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Habitat-specific environmental conditions primarily
control the microbiomes of the coral Seriatopora
hystrix
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Reef-building corals form complex relationships with a range of microorganisms including bacteria,
archaea, fungi and the unicellular microalgae of the genus Symbiodinium, which together form the
coral holobiont. These symbionts are known to have both beneficial and deleterious effects on their
coral host, but little is known about what the governing factors of these relationships are, or the
interactions that exist between the different members of the holobiont and their environment. Here
we used 16S ribosomal RNA gene amplicon sequencing to investigate how archaeal and bacterial
communities associated with the widespread scleractinian coral Seriatopora hystrix are influenced
by extrinsic (reef habitat and geographic location) and intrinsic (host genotype and Symbiodinium
subclade) factors. Bacteria dominate the microbiome of S. hystrix, with members of the
Alphaproteobacteria, Gammaproteobacteria and Bacteriodetes being the most predominant in all
samples. The richness and evenness of these communities varied between reef habitats, but there
was no significant difference between distinct coral host lineages or corals hosting distinct
Symbiodinium subclades. The coral microbiomes correlated to reef habitat (depth) and geographic
location, with a negative correlation between Alpha- and Gammaproteobacteria, driven by the key
members of both groups (Rhodobacteraceae and Hahellaceae, respectively), which showed
significant differences between location and depth. This study suggests that the control of
microbial communities associated with the scleractinian coral S. hystrix is driven primarily by
external environmental conditions rather than by those directly associated with the coral holobiont.
The ISME Journal (2015) 9, 1916–1927; doi:10.1038/ismej.2015.3; published online 10 February 2015

Introduction

Reef-building corals form complex relationships
with a range of different microbial partners, including
bacteria, archaea and algae belonging to the genus
Symbiodinium, which together form the coral
holobiont. The genus Symbiodinium can be
categorised into eight distinct phylogenetic clades
(A–H) based on their ribosomal DNA sequence
(ITS2), with five of these (A–D and F) found in
association with the corals (Baker, 2003). A high
degree of host specificity (LaJeunesse et al., 2004,
2010), habitat partitioning and ecological diversifi-
cation have been identified as controlling factors of
the distribution of the different Symbiodinium

clades (Douglas, 1998; LaJeunesse et al., 2003;
LaJeunesse, 2005; Stat et al., 2008a; Bongaerts
et al., 2010, 2011b; LaJeunesse et al., 2010; Silverstein
et al., 2011). To date the main role of Symbiodinium
in the coral holobiont is thought to be through its
involvement in its host’s metabolism, including
photosynthesis and nutrient cycling, which provides
their hosts with up to 95% of their carbon require-
ments (Muscatine and Porter, 1977) and the cycling of
nitrogenous compounds (Leggat et al., 2007; Pernice
et al., 2012).

Coral-associated bacteria and archaea have been
extensively studied for over four decades with
thousands of species having been identified
(Mouchka et al., 2010). However, we are only just
starting to investigate and understand the forces that
govern their patterns of diversity, distribution and
role in the coral holobiont ecosystem. Bacteria,
archaea and viruses are ubiquitous in the marine
system, and thrive in coral reef waters (Sorokin,
1973; Dinsdale et al., 2008), but these communities
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have been shown to be distinct from those asso-
ciated with the coral animal (Rohwer et al., 2001,
2002; Cooney et al., 2002; Frias-Lopez et al., 2002;
Guppy and Bythell, 2006; Santiago-Vazquez et al.,
2007; Kvennefors et al., 2010; Sunagawa et al., 2010;
Chen et al., 2011; Tremblay et al., 2011; Ceh et al.,
2012; Schöttner et al., 2012), suggesting that there is
specific control of the microbiomes (associated
bacterial and archaeal communities), by either
biological or microenvironmental factors influenced
by the host.

The complex physical colony structure of the
coral host provides a multi-faceted habitat with
different microbial communities occupying a range
of niches within the surface mucus layer, tissue
layers (Paul et al., 1986; Ritchie and Smith, 1995b;
Banin et al., 2000; Johnston and Rohwer, 2007;
Lesser et al., 2007; Sharp et al., 2010, 2012) and in
the different zones of the colony (Rohwer et al.,
2002; Bourne and Munn, 2005). As with terrestrial
ecosystems (Balser et al., 2006), coral reef-associated
microbes are thought to drive biochemical and
ecological processes including nitrogen (Williams
et al., 1987; Shashar et al., 1994; Ritchie and Smith,
1995b; Lesser et al., 2004; Lesser et al., 2007; Olson
et al., 2009; Kimes et al., 2010; Lema et al., 2012)
and carbon cycling (Ducklow and Mitchell, 1979;
Ritchie and Smith, 1995b; Wild et al., 2004b, 2010b),
allowing reefs to prosper in the oligotrophic waters
of the tropics. In addition to their role in driving
ecosystem function through nutrient cycling,
microbes also have an important role in coral health.
For example, they are able to contribute to pathogen
inhibition through competition for space and nutri-
ents, and the secretion of antibiotic substance (Koh,
1997; Castillo et al., 2001; Ritchie, 2006; Rypien
et al., 2010; Sharp et al., 2010; Kvennefors et al.,
2012), as well as potentially aiding reproduction
and propagation (Apprill et al., 2009; Sharp et al.,
2010, 2012). Less is known about the role of archaea
associated with reef-building corals. Archaea asso-
ciated with the coral tissues have been found to
occur at varying cell densities (Wegley et al., 2004),
and with varied levels of diversity relative to
bacterial communities (Wegley et al., 2004, 2007;
Siboni et al., 2008; Lins-de-Barros et al., 2010;
Littman et al., 2011), and in some cases have been
found to be absent from coral colony tissues
altogether (Yakimov et al., 2006; Hansson et al.,
2009). Coral-associated archaeal communities are
also independent of those in the water column, but
in contrast to bacteria they are fairly cosmopolitan,
displaying no evidence of species specificity.
Despite their apparent generality it is thought that
archaea still have an important role in the life of
their host through nutrient cycling (Wegley et al.,
2004; Beman et al., 2007; Siboni et al., 2008, 2012).

Evidence to date suggests that the control of coral-
associated bacterial and archaeal communities may
be a result of multiple factors and at different spatial
scales, however, not all studies are in agreement as

to the primary controlling factor. Environmental
factors such as temperature and nutrients, which
may differ between location and season, have been
found to significantly influence the specificity of
bacterial–coral associations (Guppy and Bythell,
2006; Klaus et al., 2007; Hong et al., 2009; Littman
et al., 2009b; Schöttner et al., 2012). In addition,
species-specific control where bacterial commu-
nities were specifically associated with corals of
the same species across distinct geographical
regions at different times has been seen (Frias-
Lopez et al., 2002; Rohwer et al., 2002; Kvennefors
et al., 2010). It is thought that the control of
associated microbial communities at this level is
due to the differences in coral species-specific
mucus properties (Ducklow and Mitchell, 1979;
Meikle, et al., 1988; Ritchie and Smith, 2004; Wild
et al., 2004a, 2010a; Ritchie, 2006; Tremblay et al.,
2011; Schöttner et al., 2012), which in turn is
strongly linked to physiological differences between
coral species. Nonetheless, it remains unclear
whether the specificity of microbial communities
extends to the host intraspecific level (differences in
the microbiomes of closely related coral lineages)
and whether the observed microbiome differences
are influenced by the type of Symbiodinium present
in the coral (which also contributes substantially to
the metabolic makeup of the mucus (Kellogg
and Patton, 1983; Crossland, 1987; Anthony and
Fabricius, 2000).

Here, the microbiomes of the scleractinian coral
Seriatopora hystrix were assessed in a multi-factor-
ial design, testing for differences related to coral
host genotype (based on the putative control region
of the coral mitochondrial DNA), Symbiodinium
subclade genotype (based on the ITS2 region of the
algal ribosomal DNA), reef habitat (depth) and
geographic location. Samples were collected from
three habitats (‘Back Reef’, ‘Upper Slope’ and ‘Deep
Slope’) and at three locations on the Northern Great
Barrier Reef (Yonge Reef, Day Reef and Lizard
Island). Host-symbiont assemblages were genotyped
in a previous study (Bongaerts et al., 2010),
representing a total of five distinct host–Symbiodi-
nium combinations that allowed the assessment of
the individual effects of host and Symbiodinium
genotype (one host genotype associated with three
different Symbiodinium subclades and one Symbio-
dinium subclade found across two different host
genotypes). Similarly, although these host–Symbio-
dinium genotypes were partitioned across habitats,
genotype–environment ‘mismatches’ (for example, a
‘shallow’ genotype occurring in the ‘Deep Slope’
habitat) allowed us to assess the individual effects of
host–Symbiodinium genotype and environment.
Microbial communities were characterised using
16S ribosomal RNA gene amplicon sequencing,
and the individual contributions to richness and
evenness were assessed across distinct host
lineages, symbiont genotypes, reef habitats and
geographic locations.
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Materials and methods

Sample collection and surveys
Corals were identified as Seriatopora hystrix based
on characters described by Veron (2000) and Veron
and Pichot (1976). Small fragments of Seriatopora
colonies were collected as described in Bongaerts
et al. (2010) from three different habitats (Figure 1):
the ‘Back Reef’ (2 m depth±1 m), ‘Upper Slope’ (6 m
depth±1 m) and ‘Deep Slope’ (27 m depth±2 m) at
two reef locations, Yonge Reef (14136059.900S;
145138011.100E) and Day Reef (14128028.400S;1451320

19.100E) along the continental shelf edge of the
Great Barrier Reef, and from a ‘Back Reef’ habitat
(2 m±1 m) at Lizard Island (14141039.100S; 1451270

58.200E). All sampled colonies were separated by at
least 3m in order to minimise the inclusion of potential
clone mates due to fragmentation. Coral tissue was
separated from the coral skeleton with a modified air
gun attached to a SCUBA cylinder and subsequently
stored in 20% dimethyl sulfoxide preservation buffer
and kept at � 20 1C until further processing.

Photographs were taken of random colonies in the
three depth habitats at the time of sampling at Yonge
Reef in 2008 (n¼ 40) and again during the ‘Catlin
Seaview Survey’ in 2012 when both Yonge and Day

Reef were revisited (n¼ 44 and n¼ 45, respectively),
and visually assessed for level of pigmentation
(‘pigmented’ vs ‘pale’).

Host–Symbiodinium genotyping and sample selection
Genotyping of the corals and associated Symbiodi-
nium was performed on total genomic DNA extracts
as described in Bongaerts et al. (2010). Here, we
selected 11 different combinations of host genotype,
Symbiodinium genotype, reef habitat (depth) and
location for which triplicate samples (each from a
different coral colony) were available (Figure 1b). Five
different host–Symbiodinium genotype combinations
were assessed, representing three different host
genotypes (mtDNA genotypes: B, U and D1) and four
different Symbiodinium ITS2 subclades (C120, C120a,
C1m-aa and C3n-t; Figure 1b). Although combinations
were partitioned across habitats, there was some
overlap in genotypes (that is, HostU:C120 occurring
in the ‘Upper Slope’ and ‘Deep Slope’ habitats) which
allowed us to test for the effect of habitat independent
of genotype. Similarly, in the ‘Back Reef’ habitat a
single host genotype with three different Symbiodi-
nium types were found at Day Reef, allowing us to
test for the independent effect of Symbiodinium type.

Analysis of bacterial and archaeal community
composition by amplicon sequencing
Primers broadly targeting all bacteria and archaea
containing the Roche 454 adaptor ligated at the 50 end
were used to amplify the V6–V8 region of the 16S
ribosomal RNA gene: pyroLSSU803F 50-TTAGAK
ACCCBNGTAGTC-30 and pyroLSSU1392R 50-ACGG
GCGGTGWGTRC-30. Amplification reaction mixture
(50ml) included: � 10 PCR buffer (5ml); 1ml dNTPs
(10 mM each); 4ml MgCl (25 mM); 1ml each primer
(10mM); 0.2ml Taq DNA Polymerase (Thermo Fisher
Scientific, Scoresby, VIC, Australia); 1.5ml bovine
serum albumin; B20 ng DNA template; and made up
to 50ml with RNA/DNA-free water. Reaction condi-
tions were as follows: an initial denaturation was
carried out at 95 1C for 3 min followed by 30 cycles of
denaturation at 95 1C for 30 sec; annealing at 55 1C for
30 sec; and primer extension at 74 1C for 30 sec. This
was followed by a final extension step at 74 1C for
10 min. Amplicon size section was carried out using
Pippin Prep System (Sage Science, Beverly, MA, USA)
before sequencing on a Roche 454 GS FLX (Roche,
Basel, Switzerland) at the Australian Centre for
Ecogenomics, University of Queensland, Australia.
The sequence data set was deposited in the NCBI
Sequence Read Archive (SRA) database (accession
numbers: SRR1664591–SRR1664608, SRR1664610–
SRR1664614 and SRR1664616–SRR1664625).

Sequence data processing and statistical analysis
Sequences were quality filtered and dereplicated
with the QIIME script split_libraries.py with the
homopolymer filter deactivated (Caporaso et al.,
2010) and then checked for chimeras against the
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Figure 1 Study locations, habitats and Seriatopora hystrix coral–
Symbiodinium assemblages. (a) Studied coral host–Symbiodi-
nium assemblages across the three different habitat types: ‘Back
Reef’, ‘Upper Slope’ and ‘Deep Slope’. Inset: map of the three
study locations on the northern Great Barrier Reef: Lizard Island,
Yonge Reef and Day Reef. (b) Diversity and distribution of host
and Symbiodinium genotypes across the three habitats and
locations. Symbol shape refers to host genotype, and colour refers
to symbiont genotype. Asterisk indicates assemblages not
included in this study.
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2012 edition of the Greengenes database (DeSantis
et al., 2006) with UCHIME ver. 3.0.617 (Edgar et al.,
2011) as previously described (Dennis et al., 2013).
Homopolymer errors were corrected with Acacia
(Bragg et al., 2012). Sequences were then subjected
to the following procedures with QIIME scripts at
the default settings. (i) Sequences were clustered at
97% similarity using UCLUST ver. 3.0.617 (Edgar
et al., 2011), (ii) cluster representatives were
selected, (iii) greengenes taxonomy (2012 edition)
was assigned to the cluster representatives by
BLAST and (iv) tables with the abundance of
different operational taxonomic units (OTUs) and
their taxonomic assignments in each sample were
generated. All reads matching eukaryotes or chlo-
roplasts were removed and the number of reads was
normalised to 1900 per sample. The mean number of
OTUs (observed richness) and Simpson diversity
index values (Simpson, 1949) corresponding to 1900
sequences per sample were calculated with QIIME.
Generalised linear modelling was used to assess
whether variation in observed richness and Simp-
son diversity index values could be explained by
any of our treatments (that is, reef, depth, host
genotype and Symbiodinium subclade). Differences
in the composition of microbial communities
between samples were assessed using permutational
multivariate analysis of variance (PERMANOVA).
Richness and evenness were compared using
Tukey’s Honestly Significant Difference (HSD) tests.
All analyses were implemented with R version
2.12.0 (R Foundation for Statistical Computing,
Vienna, Austria). Sequences were aligned against
the greenegenes nucleotide database (version Sep-
tember 2014) in ARB using PyNAST (Ludwig et al.,
2004). Neighbour-joining maximum likelihood phylo-
genetic trees were constructed in FastTree v2.1.7
(Lawrence Berkeley National Lab, Berkeley, CA, USA).

Results and Discussion

Three representative samples (one per colony) of
each combination at each site were amplified and
sequenced, producing an average of 1900 reads per
sample. The alpha diversity of the microbial com-
munities as described by the Simpson Index and
OTU richness associated with the Seriatopora
hystrix colonies demonstrated a wide range of
variation (Figure 2 and Supplementary Table S1)
with the Simpson’s index ranging from 0.265 to
0.988, and up to 705 OTUs. Archaeal populations
comprised o1.5% relative abundance of coral
microbiomes in all samples, with most OTUs
belonging to the Crenarchaeota. The bacterial com-
munities were dominated by members of the Alpha-
and Gammaproteobacteria at all locations and
depths as reported in other studies (Klaus et al.,
2007; Littman et al., 2009a, b; Olson et al., 2009;
Kvennefors et al., 2012). In particular, members of
the alphaproteobacterial family Rhodobacteraceae

and gammaproteobacterial genus Endozoicomonas
were the most abundant OTUs. Phylogenetic
analysis showed that the most abundant Endo-
zoicomonas OTU clustered (Figure 3a) with sequen-
ces from cultivated and uncultivated species
previously found in eight other scleractinian corals
(Kvennefors et al., 2010; Sunagawa et al., 2010;
Yang et al., 2010; Speck and Donachie, 2012; Apprill
et al., 2013; Bayer et al., 2013; Jessen et al., 2013), as
well as soft corals, sea slugs, sea anemones and sea
cucumbers (Kurahashi and Yokota, 2007; Schuett
et al., 2007). Bayer et al. (2013) identified Endozoico-
monas cells in high densities within the tissues of the
coral Stylophora pistillata where it formed aggrega-
tions in close proximity to the endosymbiotic Sym-
biodinium in the endoderm, resembling the ovoid
bacterial clusters found in other studies (Peters, 1984;
Santavy and Peters, 1997; Ainsworth and Hoegh-
Guldberg, 2009). Due to their high densities and
intimate relationship with the coral tissues and algal
endosymbionts it is thought that they may provide an
advantage to their host’s health through the produc-
tion of antimicrobial compounds (Ritchie, 2006).
Principal component analysis identified 17 OTUs,
in addition to the Endozoicomonas OTUs (OTU 69
and 71), which were responsible for driving the
differences in microbial communities associated with
the different samples. These other OTUs were related
to members of the Rhodobacterales and Vibrionales,
several members of which have previously been
identified as putative pathogens, or associated with
disease lesions of scleractinian corals and other
marine invertebrates (Imai et al., 2006; Koren and
Rosenberg, 2008; Becker et al., 2009; Sekar et al.,
2009; Sunagawa et al., 2009; Case et al., 2011;
Fernandes et al., 2011; Figure 3b). OTUs from these
groups were also found to have a highly significant
negative correlation to Endozoicomonas. For exam-
ple, the Endozoicomonas OTU 69 demonstrated a
very strong negative correlation to OTU 25
(r¼ � 0.73, Po0.01), with moderate-to-strong nega-
tive correlations to OTUs 51, 30, 28 and 21
(r¼ � 0.58, � 0.39, � 0.61 and � 0.5 respectively,
Po0.05).

Effect of eukaryotic holobiont members on associated
microbial communities
Microbes are highly sensitive to their chemical
microenvironment. Due to this and their intimate
relationship with the coral tissues it was expected
that community structure would change with host
and Symbiodinium genotype and the associated
physiological differences as seen in previous studies
(Ikeda and Miyachi, 1995; Ritchie and Smith,
1995a, b; Ritchie, 2006; Littman et al., 2009a; Raina
et al., 2010; Tremblay et al., 2011). However, neither
host nor Symbiodinium differences were found to
influence the associated microbial communities. The
microbial communities associated with the dominant
host–Symbiodinium assemblages of ‘Upper Slope’
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Figure 2 Heatmap summarising the alpha diversity and population abundances of dominant bacterial and archaeal OTUs (those present
at 41% relative abundance) associated with Seriatopora hystrix colonies from Day Reef, Yonge Reef and Lizard Island Reef with different
host–Symbiodinium genotype combinations. A total of three samples per location habitat and host–Symdiodinium genotype combination
were analysed. Symbol shape refers to host genotype, and colour refers to symbiont genotype.
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and ‘Deep Slope’ habitats (HostU:C120 and
HostD1:C3n-t, respectively) were not found to be
significantly different when co-occurring at the same
depth (that is, HostU:C120 occurs in low abundances
in the ‘Deep Slope’ habitat). This, despite the strong
physiological differences observed for these host–
Symbiodinium assemblages, even when growing in
the same habitat (Bongaerts et al., 2011a). The ‘Back
Reef’ coral communities of Day Reef were made up of
three different host–Symbiodinium genotype assem-
blages, consisting of the same host genotype (HostU)
and three independent algal subclades (C120, C120a
and C1m-aa). Comparison of the three assemblage
types demonstrated also no difference in community
structure with Symbiodinium genotype. The close
genetic relationship of the three subclades present
within the ‘Back Reef’ corals at Lizard Island
(Bongaerts et al., 2011a) may mean that they have
similar physiologies and consequently do not pro-
duce significantly different photosynthetic products,
although identification of differences in photo-
synthate composition at the subclade level remains
to be carried out.

Effect of reef location on coral-associated microbial
communities
Ribbon reefs at the edge of the continental shelf such
as Yonge and Day Reef experience substantially
different environment conditions (for example,

temperature and nutrients) to mid-shelf reefs like
Lizard Island due to the direct exposure to deep
oceanic waters (Berkelmans et al., 2004; De’ath and
Fabricius, 2010; Fabricius et al., 2014). These
environmental differences may have a strong influ-
ence on the coral-associated microbial communities
at each location. The microbial communities asso-
ciated with S. hystrix colonies from the ‘Back Reef’
habitat (HostB:C120) were significantly different
at the three locations (PERMANOVA, F2,6¼ 2.48,
Po0.005). Lizard Island ‘Back Reef’ communities
were dominated by members of the Alphaproteo-
bacteria (OTUs 24 and 25, Figure 2), while Yonge
Reef ‘Back Reef’ communities had a greater relative
abundance of members of the gammaproteobacterial
genus Endozoicomonas (OTU 69, Figure 2). The
microbial communities associated with the ‘Back
Reef’ colonies at Day Reef shared similarities with
both Yonge and Lizard Island Reefs with higher
relative abundance of members of both the Rhodo-
bacteraceae and Endozoicomonas as well as a high
relative abundance of other Alphaproteobacteria.
Significant differences also existed in the alpha
diversity between the different ‘Back Reef’ habitats
(one-way analysis of variance: Sobs: F2,6¼ 9.022,
Po0.05; Simpson Diversity: F2,6¼ 9.022, Po0.01).
The richness and evenness (Supplementary Table S1
and Supplementary Figure S1) of microbial com-
munities from the ‘Back Reef’ of Lizard Island reef
were significantly lower than those of Day Reef
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Figure 3 Phylogenetic trees, based on 16S ribosomal RNA gene sequences, showing the positions of OTUs identified associated with
Seriatopora hystrix colonies relative to previously identified ribotypes obtained from public databases. (a) Position of OTUs 69 and 71
relative to members of the genus Endozoicomonas identified associated with other marine organisms including six Scleractinian corals.
Scale bar represents 0.1 changes per nucleotide. (b) Position of OTUs 25, 28, 30, 51 and 76 relative to previously identified marine
pathogens. Scale bar represents 0.1 changes per nucleotide. GenBank accession numbers are shown in parentheses. Numbers at nodes are
bootstrap percentages (of 100 resampled data sets); only X75% are shown.
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(Tukey’s HSD post hoc: Sobs Po0.05; Simpsons
Diversity: Po0.01), and the evenness was signifi-
cantly lower to those of Yonge Reef (Tukey’s HSD
post hoc: Simpson’s diversity: Po0.05). These
differences may be due to varying levels of habitat
heterogeneity of the mid- and outer-shelf reefs.
Heterogeneity has been shown to be one of the main
determinants of community structure (Jiang and
Patel, 2008). It may therefore be expected that the
higher levels of disturbance and extremes of condi-
tions such as temperature and solar irradiance
(Bongaerts et al., 2011a) experienced in ‘Back Reef’
environments may lead to specialisation of commu-
nities and reduced diversity (Buckling et al., 2000;
Berga et al., 2012). Day and Yonge Reefs however
may not be exposed to the same levels of extremes as
Lizard Island due to their proximity to the shelf edge
and exposure to oceanic waters, which is also
reflected in the differential bleaching susceptibility
of reefs depending on the shelf position (Berkelmans
and Oliver, 1999).

As no effect of host-Symbiodinium genotype was
found within ‘Deep Slope’ habitats (that is, between
HostU:C120 and HostD1:C3n-t genotypes), samples
from these habitats were grouped and compared
between locations (that is, Day and Yonge Reef).
A significant difference (PERMANOVA, F1,9¼ 2.58,
Po0.05) was found between ‘Deep Slope’ coral
microbiomes from Yonge Reef and Day Reef, but no
difference was found in their alpha diversity. ‘Deep
Slope’ communities were dominated by Alphapro-
teobacteria with differences driven by a greater
prevalence of members of the Gammaproteobacteria,
with Vibrionaceae and Alteromonadaceae asso-
ciated with the Day Reef corals than those from
Yonge Reef, which had a greater occurrence of
Pseudoalteromonadaceae (Figure 2). In contrast, for
the ‘Upper Slope’ habitat (HostU:C120 genotype), no
significant difference was found in the microbial
communities of Day and Yonge Reef, which were
dominated by Endozoicomonas (Figure 2, OTU 69).

Previous studies have also found that geographi-
cal differences exist between the microbial commu-
nities associated with corals (Rohwer et al., 2002;
Guppy and Bythell, 2006; Klaus et al., 2007; Littman
et al., 2009b; Chen et al., 2011; Schöttner et al.,
2012). The potential pathogen-dominated commu-
nities associated with ‘Back Reef’ colonies at Lizard
Island may be due to their closer proximity to
human influences (Dinsdale et al., 2008; Furby
et al., 2014) and reduced influence of oceanic waters
due to their position in the mid-shelf. Although
Yonge and Day Reef ‘Deep Slope’ coral microbiomes
possessed the same group of Rhodobacteraceae
related to potential pathogens, those of the Day Reef
had a greater abundance of Endozoicomonas
(Figure 2, OTU 69). At the time the samples were
collected (October 2008) it was found that in
contrast to the shallow habitats, deep reef habitats
(B27 m depth) experienced a more constant environ-
mental state, in terms of more consistent and lower

levels of irradiance due to light attenuation
through the water column and reduced thermal
variability compared with the diurnal fluctuations
experienced in the ‘Back Reef’ habitats (although in
summer, the ‘Deep Reef’ habitat can experience
cold-water influxes; Bongaerts et al., 2011a). It
would also be expected that the Deep Reef sites
would also experience reduced wave stress in
comparison with the shallow habitats. These more
homogeneous and stable conditions may allow
location-specific factors not measured as a part of
this study to have a role in shaping the microbial
communities, resulting in differences between
communities associated with deep-water S. hystrix
colonies.

Effect of depth habitat on associated microbial
communities
S. hystrix colonies with the HostU:C120 genotype
can be found at both the ‘Upper Slope’ and ‘Deep
Slope’ habitats (albeit in low abundance in the
latter) of Day and Yonge Reef, and their microbial
communities were found to be significantly different
between depths (PERMANOVA, F1,9¼ 4.398,
Po0.001). The community alpha diversity also
differed significantly with depth, with ‘Deep Slope’
S. hystrix microbiomes being considerably more
diverse and even than those of the ‘Upper Slope’
colonies (one-way analysis of variance: richness
F2,9¼ 5.325, Po0.05; evenness F2,9¼ 13.77, Po0.05),
matching the higher genotypic diversity observed
for coral–Symbiodinium assemblages in this habitat
(Bongaerts et al., 2010). Owing to the absence of
identical host–Symbiodinium assemblages at all
depth habitats, it was not possible to compare the
microbial communities from ‘Back Reef’ corals with
those of the ‘Upper Slope’ and ‘Deep Slope’ habitats,
without it being confounded by coral–Symbiodinium
genotype.

Microbial communities in the ‘Upper Slope’ were
dominated by ribotypes related to Endozoicomonas
(OTU 69 and 71, Figure 2), whereas microbial
communities in the ‘Deep Slope’ are characterised
by members of the Rhodobacteraceae (for example,
OTU 25, 28 and 51; Figure 2). Of particular interest
are OTU 25 and 51 which are closely related to
known algal pathogens that cause bleaching and
mortality of both macro- and microalgae (Imai et al.,
2006; Case et al., 2011; Fernandes et al., 2011).
Colonies of both the ‘Back Reef’ and ‘Deep Slope’
habitats at all locations were observed to be paler in
colour than those of the ‘Upper Slope’ habitats
(Supplementary Figure S2). Physiological para-
meters for the corals of the three depth habitats at
Yonge Reef measured in a previous study found that
they also had corresponding lower concentrations of
areal Chlorophyll a and lower net photosynthesis
(Bongaerts et al., 2011a). OTU 25 and 51 are also
closely related to bacteria identified, associated
with the disease lesions of White Plague Type II
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in the reef-building coral Montastraea faveolata
(Sunagawa et al., 2009), which is characterised by
an advancing bleached zone in front of the lesion
boundary during a disease outbreak following a
mass bleaching event (Richardson et al., 1998). The
presence of potential pathogens and presentation of
similar associated symptoms suggests that the
health state of the ‘Deep Slope’ and ‘Back Reef’
colonies may be sub-optimal.

Although it is not possible at this stage to
determine the depth-related factors responsible for
the differences in microbial communities of ‘Deep
Slope’ and ‘Upper Slope’ S. hystrix colonies, one
explanation may be the influence of differing light
levels on photosynthate production (Crossland,
1987) and the sensitivity of microbial communities
to their chemical microenvironment (Ritchie and
Smith, 1995a, b; Ritchie, 2006; Raina et al., 2010).
The lipid content of coral tissues is mainly derived
from photosynthesis by the Symbiodinium (Kellogg
and Patton, 1983; Harland et al., 1993) which varies
with light levels, and therefore also depth (Oku
et al., 2003). This photosynthetic source is assimi-
lated into mucus by the host and contains high
concentrations of proteins, polysaccharides and
lipids, making it an ideal environment for microbes
(Ducklow and Mitchell, 1979; Ferrier-Pages et al.,
2000; Wild et al., 2004b). Differences in photo-
synthesis due to depth or photosynthetic potential
due to the presence of photosymbiont pathogens
may therefore result in changes in the condition of
the coral tissues and surface mucus layer, conse-
quently further influencing other members of the
associated microbial communities (Crossland, 1987;
Benlloch et al., 1995; Ikeda and Miyachi, 1995;
Schäfer et al., 2001; Cooper et al., 2011; Tremblay
et al., 2011; Nelson et al., 2013). This reduced
function in photosynthesis in ‘Back Reef’ and ‘Deep
Slope’ colonies, coupled with differing light levels
would therefore result in a difference in the
availability of carbon and other metabolites
(Crossland, 1987; Ikeda and Miyachi, 1995; Oku
et al., 2003) to the associated microbial commu-
nities. The coral microbiomes may therefore be
subject to similar environmental factors such as
temperature and irradiance that result in depth
specificity seen in Symbiodinium-type zonation
(Baker, 2003; Stat et al., 2008b).

Conclusion

It is well established that diverse microbial com-
munities inhabit adult corals (Williams et al., 1987;
Santavy, 1995; Bythell et al., 2002; Lesser et al.,
2004) and have a key role in the health of their host
(Koh, 1997; Castillo et al., 2001; Ritchie, 2006;
Kvennefors et al., 2010; Rypien et al., 2010; Sharp
et al., 2010). However, there is continuing debate as
to which factors predominantly influence these
communities. This is the first study to examine the

differences in the composition of bacterial and
archaeal communities associated with a scleracti-
nian coral with respect to both the host coral
genotype, their Symbiodinium subclade and their
habitat type (location and depth). The results of
this study supports those of others that habitat is
the overall controlling factor of the coral micro-
biome and not the other main members of the
holobiont. However, it must be considered that
teasing apart physiological factors such as photo-
synthesis from environmental ones is hard as they
often go hand-in-hand. Distinct changes with depth
from Endozoicomonas-dominated communities to
a community dominated by potential pathogens
were also observed. Although it is beyond the
scope of this study to determine the mechanisms
behind these changes, it provides further evidence
that members of the Endozoicomonas provide a
beneficial function to the coral holobiont (Bourne
et al., 2008; Ainsworth and Hoegh-Guldberg, 2009;
Kvennefors et al., 2012; Bayer et al., 2013). Their
high densities and close physical relationship to
the Symbiodinium within the coral endoderm
identified in previous studies and the strong
negative correlation to the occurrence of bleaching
pathogens and associated visible signs of coral
bleaching found here suggests that they may be
providing direct protection to the photosymbionts.
Coupled with their intimate relationship with
corals worldwide, this bacterial endosymbiont
appears to be a vital member of the coral holobiont,
possibly coevolving with the coral host and
Symbiodinium, making them integral to the success
of the coral holobiont system, and therefore
warrants further investigation.
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