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Effect of time-activity adjustment on exposure assessment for
traffic-related ultrafine particles
Kevin J. Lane1,2, Jonathan I. Levy2, Madeleine Kangsen Scammell2, Allison P. Patton3,4, John L. Durant4, Mkaya Mwamburi5,
Wig Zamore6 and Doug Brugge5

Exposures to ultrafine particles (o100 nm, estimated as particle number concentration, PNC) differ from ambient concentrations
because of the spatial and temporal variability of both PNC and people. Our goal was to evaluate the influence of time-activity
adjustment on exposure assignment and associations with blood biomarkers for a near-highway population. A regression model
based on mobile monitoring and spatial and temporal variables was used to generate hourly ambient residential PNC for a full year
for a subset of participants (n= 140) in the Community Assessment of Freeway Exposure and Health study. We modified the
ambient estimates for each hour using personal estimates of hourly time spent in five micro-environments (inside home, outside
home, at work, commuting, other) as well as particle infiltration. Time-activity adjusted (TAA)-PNC values differed from residential
ambient annual average (RAA)-PNC, with lower exposures predicted for participants who spent more time away from home.
Employment status and distance to highway had a differential effect on TAA-PNC. We found associations of RAA-PNC with high
sensitivity C-reactive protein and Interleukin-6, although exposure-response functions were non-monotonic. TAA-PNC associations
had larger effect estimates and linear exposure-response functions. Our findings suggest that time-activity adjustment improves
exposure assessment for air pollutants that vary greatly in space and time.
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INTRODUCTION
Residential proximity to highways, major roads, and high traffic
density has been associated with increased risk for adverse cardio-
vascular health.1–5 Proximity to traffic has also been associated
with higher biomarkers of systemic inflammation such as high
sensitivity C-reactive protein (hsCRP) and Interleukin-6 (IL-6).6–9

Cardiovascular effects in near-roadway populations are hypothe-
sized to be partly attributable to traffic-related air pollutants
(TRAPs), including ultrafine particles (o100 nm, UFP, estimated as
particle number concentration, PNC) which are elevated next to
high traffic roadways.10 The patterns of association of roadway
proximity with health outcomes are similar to gradients of UFP;
thus, there is a need for studies that directly test association of
chronic UFP exposure with cardiovascular disease risk.4,9

To our knowledge, no studies have reported relationships
between chronic exposure to UFP and measures of cardiovascular
health risk or health outcomes. The evidence to date for an
association between UFP and adverse cardiovascular effects has
instead come from animal studies,11–13 acute controlled human
exposure studies,14,15 and panel (acute) studies.16–20 These studies
show biological plausibility that UFPs may be associated with

increased inflammatory biomarkers such as hsCRP and IL-6 and
cardiovascular outcomes.
UFP concentrations have been shown to vary greatly over both

space and time,10,21–23 which requires novel approaches to reduce
exposure misclassification.24–26 Accurate geolocation of residences
and fine-scale temporal estimates of air pollution are essential to
properly characterize exposure.9,27,28 Since people do not spend
all their time at home, let alone immediately outside their
residence where ambient levels are often assessed, exposure
estimates for TRAPs (such as UFP) also need to account for
personal time-activity patterns and infiltration into buildings.27–31

The Community Assessment of Freeway Exposure and Health
(CAFEH) study is a cross-sectional, community-based participatory
research study of the relationship between TRAP exposures and
measures of cardiovascular health risk.32 Here, we compare
models of association of residential ambient annual average
(RAA) PNC and time-activity adjusted (TAA)-PNC with the blood
biomarkers hsCRP and IL-6 in a subset of the CAFEH study
population. Our goal was to test the value of time-activity
adjustment for improving exposure assessment for environmental
epidemiology of UFP, a pollutant with high spatial and temporal
variability.
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METHODS
CAFEH Study Population
Details on the CAFEH study methods and approach are reported
elsewhere,32 and a summary of the study population has been provided
in Appendix 1. The CAFEH subsample analyzed here (n= 204) was
restricted to individuals ≥ 40 years of age living in neighborhoods within
Somerville, Massachusetts, USA. Other studies of the effects of air pollution,
including ultrafine particles, on inflammation have usually been restricted
to older adults, because greater effects are expected in older adults than in
young adults or children.17–19 An hourly PNC model for the Somerville
study area for the year in which the participants were recruited has been
published.23

The majority of participants in this analysis (n= 140) were randomly
recruited from geographically-weighted areas ≤ 500m from Intersate-93
(I-93) and from an urban background area that was ≥ 1,000m from I-93
(Figure 1). Recruitment was between July 2009 and September 2010.
We also included a convenience sample (n= 65) of participants who
resided in two housing complexes for elderly residents. A subset of
participants attended our field clinic at least once where blood was
collected for biomarker analysis (n= 140) and height and weight were
recorded (n=133). Blood samples were collected from August 2009 to
June 2010, with an unequal seasonal distribution (fall n=26; winter n=38;
spring n=70; summer n= 6).
Participants completed a survey that included questions regarding

demographics, window opening, air conditioning use, and time activity.
The time-activity information was used to assign time spent inside
or outside home, at work/school, and at other locations (including
non-highway travel) for each hour of the day as well as time on highways
in 15-min increments. Depending on employment status, participants were

asked to characterize time activity for the most recent workday and non-
workday (employed participants) or weekday and weekend day (non-
employed participants). We pooled workday/weekday and non-workday/
weekend time-activity data except when stratifying by employment status.
Other studies have shown time-activity patterns to be stable over time.33

Similarly, analysis of data from CAFEH-study participants who completed a
second time-activity questionnaire (n=127) showed little variability
between surveys, supporting the use of a single survey to characterize
time activity throughout the study period.28 Participants provided weekly
window opening information (never, o2 times, 2–5 times, 6–7 times per
week) from December to February (winter) and June to August (summer).
Participants also reported air conditioner (AC) type (window or central) and
usage (yes/no).

Geocoding of Study Participants
Residential location was determined using a multi-stage process that
included parcel and street network geocoding accompanied by manual
correction via orthophotos and apartment/multi-unit floor plans to reduce
positional error.9,23 We used ESRI ArcGIS v10.1 (ESRI, Redlands, California,
USA) software for all geographic information system (GIS) processes.
Individual geocoded locations are slightly jittered on published maps to
protect participants’ identity. Distances to I-93, Mystic Avenue/RT 38
(a state highway adjacent to the west side of I-93; Figure 1), and other
major roads were calculated in ArcGIS using the Near tool. Additionally,
participants employed full or part time (n=92) who worked in a single
location and provided a work address (n= 42) had their employment
location geocoded and distance calculated to the nearest interstate
highway. None of the work addresses were ≤ 500m from I-93 or any other
interstate highway, but nine participants did work within 200m of a major
roadway (that is, 420,000 vehicles per day).

PNC Measurement and Regression Modeling
PNC was measured in the neighborhoods where the participants lived with
a condensation particle counter (TSI Model 3775) in the Tufts Mobile Air
Pollution Laboratory (TAPL).22 The TAPL was driven over the same route 2–
6 times per day on 43 days (234 total hours at different times of the day, on
all days of the week, and in all seasons) between September 2009 and
August 2010, the year in which participants filled out surveys and provided
blood samples. Comparing the clinic date with exposure dates, on average
there were 180 days (SD=72 days) of exposure that occurred post
clinic visit.
A regression model to predict hourly ambient PNC across the study area

was built and validated.23 The model utilized both spatial (side of and
distance to I-93, distance to nearest major road) and temporal (wind speed,
wind direction, temperature, day of week, I-93 traffic volume, and speed)
variables to predict PNC across the study area (R2 = 0.43; cross-validated
R2 = 0.38–0.47). Residential coordinates were used in the model to
calculate ambient residential PNC for every hour of the year for each
study participant.

Time-Activity Adjustment of PNC
We averaged the ambient PNC values that were predicted by the model
for all hours of the year (n= 8760 h) to calculate an RAA-PNC for each
residence. To derive TAA-PNC, we used hourly questionnaire data for five
micro-environments (inside home, outside home, at work, on highway, and
other) and we accounted separately for PNC infiltration into the home. To
test the importance of each step in the time-activity adjustment, we
sequentially adjusted PNC exposure for every hour of the year for each
micro-environment for individual study participants. We began with the
micro-environments in which the participants spent the greatest percentage
of time on average, and added micro-environments in descending order.
Adjustments for residential AC use were performed by two separate
exposure models. The first adjusted RAA for inside home AC and did not
include any TAA. The second model adjusted for inside home AC use after
TAA of all micro-environments. This approach to inside home AC use
allowed for evaluation of the effects of particle infiltration into homes
separately from adjustment for time activity. Hourly exposure in each micro-
environment was assigned as follows (Supplementary Figure 1):

Inside home. We assigned the RAA-PNC value to all hours spent inside
the home, assuming 100% particle infiltration. This assumption was based
upon previously published analyses of homes in our study population that
showed a 0.95 median indoor–outdoor ratio (I/O).34 Because of this there is

 RAA-PNC 

 TAA-PNC 

TAA-PNC (#/cm3) 

RAA-PNC (#/cm3) 

Figure 1. Comparison of residential ambient annual average PNC
and time-activity adjusted PNC (n= 140 participants).
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no difference between RAA-PNC and TAA-PNC inside the home. We do not
consider a separate adjustment for outside home.

At work. We classified participants who were employed full or part time
as having jobs with TRAP exposure (n=7; for example, bus driver, crossing-
guard, and parking ticket officer) or without TRAP exposure (n= 85; for
example, nurse, administrator, and school teacher). For those with work-
based TRAP exposure, we approximated exposures by using the average
hourly RAA-PNC of all participants residing ≤ 50m of I-93 for the hours
they were at work. This was based on our assumption that levels of PNC
exposure would be higher for these participants during hours at work. For
participants without TRAP exposure at work, we approximated their work
PNC exposures using the average hourly RAA-PNC of all participants
residing in the urban background area, assuming that work environments
with no obvious TRAP exposure were likely to have levels similar to urban
background.

Other. For time spent in all other micro-environments, we also assigned
the hourly residential average of all participants residing in the urban
background area based on the assumption that urban background was the
most likely exposure for any micro-environment in the metropolitan area.

Highway. For hours spent on highways, we used estimates of PNC on Rt
38 from the PNC model developed by Patton et al.23 We did not have
information on participant vehicle type or in-vehicle behaviors such as
opening windows, closing vents, or AC usage; therefore, we assumed 100%
particle infiltration into vehicles.

Air conditioning adjustment. Finally, we adjusted the inside home micro-
environment to account for reduction of PNC infiltration by AC use
applying adjustment factors separately in both the RAA and TAA models.
We had information on whether participants used AC seasonally in their
homes, but we did not have hourly or daily records of use. Accordingly, we
assumed that AC use occurred when ambient temperatures exceeded 21 °
C (70 °F), with either a 25% or 28% reduction (window and central AC,
respectively) of infiltration during those hours. These values were based on
sampling at a subset of CAFEH homes in which we found PNC I/O ratios of
75% in homes using window-based units and 72% in homes using central
AC.34 Given our assumption of 100% particle infiltration, we did not make
an additional adjustment for window opening.
At each step of time-activity adjustment, we built on the previously

adjusted PNC values for hours and micro-environments that had not been
adjusted at the previous stage in the model. Equations have been included
in Supplementary Table 1 to provide greater detail on the hourly
adjustment methods used to derive TAA-PNC.

Statistical Analysis
Statistical analyses were performed using SAS v9.12 (Statistical Analysis
Software, Cary, North Carolina, USA) and R v3.1.35 Bivariate analyses were
conducted using t-tests, and analysis of variance (ANOVA) to test for
differences in means. Chi-square analysis was used to compare differences
in proportions. All statistical tests reporting a P-value were two-sided; a
P-value of o0.05 was considered as statistically significant. For our core
exploratory models, we used linear models to test the association of the
natural log (LN) of PNC with LN hsCRP and LN IL-6, constructing both
unadjusted models and models adjusted for age, gender, BMI, and
smoking status. Sample size limited our ability to simultaneously adjust for
more covariates in models. Therefore, separate models were run to
examine the effect of socio-economic status (SES) on the PNC—biomarker
relationship by removing smoking status. Identical unadjusted and adjusted
models were constructed for each stage of the TAA-PNC exposure
adjustment process. Log-transformed regression β-estimates with 95% CIs
were reported as measures of elasticity (% change). We explored
which parts of the exposure response function changed by com-
paring RAA-PNC and TAA-PNC generalized additive models (GAMs) with
a locally-weighted scatterplot smoothing (LOESS) using the GAM R-cran
package.36 All GAMs were adjusted for the same covariates in the
linear model.
Comparison of PNC percent contributions for each micro-environment

and sequential TAA for distance to highway strata were conducted on
the full sample (n= 204) to retain the largest sample size and potential
for variation in exposures. Analyses for association between PNC and
biomarkers of systemic inflammation were restricted to only those
participants with viable blood samples (n= 140).

Sensitivity Analysis
While we had I/O PNC data from homes in our study population,34 there
are published infiltration factors that are significantly lower than ours. For
example, studies have reported that ambient UFP penetration into homes
can range from 7% to 100% depending on factors such as window size and
openness, fan usage, air exchange rate, ambient concentrations, and
meteorological conditions, with lower UFP penetration occurring in studies
of unoccupied and/or tightly sealed buildings.37–41 Similarly, studies have
found that infiltration into vehicles can range from 8% to 100%, depending
on AC usage, recirculation of air, window opening, age of vehicle, make
and type of vehicle and speed.42–45 We therefore performed sensitivity
analyses to examine the influence of infiltration factors on our findings. We
applied 25%, 50%, and 75% particle reductions for both time spent inside
home and traveling on highways. We ran separate regression models for
associations of these exposure estimates with hsCRP and IL-6 to compare
effects on the β-estimates and strength of association.

RESULTS
Characteristics of the Study Population
The mean age of study participants was 59.1 years. The majority
were female (66%), white (70%), had completed high school
(74%), and had incomes below $75,000 (67%) (Table 1). Demo-
graphic variables were divided into three strata based on
Euclidean distance from I-93: ≤ 50m, 51–500 m, and ≥ 1,000m.
Compared with participants residing in the urban background
area, participants living ≤ 50m from I-93 were significantly
younger, had higher BMI, were more likely to be non-white and
male, had lower income and education, were more likely to be
employed full or part time, and to have never smoked. Window
opening was 88% in the summer, with no significant differences
by distance to I-93, and 54% in winter, with a significantly lower
percentage (40%) in the urban background area. The majority of
participants had either window or central air conditioning units,
with little difference by proximity to I-93.
The subpopulation with blood samples (n= 140) had a mean

BMI of 29.2, and median hsCRP and IL-6 values of 1.62 mg/l and
1.61 pg/ml, respectively (Table 2). Stratifying the inflammatory
markers by season of blood sample did not result in a significant
median difference in hsCRP or IL-6 (data not shown). The subset of
participants who gave blood samples were similar to the full
sample (Supplementary Table 2).

Time Activity
Participants residing ≤ 50m from I-93 spent significantly more
time (31%) at work than did those in the 51–500 m (11%) and
urban background (21%) areas. They also spent significantly less
time (63%) inside their homes than did those living 51–500m
(75%) from I-93. While not a significant difference, the urban
background participants spent more time traveling on highways
than did participants residing in the other distance groups.
Participants in the 51–500 m distance category spent the most
time in the “other” micro-environment. During the non-workday/
weekend time-activity allocation participants residing 51–500m
from I-93 spent significantly greater amounts of time inside their
homes and less time at work than did participants in the urban
background (Table 1).

PNC Exposure Assignments and Adjustment for Time Activity
The inside and outside home micro-environments contributed a
combined 75.3% of daily time and 78.4% of daily exposure
(Table 3). The work micro-environment contributed 16.5% of daily
time and 13.5% of daily exposure. Time in the “other” micro-
environment contributed 6.5% of daily time and 5.0% of daily
exposure. The micro-environment for travel on highways con-
tributed only 1.7% of daily time, but 3.2% of daily exposure, reflecting
higher PNC levels assigned to time on highways. Stratification by
employment status showed that among employed participants
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the work and highway micro-environments contributed more
to PNC daily exposure, while the residential and “other” micro-
environments contributed less as compared with the unemployed
population.
Sequential adjustment of PNC for time activity and AC reduced

PNC exposures for the 0–50m and 51–500m subpopulations, but

less so for the urban background population (Table 4). Modeled
RAA-PNC was higher in near highway areas compared with the
urban background area across all adjustment steps. Stratification
by employment status revealed larger underlying differences in
time-activity adjustment. Among employed participants in the
0–50m distance group the work micro-environment adjustment

Table 1. Demographic and TAA variables stratified by residential distance to I-93.

Characteristic Total (N= 204) ≤ 50 m (N=32) 51–500m (N= 129) 41,000m (N= 43)

Demographic variables
Age, mean (SD) 59.1 (12.4) 52.7 (10)a,b 60.5 (11.7)b 59.6 (14.8)
Female 66% 56%a 66% 72%
White 70% 58%a 66%c 93%
Smoking status
Current 22% 19%a 27%c 7%
Former 35% 16%a,b 36%b 47%
Never 37% 50%b 31%b,c 44%
Missing 6% 16% 6% 2%

Educational attainment
Less than high school diploma 26% 38%a 26% 16%
High school diploma 31% 31%a 38% 12%
Undergraduate school 28% 28% 25% 35%
Graduate school 15% 3%a,b 11% 37%

Annual Income
Less than $24,999 19% 12% 12% 14%
$25,000–$74,999 14% 19%b 44%b,c 25%
$75,000 or more 35% 28% 33% 42%
Do not know/refused 32% 41%a,b 11%c 19%

Employment
Working full time or part time 45% 66%a,b 36%b,c 58%
Retired, disabled or unemployed 52% 28%a,b 62%b,c 40%
Missing 3% 6%a,b 2%b,c 2%

Time-activity adjustment variables
Workday/weekday (mean hours (SD))
Inside home 17.14 (4.8) 15.07 (5.4)a 17.94 (4.2)c 16.34 (5.4)
Outside home 0.95 (2.53) 0.48 (1.16) 0.99 (2.14) 1.13 (3.78)
Work 3.95 (4.8) 7.66 (5.67)a,b 2.68 (4.07)b,c 4.96 (4.68)
Other 1.56 (2.53) 0.52 (0.96)a 2.02 (2.97)c 1.02 (1.47)
Highway 0.40 (0.97) 0.27 (0.48) 0.37 (0.71) 0.55 (1.58)

Non-workday/weekend (mean hours (SD))
Inside home 18.56 (4.6) 17.24 (4.6) 19.45 (3.5)c 17.09 (6.2)
Outside home 1.72 (3.5) 2.88 (5.33) 1.48 (2.72) 1.63 (4.01)
Work 1.46 (3.71) 1.86 (2.91) 0.63 (1.98)c 3.33 (6.12)
Other 1.89 (2.49) 1.42 (2.24) 2.13 (2.62) 1.58 (2.25)
Highway 0.37 (0.62) 0.6 (0.79) 0.32 (0.56) 0.37 (1.76)

Air conditioner (AC)
Yes 85% 81% 88% 81%

Open windows in winter
Yes 54% 53%a 59%c 40%
Missing o1% 0% o1% 0%

Open windows in summer
Yes 88% 88% 87% 93%
Missing 2% 3% 1% 2%

aIndicates significant (P≤ 0.05) mean difference between the ≤ 50m and 41,000 m distance group. bIndicates significant mean difference between the ≤ 50m
and 51–500 m distance group. cIndicates significant (P≤ 0.05) mean difference between the 51–500m and 41,000m distance group.

Table 2. Health measures stratified by distance to I-93.

Health measure Total (N=140) ≤ 50 m (N=20) 51–500 m (N=95) 41,000m (N= 25)

BMI, mean (SD)a 29.2 (6.9) 32.9 (8.4)b 29.3 (6.6) 26.0 (5.5)
hsCRP mg/l, median (IQR) 1.62 (2.8) 1.92 (4.4) 1.92 (2.9) 0.94 (1.0)
IL-6 pg/ml, median (IQR) 1.61 (2.3) 1.63 (2.9) 1.78 (2.1) 0.97 (0.8)

aSample size differs due to missing BMI values ≤ 50m (n= 19); 51–500 m (n= 89); and 41,000m (n= 25). bIndicates significant (P≤ 0.05) difference between
≤ 50m and 41,000 m distance groups.
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introduced the largest downward shift in PNC (3,000 particles/cm3).
Adjustment for all micro-environments for employed participants
from the 0–50m and 51–500 m groups led to downward shifts in
average mean TAA-PNC relative to RAA-PNC of 4,000 particles/cm3

and 3,000 particles/cm3, respectively. The standard deviation
of TAA-PNC values for employed participants tripled in the 0–50m
group and doubled in the 51–500m group. Unemployed partici-
pants in the 0–50m and 51–500 m distance groups had smaller
shifts in mean PNC and smaller changes in standard deviation.
There was no observable difference in the mean or standard
deviation for the urban background subpopulation regardless of
employment status. PNC adjustment models for all Somerville
participants produced similar results to the participants attending
clinics (Supplementary Table 3).
Quintiles of PNC for the entire population were used as cut

points to illustrate exposure differences across the study area. The
majority of participants in the urban background area were in the
lowest quintile of RAA-PNC exposure (PNC≤ 18,000 particles/cm3),
while most of the participants in the highest quintile of RAA-PNC
(PNC≥ 27,000 particles/cm3) resided near major roadways or I-93
(Figure 1a). Adjusting for time activity had little effect on the
assigned values for the urban background participants; however,
time-activity adjustment resulted in lower mean exposures for
participants residing close to I-93 (Figure 1b; Table 4). Additional
maps that stratified by employment status (Supplementary Figure
2) illustrate the greater reduction in PNC with TAA for employed
residents near I-93.

Association of PNC with Biomarkers
Concentrations of hsCRP and IL-6 were higher for participants
living near I-93 and Broadway, a major roadway running along the
near-highway study area (Figure 2 and Table 2). After controlling
for key covariates (age, gender, BMI, and smoking status),
multivariable regression models showed positive associations,
but with reduced beta estimates that were not statistically

significant (Table 5). Beta estimates tended to become larger as
more TAA factors were included in the multivariate models and
then declined with the addition of the AC adjustment. Additional
models were tested for the effects of SES in place of smoking
status to maintain adequate degrees of freedom. Income and
education were significant predictors of our inflammatory
markers, but did not affect the relationship with PNC by greater
than 10% (data not shown).
Figure 3a shows adjusted GAM plots using only residential

exposure assignment. The association with hsCRP appeared non-
monotonic, with confidence intervals substantially wider at higher
and lower concentration tails. The shape of the curve is possibly
affected by discontinuities (lack of intermediate exposures)
between the near highway and urban background populations.
Adjusting for time-activity patterns (Figure 3b) led to a greater
continuum of exposures, with a monotonic and essentially linear

Table 3. Micro-environment percent contribution to TAA-PNC annual
average by employment status.

Micro-
environment

Average
time (hours)

% Time
(hours/
24 hours)

Annual average
PNC (#/cm3)

%
Exposurea

Residential 17.14 75.3 24,000 78.36
Work 3.95 16.5 18,000 13.54
Other 1.56 6.5 17,000 5.05
Highway 0.4 1.7 40,000 3.05

Working full or part time
Residential 14.47 60.3 24,000 64.74
Work 7.55 31.5 18,000 25.33
Other 1.09 4.5 17,000 3.45
Highway 0.89 3.7 39,000 6.47

Non-working, retired or disabled
Residential 20.28 84.5 25,000 86.54
Work 0.84 3.5 17,000 2.44
Other 2.23 9.3 17,000 6.47
Highway 0.65 2.7 41,000 4.55

aTime spent in micro-environment per day multiplied by annual average
PNC of micro-environment then divided by the sum annual average of all
micro-environment exposures. Residential: all hours a participant indicated
they were in the micro-environments inside or outside home on time-
activity questionnaire. Work: All hours a person indicated they were in the
work micro-environment. Other: all hours a participant indicated being in a
“other” micro-environment. Highway: aggregate of 15min intervals a
person identified as traveling on the highway.

Table 4. Mean and standard deviation of residential and time-activity
adjusted annual average particle number concentrations (presented
as 10,000 particles per cm3) from sequential model adjustment by
distance to I-93 and stratified by employment status for clinic
attending participants.

PNC models Total ≤ 50 m 51–500 41,000m

All clinic participants (n= 140) (n=20) (n= 95) (n=25)
RAA 2.5 (0.4) 2.7 (0.1)a 2.6 (0.1)b 1.8 (0.1)
RAA+AC 2.4 (0.3) 2.7 (0.1)a 2.6 (0.1)b 1.8 (0.1)
RAA+work 2.4(0.3) 2.4 (0.2)a 2.5 (0.2)b 1.8 (0.1)
RAA+work+other 2.3 (0.3) 2.4 (0.2)a 2.4 (0.1)b 1.8 (0.1)
RAA+work+other
+highway

2.3 (0.3) 2.4 (0.2)a 2.4 (0.1)b 1.8 (0.1)

RAA+work+other
+highway+AC

2.3 (0.3) 2.4 (0.2)a 2.4 (0.2)b 1.7 (0.1)

Working full or part time (n= 62) (n=14) (n= 32) (n=16)
RAA 2.4 (0.4) 2.7 (0.1)a 2.6 (0.1)b 1.8 (0.1)
RAA+AC 2.4 (0.4) 2.7 (0.1)a 2.6 (0.1)b 1.8 (0.1)
RAA+work 2.2 (0.3) 2.4 (0.2)a 2.4 (0.1)b 1.8 (o0.1)
RAA+work+other 2.2 (0.3) 2.4 (0.2)a 2.3 (0.1)b 1.8 (o0.1)
RAA+work+other
+highway

2.2 (0.3) 2.4 (0.2)a 2.4 (0.1)b 1.8 (0.1)

RAA+work+other
+highway+AC

2.2 (0.3) 2.3 (0.3)a 2.3 (0.2)b 1.8 (0.1)

Non-working, retired or
disabled

(n= 78) (n=6) (n= 63) (n=9)

RAA 2.5 (0.3) 2.7 (0.1)a 2.6 (0.1)b 1.8 (0.1)
RAA+AC 2.4 (0.3) 2.7 (0.1)a 2.5 (0.1)b 1.7 (0.1)
RAA+work 2.5 (0.3) 2.7 (0.1)a 2.6 (0.1)b 1.8 (0.1)
RAA+work+other 2.4 (0.3) 2.6 (0.1)a 2.5 (0.1)b 1.8 (0.1)
RAA+work+other
+highway

2.4 (0.3) 2.6 (0.1)a 2.5 (0.1)b 1.8 (0.1)

RAA+work+other
+highway+AC

2.3 (0.3) 2.6 (0.1)a 2.4 (0.2)b 1.7 (0.1)

Residential annual average (RAA): PNC values for all hours of the year to
the participant’s place of residence. Work: an average higher or lower PNC
was inserted for every hour a participant indicated being in the work
micro-environment and based upon TRAP exposure job categorization.
Other: an urban background average was inserted for every hour a
participant identified as being in the “other” micro-environment. Highway:
modeled side of highway values was inserted for indicated time spent on
highway. Air conditioning (AC): a % reduction when ambient hourly
temperatures were above 21 °C (70 °F) was applied to PNC values for the
micro-environment inside home when participants identified as having
and using window or central AC. aIndicates significant mean difference
between the ≤50m and 41,000 m distance group. bIndicates significant
mean difference between the 51–500 m and 41,000 m distance group.
Sequential PNC adjustments are based upon each participant’s individual
time-activity questionnaires.
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association. The re-distribution of the participants’ exposures
can be observed in the hash marks along the X axis, which
represent each individual participant’s contribution to the

exposure-response curve. GAMs for IL-6 did not differ substantially
between RAA-PNC and TAA-PNC (Figure 4a and b).
Decreasing the I/O ratio for time periods inside-home reduced

exposure for the entire study population, while decreasing I/O for
on-highway travel (that is, by reducing in-vehicle concentrations)
led to only marginal reduction for a subset of the population (not
shown). Assigning lower values for infiltration into vehicles had
negligible effects on the associations with biomarkers. However,
assigning reduced infiltration into homes greatly reduced effect
estimates and widened confidence intervals (Supplementary
Table 4). We found that decreasing the home I/O ratio by 50%
or more produced null results for association with hsCRP and led
to negative, but statistically insignificant, associations with IL-6.

DISCUSSION
Our goal was to test how incorporation of time-activity data could
influence exposure assignment and epidemiologic findings.
Our approach should better represent personal exposure to air
pollutants that exhibit a high degree of spatial and temporal
variation. We found that adjusting for time-activity patterns
altered assigned PNC exposure levels, especially for near highway
and employed participants. We also demonstrated associations,
some statistically significant, of PNC exposure with hsCRP and IL-6
in unadjusted models. In adjusted models, while associations were
not statistically significant, TAA increased the size of effect
estimates while widening confidence intervals (Table 5). Coupled
with the more biologically plausible exposure-response functions
(Figures 3 and 4), these results provide evidence that adjusting
PNC for time activity and air conditioning use may improve
exposure assessment for UFP.
Adjustment of PNC for time activity differentially reduced

assigned exposure to PNC annual averages for participants
residing close to I-93 (Table 4). The downward shift in PNC for
these participants was anticipated based upon our prior analysis
of their hourly time-activity patterns. In that analysis, participants
living ≤ 50m from I-93 spent significantly less time at their
residence and significantly greater amounts of time at work than
participants in other distance groups.28

The uneven spatial distribution of the time-activity micro-
environment adjustments resulted in differential PNC exposure
assignment relative to distance to the highway (Figure 1).
Consistent with our findings, one air pollutant study found largeFigure 2. Spatial distribution of hsCRP and IL-6 across the study area.

Table 5. LN TAA-PNC models for association with LN hsCRP and LN Il-6.

PNC exposure models Univariate Multi-variablea

LN hsCRP LN IL-6 LN hsCRP LN IL-6

β 95% CI β 95% CI β 95% CI β 95% CI

RAA 1.92 (0.62, 3.22) 1.24 (0.35, 2.13) 1.14 (−0.06, 2.35) 0.53 (−0.28, 1.34)
RAA+AC 1.81 (0.54, 3.09) 1.18 (0.29, 2.08) 0.99 (−0.19, 2.17) 0.54 (−0.25, 1.33)
RAA+work 2.00 (0.27, 3.74) 0.73 (−0.49, 1.96) 1.37 (−0.24, 2.99) 0.6 (−0.48, 1.68)
RAA+work+other 2.28 (0.56, 3.99) 1.14 (−0.05, 2.35) 1.36 (−0.19, 2.92) 0.54 (−0.50, 1.58)
RAA+work+other+highway 2.06 (0.33, 3.80) 1.07 (−0.14, 2.27) 1.67 (−0.03, 3.37) 0.76 (−0.36, 1.88)
RAA+work+other+highway+AC 1.90 (0.47, 3.34) 1.37 (0.38, 2.36) 1.26 (−0.02, 2.75) 0.65 (−0.26, 1.55)

Residential annual average (RAA): PNC values for all hours of the year to the participant’s place of residence. Work: an average higher or lower PNC was
inserted for every hour a participant indicated being in the work micro-environment and based upon TRAP exposure job categorization. Other: an urban
background average was inserted for every hour a participant identified as being in the “other” micro-environment. Highway: modeled side of highway values
was inserted for indicated time spent on highway. Air conditioning (AC): a % reduction when ambient hourly temperatures were above 21 °C (70 °F) was
applied to PNC values for the micro-environment inside home when participants identified as having and using window or central AC. Each PNC model in the
table builds iteratively upon the previous row until all micro-environments and the adjustment for residential AC have been included. aModels adjusted for
age, gender, BMI, and smoking status.
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exposure differences between personal ambient PM2.5 and central
monitors while another found differences in modeled NO2 before
and after adjusting for time spent at work.46,47 Studies of PNC levels
in commuting scenarios and at other locations have also identified
the importance of capturing micro-environment exposure.44,48 Our
results provide further support for the importance of adjusting for
time-activity when assigning exposure.
The downward shift in PNC values for participants with lower

hsCRP levels led to the dose response curve being monotonic,
which is consistent with exposure misclassification in the RAA-PNC
model partially obscuring the association (Figure 3). The gap in
participants with exposures from 18,000 to 20,000 particles/cm3 in
the RAA-PNC model was a byproduct of our geographically-
weighted recruitment effort (Figure 3a). Our TAA classification
scheme distributed exposures more evenly than RAA because
many employed participants who resided in the 0–50m and
51–500m distance groups were assigned lower PNC exposures
after adjustment for time away from home. These results suggest
that taking time activity into account reduces exposure mis-
classification that could otherwise bias effect estimates and

impede the ability to more accurately detect associations between
exposure and health markers.
While we did not find a significant difference overall between

the RAA-PNC and final TAA-PNC model, there were significant
shifts in the mean and standard deviation within I-93 distance
categories that were greater for the employed population.
Comparing RAA-PNC and TAA-PNC models there was a change
of 4,000 particles/cm3 for the employed residents who lived 0–
50m and of 3,000 particles/cm3 for those who lived 51–500m
from I-93 (Table 4). There was no observable shift in TAA-PNC
assignment for urban background participants (41,000m from
I-93) (Table 4). This differential effect in PNC assignment by TAA is
due to: (1) near-highway participants spending significantly more
time away from their homes in areas for which we assigned urban
background concentrations; and (2) urban background partici-
pants having low RAA-PNC values at home as well as spending
time away from home in areas assigned similarly low exposures.
The variation in time-activity patterns observed between our near
highway and urban background populations may not be general-
izable to other populations. Additionally, there could be limited

Figure 3. GAM model comparison of the effect of PNC exposure models on LN hsCRP.

Figure 4. GAM model comparison of the effect of PNC exposure models on LN IL-6.

Time-activity adjustment and exposure assessment
Lane et al

512

Journal of Exposure Science and Environmental Epidemiology (2015), 506 – 516 © 2015 Nature America, Inc.



transferability of PNC models from one location to another, based
on previous models of TRAP, which likely also reduces the
generalizability of our results to other study areas.49,50

Health studies often rely upon residential proximity to roadways
or use models that assign ambient exposure outside at the
residence to UFP and other TRAPs that actually have high spatial
and temporal variability. Doing this potentially mischaracterizes
effect sizes due to exposure misclassification related to time
activity. Due to the spatial heterogeneity of PNC, ignoring TAA
during exposure assignment biased our effect estimates toward
the null and resulted in underestimating the association. Therefore
adjusting for TAA could be important when studying other TRAPs
with similarly high localized spatial variability such as NO and CO,
but less important for more spatially homogenous air pollutants
like PM2.5. Thus, epidemiologists conducting TRAP studies might
benefit from considering exposure assessment models that adjust
for mobility patterns in their study populations. They might also
reduce misclassification by taking into consideration exposure
inside homes, travel on highways, and hours working near highways.
Only a small number of studies have integrated time-activity
modeling into their analysis of TRAPs thus far.29,51,52 Studies
with personal time-activity information and the ability to better
characterize micro-environment concentrations could develop
personal TAA models that go beyond what we did.53 Larger
cohorts might need to utilize personal demographic and transport
modeling software to predict population mobility trends.27,29,52

Strengths and Limitations
A primary limitation to our analysis is that we did not measure
personal exposure of participants, so we do not have direct
evidence that TAA reduced exposure misclassification. However,
the main thrust of our findings is consistent with TAA reducing
exposure misclassification. Another limitation was that question-
naire data were used to assess personal time activity, which could
introduce reporting bias. However, the repeatability of our time-
activity data was previously reported as relatively stable.28 Our
time-activity questionnaire was also limited to five broad micro-
environments and may contain error in responses as well as
assumptions about exposures in these micro-environments. For
example, our assumption that work hours with TRAP exposure should
produce higher exposures than RAA-PNC should be directionally
correct. However, we acknowledge that for work exposures
without TRAP, using an hourly average of the urban background
participants could underestimate work location exposures, parti-
cularly if participants are working in buildings at major traffic
intersections. Alternatively, it could overestimate exposures if they
are working within a tightly sealed building with AC or air filtration
systems.
We had very little information on where participants were when

they reported being in the “other” micro-environment category,
albeit this category contributed a small fraction of time and
exposure. If near highway participants were spending time closer
to their residences while in the “other” micro-environment our
assumption would underestimate their exposures. Future studies
may want to include questions about location of moderate to
vigorous physical activity (respiration rate) with respect to
exposure sources because it would influence dose, a factor we
did not address.51

An important strength was the availability of I/O monitoring of a
subset of study homes in our study population.34 Thus, the ratio
we used for infiltration reflected conditions in a range of
residential building types in our study area. While we did not
have data from winter months when window opening is
typically lower, survey responses indicated substantial window
opening during winter (Table 1). Window characteristics such as
use, size, and number of windows open have been shown to
affect particle infiltration ratios.39 Our sensitivity analysis

(Supplementary Table 4) showed the importance of accurate
estimation of residential infiltration. Reducing the I/O ratio
resulted in a corresponding reduction in the strength of asso-
ciation of TAA-PNC with hsCRP, likely due to the corresponding
reduction in the range of exposure estimates (Supplementary
Table 4). Had we used lower I/O ratios obtained from the
literature, many of which were based on unoccupied buildings
with closed windows, mechanical ventilation, or under scripted
tasks,37,38,54 we would have found significantly smaller associa-
tions. Given the sizable effect the residential I/O had on our esti-
mates for association, future studies should consider the potential
interaction between temperature, window openness, and PNC.
We also did not include a particle infiltration factor for time in

vehicles or work locations which could bias exposures and effect
estimates. We also did not collect data on stove type in our study.
Residential exposure to second-hand smoke was reported by 16%
of the population indicating that it could affect a small part of our
study population.
Field data supported our estimate that air conditioning reduced

infiltration by 25%.34 However, a limitation of our assumptions for
AC adjustment stems from our decision to use a single tempera-
ture cutoff of 21.1 °C, above which we assumed AC was in use.
Actual AC use is also dependent upon cost and personal comfort
with higher temperatures or dislike of AC. Therefore, our adjust-
ment may over or underestimate the amount air conditioning use.
Due to our relatively small sample size, a limited set of known

cardiovascular risk factors were included in the models for
association with biomarkers. This restricted our ability to test for
multiple categorical variables simultaneously. Additionally, other
potential differences in observed effects that might be seen with
stratification by covariates were not possible to explore.
A particular strength of our analysis was the availability of a

spatial-temporal hourly PNC regression model,23 which when
combined with the time-activity data allowed for each hour of the
year to be adjusted for each individual study participant. To our
knowledge, this is the first time such a model has been used for
exposure assessment in an epidemiological study. The cross-
validated R2 values obtained for the CAFEH Somerville model
(0.38–0.47) were similar to those for other models with spatial and
temporal constraints (0.23–0.51).55–58 The CAFEH PNC regression
model was developed via a mobile monitoring effort that included
monitoring near the homes of all study participants, and therefore
should have captured the range of ambient PNC to which they
were exposed.
Utilization of an hourly PNC regression model permitted

adjustment of time activity to be applied for each hour of the
year rather than after calculating an annual average. This allows
for hourly variability in PNC throughout the year, so that both
diurnal and seasonal PNC levels are integrated into the annual
average TAA-PNC value.59,60 The hourly resolved PNC regression
model, as would be expected, had a lower R2 than land use
regression models with greater averaging times,23,57,58 but the
ability to capture diurnal variations in development of annual
average exposure estimates may lead to reduced uncertainty. We
accepted lower R2 to have greater temporal resolution in the
model to address the rapid temporal changes in PNC levels.23 That
said, given the R2 of our PNC regression model and the small
sample size of our study, exposure prediction without incorporat-
ing corresponding uncertainties could bias our effect estimates.
Future work will be needed to develop models that reduce
exposure misclassification further by explaining more of the
variability in PNC, perhaps through use of mechanistic models or
machine learning algorithms.61,62 Additionally, part of exposure to
UFPs was assigned post blood draw which may have introduced
error in PNC assignment if there were large differences in
exposure from year to year. However, recent studies have
reported TRAP LUR models developed as much as 10–12 years
apart to be stable.63,64
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CONCLUSIONS
We identified significant differences in exposure assignment
between RAA-PNC and TAA-PNC. Further, TAA-PNC models
increased the estimate of effect for associations with hsCRP and
IL-6 leading to more biologically plausible exposure-response
functions, consistent with multiple reports in the literature of
toxicity and association with health effects in humans and
animals.13–19,65 These results improve our knowledge of possible
association of UFP with CVD, because they provide some evidence
that TAA may reduce exposure misclassification and improve the
interpretability of epidemiological studies. Our approach is
feasible and can be applied in health studies that have both
hourly exposure models for TRAPs (such as UFP) and personal
time-activity data. Our findings contribute to evidence that there
is value to considering personal time activity in epidemiological
analysis of pollutants with high spatial and temporal variability.
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APPENDIX 1
Appendix 1 CAFEH Study Cohort Summary
CAFEH is a community-based participatory research (CBPR) study
of traffic-related air pollution (TRAP) and cardiovascular health in
individuals 40+ years of age living in close proximity to the major
highways interstate 93 and/or Interstate 90 (NIEHS ES015462; PI
Brugge). The subpopulation for the analysis reported here is from

the City of Somerville, MA, which is a densely populated suburb
located roughly 3 miles north from the center of Boston, MA.
Somerville has a large number of multi-family dwellings, and
public and elderly housing facilities located within close proximity
to an eight lane interstate highway (I-93) that runs north-south
through the city. Somerville is the first exit before Boston along
I-93, resulting in consistent traffic congestion throughout the

Time-activity adjustment and exposure assessment
Lane et al

515

© 2015 Nature America, Inc. Journal of Exposure Science and Environmental Epidemiology (2015), 506 – 516

http://www.R-project.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


morning and evening commuter periods each weekday. The
Somerville-based study population (N= 204) was established via a
geographically-weighted randomly-selected address recruitment
effort from July 2009 through July 2010. The random sample
(n= 139) was supplemented by a convenience sample (n= 65) of
residents in two senior housing developments. All participants
willing to participate in the CAFEH study completed a consent
form certified by Tufts University School of Medicine and
questionnaire at their place of residence that provided demo-
graphic information (age, gender, income, education, race, etc.)
and information on a variety of other topics related to our
exposure and health outcomes of interest (time activity, diet,

physical activity, stress, medications, diagnosed illnesses, etc.). A
subset of CAFEH participants attended a study clinic at least once
(n= 140) and submitted a viable peripheral blood sample for
analysis of inflammatory biomarkers. The populations recruited to
the CAFEH cohort lived in both a near-highway (NH; ≤ 500m from
highway) and urban background (UB;≥ 1000m from highway)
location from which participants were recruited.
In summary, the CAFEH analysis is a cross-sectional study of

monitored and modeled UFP measured as particle number con-
centration (PNC) and that collected the corresponding human data,
including time-activity data and biomarkers of systemic inflammation
from near-highway and urban background populations.
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