Gene expression was normalized to an endogenous reference, ef1a, as
measured in their respective quantification methods.
3. Conclusions

Zebrafish are a model system utilized in many developmental, toxi-
cological, neuroscience, and biomedical studies [10–15]. Understanding
and accounting for genomic and transcriptomic variation will provide
important additional insights. Herewe describe in detail the procedures
and methodologies in sequencing the whole-brain transcriptome of
both male and female adult zebrafish in four different strains. The
high quality RNA-sequencing results, which have been both technically
and biologically validated, are available through the NCBI's GEO data-
base (GSE61108). This dataset should be of use to studies in a variety
of contexts (e.g. evolution, neuroscience, genetics, bioinformatics, and
biomedicine).
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