Abstract
In the search for antagonists of human growth hormone-releasing hormone (hGHRH) with high activity, 22 analogs were synthesized by solid-phase methods, purified, and tested biologically. Within the N-terminal sequence of 28 or 29 amino acids of hGHRH, all the analogs contained D-Arg2, Phe(4-Cl)6 (para-chlorophenylalanine), Abu15 (alpha-aminobutyric acid), and Nle27 and most of them had Agm29 (agmatine) substituents. All the peptides, except one, were acylated at the N terminus with different hydrophobic acids--e.g., isobutyric acid (Ibu) or 1-naphthylacetic acid (Nac) in order to study the effect of N-terminal acylation on the antagonistic activity. In the superfused rat pituitary cell system, all the analogs inhibited more powerfully the GHRH-induced growth hormone (GH) release than the standard GHRH antagonist [Ac-Tyr1,D-Arg2]hGHRH-(1-29)NH2. Antagonists [Ibu0,D-Arg2,Phe(4-Cl)6,Abu15,Nle27]hGHRH-(1-28) Agm (MZ-4-71), [Nac0,D-Arg2,Phe(4-Cl)6,Abu15,Nle27]hGHRH-(1-28) Agm (MZ-4-243), [Nac0,D-Arg2,Phe(4-Cl)6,Abu15,Nle27]hGHRH-(1-29) NH2 (MZ-4-169), [Nac0-His1,D-Arg2,Phe(4-Cl)6,Abu15,Nle27]-hGH RH-(1-29)NH2 (MZ-4-181), and [Nac0,D-Arg2,Phe(4-Cl)6,Abu15,Nle27,Asp28]hGH RH-(1-28)Agm (MZ-4-209) inhibited GH release at 3 x 10(-9) M. Among these peptides, MZ-4-243, MZ-4-169, and MZ-4-181 were also long acting in vitro. Antagonist MZ-4-243 inhibited GH release 100 times more powerfully than the standard antagonist and was the most potent in vitro among GHRH antagonists synthesized. Analogs with high inhibitory effects in vitro were also found to have high affinities to rat pituitary GHRH receptors. In experiments in vivo, antagonists [Ibu0,D-Arg2,Phe(4-Cl)6,Abu15,Nle27]-hGHRH-(1-28 )Agm (MZ-4-71), [Nac0,D-Arg2,Phe(4-Cl)6,Abu15,Nle27]hGHRH-(1-29) NH2 (MZ-4-169), and [Nac0-His1,D-Arg2,Phe(4-Cl)6,Abu15,Nle27]hGHR H-(1-29)NH2 (MZ-4-181) induced a significantly greater inhibition of GH release than the standard antagonist. In view of their high antagonistic activity and prolonged duration of action, some of these antagonists of GHRH may find clinical applications, including treatment of certain endocrine disorders and insulin-like growth factor I-dependent tumors.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
- Coy D. H., Hocart S. J., Murphy W. A. Human growth hormone-releasing hormone analogues with much improved in vitro growth hormone-releasing potencies in rat pituitary cells. Eur J Pharmacol. 1991 Nov 5;204(2):179–185. doi: 10.1016/0014-2999(91)90703-s. [DOI] [PubMed] [Google Scholar]
- Gaudreau P., Boulanger L., Abribat T. Affinity of human growth hormone-releasing factor (1-29)NH2 analogues for GRF binding sites in rat adenopituitary. J Med Chem. 1992 May 15;35(10):1864–1869. doi: 10.1021/jm00088a023. [DOI] [PubMed] [Google Scholar]
- Guillemin R., Brazeau P., Böhlen P., Esch F., Ling N., Wehrenberg W. B. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science. 1982 Nov 5;218(4572):585–587. doi: 10.1126/science.6812220. [DOI] [PubMed] [Google Scholar]
- Halmos G., Rekasi Z., Szoke B., Schally A. V. Use of radioreceptor assay and cell superfusion system for in vitro screening of analogs of growth hormone-releasing hormone. Receptor. 1993 Summer;3(2):87–97. [PubMed] [Google Scholar]
- Hocart S. J., Murphy W. A., Coy D. H. Analogues of growth hormone-releasing factor (1-29) amide containing the reduced peptide bond isostere in the N-terminal region. J Med Chem. 1990 Jul;33(7):1954–1958. doi: 10.1021/jm00169a022. [DOI] [PubMed] [Google Scholar]
- Kaiser E., Colescott R. L., Bossinger C. D., Cook P. I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem. 1970 Apr;34(2):595–598. doi: 10.1016/0003-2697(70)90146-6. [DOI] [PubMed] [Google Scholar]
- Lumpkin M. D., McDonald J. K. Blockade of growth hormone-releasing factor (GRF) activity in the pituitary and hypothalamus of the conscious rat with a peptidic GRF antagonist. Endocrinology. 1989 Mar;124(3):1522–1531. doi: 10.1210/endo-124-3-1522. [DOI] [PubMed] [Google Scholar]
- Lumpkin M. D., Mulroney S. E., Haramati A. Inhibition of pulsatile growth hormone (GH) secretion and somatic growth in immature rats with a synthetic GH-releasing factor antagonist. Endocrinology. 1989 Mar;124(3):1154–1159. doi: 10.1210/endo-124-3-1154. [DOI] [PubMed] [Google Scholar]
- McPherson G. A. Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods. 1985 Nov;14(3):213–228. doi: 10.1016/0160-5402(85)90034-8. [DOI] [PubMed] [Google Scholar]
- Pollak M. N., Polychronakos C., Richard M. Insulinlike growth factor I: a potent mitogen for human osteogenic sarcoma. J Natl Cancer Inst. 1990 Feb 21;82(4):301–305. doi: 10.1093/jnci/82.4.301. [DOI] [PubMed] [Google Scholar]
- Pollak M., Costantino J., Polychronakos C., Blauer S. A., Guyda H., Redmond C., Fisher B., Margolese R. Effect of tamoxifen on serum insulinlike growth factor I levels in stage I breast cancer patients. J Natl Cancer Inst. 1990 Nov 7;82(21):1693–1697. doi: 10.1093/jnci/82.21.1693. [DOI] [PubMed] [Google Scholar]
- Rekasi Z., Schally A. V. A method for evaluation of activity of antagonistic analogs of growth hormone-releasing hormone in a superfusion system. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2146–2149. doi: 10.1073/pnas.90.6.2146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rivier J., Spiess J., Thorner M., Vale W. Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature. 1982 Nov 18;300(5889):276–278. doi: 10.1038/300276a0. [DOI] [PubMed] [Google Scholar]
- Robberecht P., Coy D. H., Waelbroeck M., Heiman M. L., de Neef P., Camus J. C., Christophe J. Structural requirements for the activation of rat anterior pituitary adenylate cyclase by growth hormone-releasing factor (GRF): discovery of (N-Ac-Tyr1, D-Arg2)-GRF(1-29)-NH2 as a GRF antagonist on membranes. Endocrinology. 1985 Nov;117(5):1759–1764. doi: 10.1210/endo-117-5-1759. [DOI] [PubMed] [Google Scholar]
- Sato K., Hotta M., Kageyama J., Chiang T. C., Hu H. Y., Dong M. H., Ling N. Synthesis and in vitro bioactivity of human growth hormone-releasing factor analogs substituted with a single D-amino acid. Biochem Biophys Res Commun. 1987 Dec 16;149(2):531–537. doi: 10.1016/0006-291x(87)90400-1. [DOI] [PubMed] [Google Scholar]
- Sato K., Hotta M., Kageyama J., Hu H. Y., Dong M. H., Ling N. Synthetic analogs of growth hormone-releasing factor with antagonistic activity in vitro. Biochem Biophys Res Commun. 1990 Feb 28;167(1):360–366. doi: 10.1016/0006-291x(90)91773-l. [DOI] [PubMed] [Google Scholar]
- Schally A. V. Oncological applications of somatostatin analogues. Cancer Res. 1988 Dec 15;48(24 Pt 1):6977–6985. [PubMed] [Google Scholar]
- Vigh S., Schally A. V. Interaction between hypothalamic peptides in a superfused pituitary cell system. Peptides. 1984;5 (Suppl 1):241–247. doi: 10.1016/0196-9781(84)90282-1. [DOI] [PubMed] [Google Scholar]
- Waelbroeck M., Robberecht P., Coy D. H., Camus J. C., De Neef P., Christophe J. Interaction of growth hormone-releasing factor (GRF) and 14 GRF analogs with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of (N-Ac-Tyr1,D-Phe2)-GRF(1-29)-NH2 as a VIP antagonist. Endocrinology. 1985 Jun;116(6):2643–2649. doi: 10.1210/endo-116-6-2643. [DOI] [PubMed] [Google Scholar]
- Zarandi M., Serfozo P., Zsigo J., Bokser L., Janaky T., Olsen D. B., Bajusz S., Schally A. V. Potent agonists of growth hormone-releasing hormone. Part I. Int J Pept Protein Res. 1992 Mar;39(3):211–217. doi: 10.1111/j.1399-3011.1992.tb00791.x. [DOI] [PubMed] [Google Scholar]