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Abstract

The analysis of concentrations of circulating antibodies in serum (antibody repertoire) is a

fundamental, yet poorly studied, problem in immunoinformatics. The two current approaches to

the analysis of antibody repertoires [next generation sequencing (NGS) and mass spectrometry

(MS)] present difficult computational challenges since antibodies are not directly encoded in the

germline but are extensively diversified by somatic recombination and hypermutations. Therefore,

the protein database required for the interpretation of spectra from circulating antibodies is custom

for each individual. Although such a database can be constructed via NGS, the reads generated by

NGS are error-prone and even a single nucleotide error precludes identification of a peptide by the

standard proteomics tools. Here, we present the IGREPERTOIRECONSTRUCTOR algorithm that performs

error-correction of immunosequencing reads and uses mass spectra to validate the constructed

antibody repertoires.

Availability and implementation: IGREPERTOIRECONSTRUCTOR is open source and freely available as a

Cþþ and Python program running on all Unix-compatible platforms. The source code is available

from http://bioinf.spbau.ru/igtools.

Contact: ppevzner@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Until 2009, the computational analysis of antibodies had been per-

formed via proteomics techniques (Bandeira et al., 2008) and had

not utilized DNA sequencing technologies. Weinstein et al. (2009)

were the first to demonstrate the power of DNA sequencing for ana-

lyzing antibody repertoires and to open a ‘next generation sequenc-

ing (NGS) era’ in antibody analysis (Fig. 1a). Although this study

was quickly followed by many other immunosequencing (Ig-seq)

studies (Arnaout et al., 2011; Jiang et al., 2011, 2013; Laserson

et al. 2014; Vollmers et al., 2013); until 2012, there were no at-

tempts to integrate NGS and mass spectrometry (MS) approaches

for antibody analysis. Such integration (immunoproteogenomics) is

important since it represents a bottleneck for an emerging approach

that promises to transform the antibody industry from focusing on

single (monoclonal) antibodies, toward analyzing polyclonal

antibodies.

Cheung et al. (2012) pioneered a new immunoproteogenomics

approach for identification of circulating monoclonal antibodies

from serum that enables high-throughput antibody development.

Although sequencing purified monoclonal antibodies has now be-

come routine (Bandeira et al., 2008; Castellana et al., 2011; Liu

et al., 2009), sequencing multiple antibodies from a complex sample

represents a breakthrough with great biomedical potential. The im-

portant conclusion in Cheung et al. (2012) is that antibody analysis
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should combine NGS and MS to infer antibodies interacting with a

specific antigen (see also Georgiou et al., 2014; Lavinder et al.,

2014; Sato et al., 2012; Wine et al., 2013; Yadav et al., 2014). In

particular, Cheung et al. (2012) showed that the most well repre-

sented transcripts in the antibody repertoire (revealed by NGS

alone) may not be the most biomedically relevant. Thus, immuno-

proteogenomics is the key ingredient of the emerging new technol-

ogy for antibody analysis. However, no publicly available

immunoproteogenomics software is currently available.

An antibody repertoire (rather than a set of all DNA reads as in

previous immunoproteogenomics studies) represents a sensible

choice of a database for the follow up MS/MS searches. However,

construction of an antibody repertoire is a difficult problem since

antibody genes in antigen stimulated B-lymphocytes are not directly

encoded in the germline but are diversified by somatic recombin-

ation and mutations (Wine et al. 2013). Therefore, the protein data-

base required for the interpretation of mass spectra from circulating

antibodies differs between individuals. Moreover, even a single error

in an error-prone NGS read precludes identification of a peptide

(spanning the erroneous position) by the standard proteomics tools.

We emphasize that construction of antibody repertoires is a dif-

ferent problem than the well studied VDJ classification (Brochet

et al., 2008; Gaëta et al., 2007; Volpe et al., 2006) and CDR3 classi-

fication (Freeman et al., 2009; Robins et al., 2009, 2010; Warren

et al., 2011) problems. In fact, VDJ classification, CDR3 classifica-

tion and repertoire construction are three different clustering prob-

lems with increasing granularity of partitions into clusters and

different biological applications:

• VDJ classification refers to classifying reads into 225� 30� 13

clusters (since human genome has 225 V, 30 D and 13 J func-

tional and complete antibody gene-segments). There is currently

a multitude of VDJ classification tools, e.g. Bonissone and

Pevzner (2015) report 94.5, 99.1 and 99.4% accuracy for V, D

and J gene segments, respectively.
• CDR3 classification is a more granular clustering that refers to

classifying reads according to their CDR3 region, the most bio-

logically important segment of an antibody.
• Full length antibody repertoire classification is the most granular

clustering of antibodies that extends the above two clustering

approaches by accounting for somatic hypermutations (SHMs).

It is arguably the most biologically relevant clustering and a pre-

requisite for the future studies of antibody evolution.

The antibody repertoire can potentially subpartition each VDJ

class/CDR3 class into thousands of subclusters based on the identity

of CDR regions and hypermutations. Because various antibodies

often share similar segments, the computational challenge of anti-

body clustering is not unlike the computational challenge of classify-

ing repeats in a genome. From this perspective, the VDJ

classification corresponds to distinguishing between different fami-

lies of repeats (e.g. between Alu and MIR repeats in the human gen-

ome), while constructing antibody repertoires corresponds to a very

different algorithmic problem of classifying different subfamilies

within the same repeat family, e.g. distinguishing between AluJ and

AluY repeat subfamilies (Price et al., 2004) on the challenge of the

repeat subfamily classification).

Until recently, there were no attempts to cluster full length anti-

bodies since it was nearly impossible to derive an accurate antibody

repertoire with previous experimental approaches based on error-

prone and low coverage 454 sequencing technology. MiGEC

(Shugay et al., 2014) is the only tool for the full length repertoire

analysis that, however, is not applicable to standard Ig-seq protocols

since it requires a special barcode-based sample preparation.

(a) (b)

(c) (d)

Fig. 1. (a) An overview of immunoglobulin (Ig-seq) sequencing. Briefly, B-cells are isolated; transcripts are purified; antibody chains are amplified by PCR; and fi-

nally, paired-end sequencing of the Ig variable region is performed on the amplified Ig transcript molecules. (b) An antibody repertoire containing five different

antibodies (shown on the left) is characterized by a set of pairs <sequence, abundance > (shown on the right). For example, the abundance of the ‘red’ antibody

is 3. (c) The varying levels of sequence information. First, the paired reads are stitched together to form contiguous reads. These reads are then compressed to

unique reads with count information, and finally clustered reads. E.g. the red and blue unique reads (with counts 3 and 1) are clustered into a single cluster with

count 4 because they represent reads (with errors) derived from the same antibody. (d) Reads are partitioned according to identical CDR3 sequences (shown in

the black rectangles). Each resulting cluster of antibodies is referred to as a clone
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Below we summarize the new contributions of this work to

immunoproteogenomics:

• The crucial distinction between the previous Ig-seq studies

(Cheung et al., 2012; Sato et al., 2012; Wine et al., 2013) and

the one presented [with a notable exception of Greiff et al.

(2014)], is the number of reads. Our Ig-seq runs capture �3.8

million reads, compared with the thousands of reads obtained

with 454 sequencing technology that dominated Ig-seq prior to

2014. This allows for greater depth in characterizing the reper-

toire and immunoproteogenomics analysis, but comes with its

own set of computational challenges.
• Although Ig-seq studies have been rapidly developing in the last

5 years, the error-correction techniques from genome sequencing

(Pevzner et al., 2001) have not been applied to Ig-seq yet and the

previous immunoproteogenomics studies have not attempted to

construct antibody repertoires for the follow up MS/MS

searches. Some other studies did perform a simple variant of

error correction in the context of VDJ labeling (Jiang et al.,

2011; Reddy et al., 2010; Weinstein et al., 2009). However, since

these studies addressed a relatively simple task of VDJ classifica-

tion rather than repertoire construction, they have limited ability

to correct errors in the most important CDR regions that do not

contribute to VDJ classification. IGREPERTOIRECONSTRUCTOR is the

first tool for generating antibody repertoires from standard

Ig-seq protocols.
• In addition to the problem of constructing an antibody reper-

toire, there is also a challenge of validating this repertoire.

Indeed, since there is no gold standard that represents a curated

and verified antibody repertoire, it is not clear how to validate

the accuracy of the constructed repertoires (on real rather than

simulated data). We show that immunoproteogenomics allows

one to resolve this Catch-22 and to evaluate the accuracy of the

antibody repertoire (due to the complementary nature of errors

in DNA reads and in peptides identified by MS).
• Immunoproteogenomics analysis of circulating antibodies re-

quires searches of all spectra against a highly repetitive database

derived from millions of Ig-seq reads. Cheung et al. (2012) found

surprisingly few Peptide-Spectrum Matches (PSMs) from spectra

they analyzed suggesting that many spectra evaded the identifica-

tion either due to errors in NGS reads or due to statistical arti-

facts of searches in a highly repetitive database. Recently, Boutz

et al. (2014) discussed the challenge of peptide identification in

large highly repetitive database of antibodies that is further

amplified by the limitations of the target-decoy approach (Gupta

et al., 2011). We argue that construction of the antibody reper-

toire enables a new multi-layer approach to immunoproteoge-

nomics searches (each layer corresponds to antibodies with

abundances falling into specific intervals) that significantly

boosts the number of identified PSMs [� 22% of spectra are

identified at 1% false discovery rate (FDR) as compared with

� 6% at 2% FDR identified in Cheung et al. (2012)].
• Cheung et al. (2012) raised a concern about the lack of correl-

ation between genomics-based and proteomics-based quantifica-

tion of antibodies (that far exceeds the commonly observed

limited correlation in traditional proteogenomics studies

(Nesvizhskii, 2014). However, since previous immunoproteoge-

nomics studies were based on low-coverage 454 technology, it

was not clear whether this lack of correlation represents sam-

pling artifacts or reflects the fact that previous immunoproteoge-

nomics studies did not correct sequencing errors. Our analysis of

Illumina datasets (orders of magnitude increase in coverage as

compared with previous immunoproteogenomics studies) re-

vealed an even more alarming lack of correlation between two

approaches to quantification: more than half of identified pep-

tides come from antibodies that are represented by a single read

in the antibody repertoire! However, we show that switching

from quantification of individual antibodies, to quantification of

antibody clones, partially restores correlation between genomics-

based and proteomics-based quantification.

2 Methods

2.1 Antibody repertoires
If we view an antibody as a center of a cluster formed by reads

derived from this antibody, then construction of a repertoire corres-

ponds to a difficult clustering problem with many closely located

centers so that the radius of a cluster may exceed the distance from

one cluster to another one. Because the standard clustering tech-

niques (like k-means clustering) are not applicable to such problems

(Price et al., 2004), we have designed IGREPERTOIRECONSTRUCTOR, a

novel algorithm for constructing antibody repertoires.

Each antibody in an antibody repertoire is characterized by its

sequence and abundance; estimated by the number of reads derived

from this antibody (Fig. 1b). The complexity of the antibody reper-

toire mirrors the complexity of the immune system, e.g. clonal selec-

tion leads to a highly uneven distribution of abundances of

antibodies (Burnet, 1976). Abundant antibodies mutate and yield

new antibodies that share the same VDJ recombination pattern, but

differ only by SHMs. As a result, the antibody repertoire contains a

mixture of closely related antibodies with differing abundances. The

abundances of � 2:3 million antibodies in our dataset vary from 1

to � 33;000 with the most abundant antibody representing � 1%

of all reads (all examples below refer to the heavy chain Ig-seq data-

set described in the ‘Section 3.1’).

The major challenge in constructing antibody repertoires is the

identification of all reads that are derived from a single antibody.

If reads were error-free, we would simply group together reads that

are identical (up to small shifts) into unique reads to generate an anti-

body repertoire. In reality, reads are error-prone necessitating error-

correction of reads prior to any analysis. IGREPERTOIRECONSTRUCTOR

error-corrects reads; partitions them into clusters; and computes the

consensus sequence and abundance of each antibody. Figure 1c

depicts the different levels of clustering performed by

IGREPERTOIRECONSTRUCTOR. First, we computationally stitch paired-

end reads of Ig molecules to derive the contiguous Ig-seq reads.

Subsequently, the Ig-seq reads are grouped together to provide

unique Ig-seq reads. Finally, the unique reads are clustered to obtain

clustered Ig-seq reads (antibodies). In addition, we can represent

antibodies according to the somatically recombined B-cell from

which they originate, i.e. their clonality. We define an antibody

clone as the set of all antibodies in the repertoire with the

same CDR3 sequence [as determined by IgBlast (Ye et al., 2013)].

Figure 1d diagrams this clone identification process. A clone is triv-

ial if it consists of a single cluster and non-trivial otherwise. The

sharp distribution of clone sizes (Supplementary Fig. A1) can be

attributed to B-cell response to an antigen, i.e. clonal selection

(Weinstein et al., 2009).

2.2 Limitations of existing error correction tools
At first glance, it appears that the problem of error-correction in

Ig-seq is not unlike the problem of error-correction in genome as-

sembly (Pevzner et al., 2001). However, popular error-correction
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tools, e.g. Quake (Kelley et al., 2010) or BayesHammer (Nikolenko

et al., 2013), that were optimized for genome assembly, are not

suited for Ig-seq data. Indeed, Ig-seq data contain a large number of

sequences differing by very few mismatches or indels, and feature

the extremely uneven coverage of various antibodies by reads (since

abundances of antibodies differ by orders of magnitudes). Both

Quake and BayesHammer start by identifying solid k-mers in reads

(that are likely to be present in the genome) and use them to correct

reads. However, to find solid k-mers, Quake uses the read coverage,

an approach that is not applicable in the case of Ig-seq with highly

variable abundances. In contrast, BayesHammer (part of the SPAdes

assembler, Bankevich et al., 2012) was designed to assemble single

cell sequencing data with uneven coverage. However, it is also not

applicable to Ig-seq since an antibody repertoire yields numerous

similar, correct, k-mers from different antibodies (Supplementary

Fig. A2). BayesHammer is unable to distinguish these correct k-mers

from similar incorrect k-mers derived from the same antibody.

2.3 Hamming graph for analyzing Ig-seq data
IGREPERTOIRECONSTRUCTOR uses the idea of the Hamming graph for

error correction (Medvedev et al., 2011; Nikolenko et al. 2013) to

correct Illumina reads. With the emergence of longer (250 nt)

Illumina reads in 2013 (until 2013, Illumina technology generated

shorter reads that did not fully cover the variable region of antibod-

ies), it is now possible to interrogate repertoires using accurate high-

throughput Illumina technology. The Hamming distance dðs1; s2Þ
between sequences s1 and s2 of equal length is defined as the number

of positions where the symbol in s1 differs from a symbol in s2

(Supplementary Fig. A3a). We extend the concept of Hamming dis-

tance to any two sequences (including sequences with different

lengths) by considering all sufficiently long overlaps between

sequences s1 and s2 (longer than the default value d), and

computing the Hamming distance between the overlapping parts.

We define ~dðs1; s2Þ as the minimum of such distances

(Supplementary Fig. A3b). We define the Hamming Graph

HG(Strings) as the complete weighted graph whose vertices corres-

pond to a collection of sequences Strings and the weight of the edge

(s1, s2) is equal to ~dðs1; s2Þ. The Bounded Hamming Graph, denoted

HGðStrings; sÞ, is a subgraph of the Hamming Graph where edge

(s1, s2) exists iff ~dðs1; s2Þ� s. The time- and space-efficient construc-

tion of large Hamming Graphs is a challenging problem that was ad-

dressed in Nikolenko et al. (2013) and adapted in

IGREPERTOIRECONSTRUCTOR. Note that compared with Hammer

(Medvedev et al., 2011) and BayesHammer (Nikolenko et al.,

2013), we construct the Bounded Hamming Graph on the entire

reads (rather than on k-mers) and use the generalized Hamming

distance.

2.4 Repertoire construction and search for dense

subgraphs
We construct an antibody repertoire by partitioning reads into clus-

ters that correspond to the same antibody. Our goal is to place reads

differing by sequencing errors into the same cluster, while placing

reads corresponding to different antibodies into different clusters.

This becomes difficult since the number of errors in a read from a

given cluster may be larger than the number of differences between

antibodies from different clusters. We define the antibody sequence

as the consensus of reads in a cluster, and its abundance as the num-

ber of reads in a cluster.

Because Illumina reads have a small indel rate, the generalized

Hamming distance between reads from the same cluster should be

low. We thus construct the Bounded Hamming Graph HGðReads; sÞ
from all reads. Our analysis revealed that the generalized Hamming

distance for most Ig-seq reads, originating from the same antibody,

does not exceed 3 and that many antibodies form complete, or

nearly complete, subgraphs of the Bounded Hamming Graph with

s¼3 (Appendix A). Ideally, we would like to choose s in such a way

that HGðReads; sÞ is a clique graph, i.e. a graph where each con-

nected component is a complete subgraph (clique).

In reality, the large connected components of the Bounded

Hamming Graph often have a more complex structure. Given a con-

nected component with m edges and n vertices, we define its edge

fill-in as the ratio of the number its edges (m) to the maximal pos-

sible number of edges in the graph on n vertices [n � ðn� 1Þ=2].

Figure 2a presents a connected component of the Bounded

Hamming graph with edge fill-in 0.25 (s¼3). The lion’s share of

large connected components in the Bounded Hamming Graph (i.e.

components with more than 100 vertices) have similar structures

characterized by small edge fill-ins; the average edge fill-in for large

components is 0.32 (Supplementary Fig. A4). Additional analysis of

the connected components reveals that the nearly all of them

(98.6%) consist of dense (complete or nearly complete) subgraphs

connected by very few edges. Most vertices in these dense subgraphs

correspond to error-prone reads derived from a single antibody or

from highly similar antibodies differing from each other by a small

number of SHMs.

(a) (b)

Fig. 2. (a) A connected component with 107 vertices and 1426 edges in the Bounded Hamming graph with s¼3 (fill-in is 0.25). The sizes of vertices are propor-

tional to their degrees. (b) Clusters constructed as result of vertex decomposition of the Bounded Hamming Graph. Vertices of the same colors define the dense

subgraphs in the decomposition [the colors are coordinated with Fig. 3 (bottom right)]. IGREPERTOIRECONSTRUCTOR constructs 42 clusters but 35 of them are trivial,

i.e. are induced by a single read. Sizes and edge fill-ins (in brackets) of the remaining seven non-trivial clusters are: 2 (1.0), 3 (1.0), 6 (1.0), 8 (1.0), 12 (1.0), 18 (0.9)

and 23 (0.9)
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Thus, the first step in constructing an antibody repertoire is solv-

ing a very large instance of the Corrupted Cliques Problem: finding

the smallest number of additions and removals of edges that trans-

form the Bounded Hamming Graph into a clique graph. Although

there exist a number of algorithms for solving the Corrupted Cliques

Problem (such as CAST; Ben-Dor et al., 1999), they are too slow for

the Bounded Hamming Graphs with many vertices. We thus de-

veloped a different approach for analyzing the Bounded Hamming

Graph that is based on transforming it into a triangulated graph (i.e.

a graph where every cycle of length longer than three has a chord)

rather than a clique graph using the Minimum Fill-in Problem

(Garey and Johnson, 1979).

2.5 Repertoire construction and minimum fill-in

problem
The minimum fill-in edge-set for a graph is the edge-set of minimal

size whose addition turns this graph into a triangulated graph. We

are interested in triangulated graphs because maximal cliques in

these graphs can be generated in polynomial time (Galinier et al.,

1995) and because maximal cliques in the triangulated Bounded

Hamming Graph help to reveal dense subgraphs of the original

Bounded Hamming Graph (Appendix B for details).

Although the Minimum Fill-in Problem is NP-complete

(Yannakakis, 1981), there exist efficient approximation algorithms

for solving it, e.g. METIS algorithm (Karypis and Kumar, 1999).

The METIS algorithm is based on the equivalence between triangu-

lated graphs and perfect elimination orderings. A perfect elimination

ordering in a graph is such an ordering of its vertices that, for each

vertex v, v and the vertices following it in the order, form a clique

(Supplementary Fig. A11d). A graph is triangulated if and only if it

has a perfect elimination ordering (Rose et al., 1976). METIS finds

an ordering that generates an approximation of a minimum fill-in

edge-set and this ordering can be used for finding cliques in the tri-

angulated graph (Galinier et al., 1995). As we mentioned earlier,

these cliques correspond to dense subgraphs in the original graph.

To construct maximal dense subgraphs, we additionally merge sub-

graph connected by many edges.

IGREPERTOIRECONSTRUCTOR solves the Minimum Fill-in Problem

in the Bounded Hamming Graph using METIS and converts its solu-

tion into a list of dense subgraphs in the original Bounded Hamming

Graph. Note that some of the resulting dense subgraphs may share

vertices forcing us to assign these shared vertices to one of the dense

subgraphs. To assign a vertex v to a single dense subgraph, we select

a subgraph with maximum number of vertices adjacent to v. Thus,

dense subgraphs generated by METIS provide us with a vertex de-

composition of the Bounded Hamming Graph. A vertex decompos-

ition of the graph in Figure 2a is shown in Figure 3 (top right).

Analysis of all found subgraphs in the decomposition of the

Bounded Hamming Graph reveals that the lion’s share of them have

high edge fill-ins (the average edge fill-in is 0.94), thus confirming

that IGREPERTOIRECONSTRUCTOR indeed finds dense subgraphs of the

Bounded Hamming Graph. The histogram of edge fill-in for all sub-

graphs in this decomposition is shown in Supplementary Figure A5.

Dense subgraphs correspond to clusters of Ig-seq reads represent-

ing either identical or very similar antibodies (i.e. antibodies differ-

ing by very few substitutions). However, to construct the antibody

repertoire, we need to further partition some of the dense subgraphs

(that correspond to multiple antibodies) into subgraphs correspond-

ing to single antibodies. To illustrate this challenge, consider the

SHM-triggering patterns RGYW/WRCY (Rogozin and Kolchanov,

1992) and define an edge in the Bounded Hamming Graph as an

52                      <-------- CDR1 --------> 100
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CCGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT
CTGAGACTTTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCTGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT
*.******.********.**********************.*******
                                       RGYW

Weighted Hamming graph 
(tau = 3)

RGYW/WRCY patterns 
(orange)

Dense subgraphs of 
Hamming graph

Final decomposition of 
Hamming graph

Fig. 3. Construction of the antibody repertoire based on the decomposition of the Bounded Hamming Graph into dense subgraphs. (Top left) The adjacency

matrix of the Bounded Hamming Graph shown in Figure 2a. Each element in the matrix corresponds to a pair of vertices x and y and is colored green if the edge

(x, y) is presented in the graph. (Top right) Decomposition of the Bounded Hamming Graph into dense subgraphs (highlighted by different colors). Edges con-

necting vertices from different dense subgraph are colored in grey. (Bottom left) The adjacency matrix with edges corresponding to SHM-triggering patterns

RGYW/WRCY highlighted in orange. (Bottom right) The final decomposition of the Bounded Hamming Graph takes into account the multiple alignment of reads

corresponding to the same subgraph in the decomposition and breaks the large yellow subgraph (top right subfigure) into two smaller subgraphs highlighted in

yellow and blue. The multiple alignment of ‘yellow’ and ‘blue’ reads from these smaller subgraphs is shown on the right (limited to positions 52–100). Note that

all ‘yellow’ reads are similar to each other and all ‘blue’ reads are similar to each other (the differences are highlighted in red and likely represent sequencing

errors). However, there exists a systematic difference (C/G mismatch within RGYW pattern in CDR1 region) between ‘yellow’ and ‘blue’ reads that allows

IGREPERTOIRECONSTRUCTOR to split the large yellow subgraph in top right subfigure
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SHM-edge if at least one mismatch on this edge conforms to the

RGYW/WRCY motif. Figure 3 (bottom left) shows the Bounded

Hamming Graph where the SHM-edges are highlighted in orange.

This coloring reveals that the yellow dense subgraph in Figure 3

(upper right) corresponds to two similar antibodies rather than to a

single one [Fig. 3 (bottom right)]. Indeed, the multiple alignment of

reads corresponding to the yellow subgraph shows a mismatch in

the CDR1 region which separates reads into two groups (right panel

of Fig. 3). Thus, we need to split the constructed dense subgraphs

using detected SHMs. The final solution is shown in Figure 3

(bottom right) and illustrated in Figure 2b. See Appendix C for more

details on splitting dense subgraphs, and Appendices D and E on

benchmarking of IGREPERTOIRECONSTRUCTOR on real and simulated

antibody Ig-seq datasets.

2.6 Immunoproteogenomics search
The previous immunoproteogenomics studies (Boutz et al., 2014;

Cheung et al., 2012; Sato et al., 2012) conducted searches on a data-

base of unique Ig-seq reads that we refer to as unique reads data-

base. We argue that a better option is the antibody repertoire

database (formed by centers of clusters constructed by

IGREPERTOIRECONSTRUCTOR) as it eliminates many sequencing errors.

Furthermore, to assess the divergence from reference gene-segments,

a dataset of canonical V, D and J gene-segments was searched; this

database is termed the canonical VDJ database. In order to obtain

peptide identifications from the constant region, we also included all

41 intact variants of the constant region, obtained from the IMGT

repository (Lefranc et al., 2009). These sequences are concatenated

to the VDJ database.

Proteomic searches were conducted using MS-GFþ (Kim et al.,

2008; Kim and Pevzner, 2014) on partially digested peptides (e.g.

for trypsin, semi-tryptic peptides were considered). The FDR was

controlled by selecting a MS-GFþ threshold of spectral probabilities

such that we maintained a 1% FDR. Supplementary Figure A6

shows the distribution of spectral probabilities for the target and

decoy datasets.

Blind modification searches were performed using MODa (Na et

al., 2012), allowing for a single modification with mass between

�200 and 200Da. Peptides with at least one enzymatic end were

considered and a 1% FDR was enforced.

As discussed in Boutz et al. (2014), immunoproteogenomics

searches require new algorithmic and statistical approaches since the

standard peptide identification algorithms were not designed for

searches in large and highly repetitive immunoproteogenomics data-

bases. We argue that yet another key difference between the stand-

ard and immunoproteogenomics searches is that, in the latter case,

after constructing the antibody repertoire, we have information

about antibody abundances. Because higher-abundance antibodies

are more promising candidates for spectral searches than lower-

abundance antibodies (despite limited correlation between

genomics- and proteomics-derived abundances), we partition all

antibodies into layers according to their abundances. The rationale

for such partitioning is that higher-abundance antibodies form much

smaller protein databases than lower-abundance antibodies. For ex-

ample, there are 1564, 10 782 and 48 564 antibodies with abun-

dances in the intervals from 100 to 30 000, from 10 to 99 and from

2 to 9, respectively. This contrasts with 2 267 863 singleton antibod-

ies with abundance 1. Thus, since E-values of PSMs rapidly deterior-

ate with the increase in the database size (Gupta et al., 2011), we

partition all antibodies into four layers (according the abundance

intervals specified earlier) and employ a separate 1% FDR control,

for each layer, based on selecting a spectral probability threshold in

MS-GFþ. Note that our multi-layer approach is very different from

the two-stage MS/MS search approach with logical dependencies be-

tween two stages. Because there are no such dependencies in the

multi-layer approach, the controversy about the statistical founda-

tions of the two-stage approach (Gupta et al., 2011) does not extend

to our multi-layer approach.

3 Discussion

3.1 Datasets
We have benchmarked IGREPERTOIRECONSTRUCTOR on multiple

Mi-Seq and Orbitrap datasets. Below we only describe the results

for a single heavy chain dataset. Similarly to BayesHammer, the run-

ning time of IGREPERTOIRECONSTRUCTOR is dominated by the con-

struction of the Bounded Hamming graph (� 5 h for the heavy

chain dataset). All further steps (finding and splitting dense sub-

graphs, etc.) took>30 min on a single thread. MS searches and sub-

sequent cluster/clone peptide assignments took � 8 h.

3.1.1 Ig-seq dataset

The Ig-seq library contains overlapping paired-end reads that cover

the variable region of heavy chain (3.83 million 250-nt long reads

with average insert size 366 nucleotides). We pre-process the Ig-seq

library by merging overlapping paired-end reads, and removing con-

taminants as described in Appendix F. After pre-processing,

IGREPERTOIRECONSTRUCTOR generated 2 925 095 unique reads,

2 406 121 clustered reads and 586 341 clones. See Appendix G for

the analysis of contaminants.

3.1.2 Spectral dataset

We analyzed CID tandem mass-spectra generated using the follow-

ing digestive enzymes; AspN (21 385 spectra), chymotrypsin (24 956

spectra), trypsin (26 740 spectra) and elastase (20 604 spectra).

Enzymes with differing cleavage specificity improve coverage over

the length of the antibody sequence. We searched spectral datasets

against the protein databases derived from the antibody repertoire.

Three-frame translations were created for each antibody in the rep-

ertoire, and any frames containing a stop codon were discarded;

165 675 antibodies (�7%) had a stop codon in all frames.

3.4 Analysis of antibody repertoires
Below we compare the repertoires formed by unique reads and by

IGREPERTOIRECONSTRUCTOR. To compare the repertoires, we used

various metrics measuring cluster sizes [# clusters, # singletons (sin-

gle-element clusters), max cluster size, # clusters of size exceeding

X (where X is a parameter)] as well as metrics based on CDR3 ana-

lysis (see Appendix H for more details). Table 1 illustrates that

IGREPERTOIRECONSTRUCTOR generates a rather different (more com-

pact) representation of antibodies than the set of unique reads used

in previous immunoproteogenomics studies.

3.5 Peptide identifications
Table 2 shows the number of identified peptides and PSMs.

Modified peptides are considered identical to those without modifi-

cations should their sequences be the same; and hence are not

counted when considering unique peptides. Note the large number

of peptides identified only with modifications (i.e. unmodified ver-

sions of these peptides were not identified) suggesting that future

immunoproteogenomics searches should include search for post-

translational modification (PTMs). Overall, we identify nearly 13%
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of all spectra when performing restrictive PTM searches at 1%

FDR. The number of identified peptides is further boosted when em-

ploying a multi-layer strategy, noted by the ‘layer’ column in the

table. Blind modification search was performed on the trypsin

dataset only (since MODa is not designed for spectral datasets gen-

erated with other digestive enzymes). MODa identified 3334 PSMs

with modifications, corresponding to 970 peptide IDs; 815 of which

were identified only by the blind modification search. It brings the

total percentage of identified spectra to � 22:6% at 1% FDR

[Cheung et al., (2012) identified 6% of spectra at 2% FDR]. See

Appendix I on specific modifications found by our blind search.

Figure 4c shows the breakdown of the origin of each identified

peptide.

3.6 Assigning peptides to multiple antibodies
Interestingly, only 67 124 antibodies (2.6% of all antibodies) did

not encode any identified peptide. Moreover, as expected, these are

mainly antibodies with minimal abundance 1 (total abundance of

these 67 124 antibodies is 73 764 and maximal abundance is 300).

This (surprisingly) low number of antibodies with no peptide

evidence is due to the fact that many identified peptides map to mul-

tiple antibodies. As a result, the number of antibodies A in a reper-

toire R encoding a peptide P is often large. We define exclusivity

score of a peptide as exclusivity ðP;RÞ ¼ 1/number of antibodies

in R encoding P and exclusivity score of an antibody as

exclusivity ðA;RÞ ¼
X

all peptides P mapping to A
exclusivityðP;RÞ. The

exclusivity score distribution of the antibodies, seen in Figure 4a,

shows few antibodies having peptides exclusive to them alone [only

Table 2. Peptides and PSMs identified by MS-GFþ

Peptides PSMs

Database Layer PTM AspN Chymo Trypsin Elastase Total AspN Chymo Trypsin Elastase Total Total (%)

Repertoire m X 814 1 706 2 505 776 5 801 2 665 4 989 10 021 1 786 19 461 20.77

Repertoire s X 832 1 441 2 291 628 5 192 1 881 2 365 6 675 878 11 799 12.59

Repertoire s 61 636 1 756 357 2 810 89 896 3 753 377 5 115 5.46

Constant region s 279 205 109 107 700 865 583 933 286 2 667 2.85

Canonical VDJ s 25 122 122 69 338 115 441 618 173 1 347 1.44

The number of peptide identifications at an 1% FDR cutoff for each spectral dataset. For example, a 1% FDR cutoff corresponds to a spectral probability cut-

off of 1:4e�08 for AspN, 2:3e�10 for chymotrypsin, 7:5e�10 for trypsin and 3:8e�10 for elastase datasets, when searching antibodies with the constant region

appended, and restrictive PTM search. The total column shows the number of total peptides, or PSMs, across the four different MS datasets. The total % column

shows the percentage of identified spectra, among all spectra. The ‘layer’ column denotes the type of search; single layer (s), or multi-layer (m). The restrictive

MS-GFþ searches for PTMs were conducted by searching for carbamidomethyl (Cþ 57) as a fixed modification, oxidation of methionine, oxidation (single and

double) of tryptophan, and N-terminal pyroglutamate (Q-17, E-18) as optional modifications.

(a) (b) (c)

Fig. 4. (a) Distribution of exclusivity scores of antibodies. (b) PSM coverage along positions of each cluster. Positions of CDR1, CDR2 and CDR3 shown in gray as

determined for a single cluster. Coverage is normalized for shared peptides using their exclusivity scores. (c) Origin of identified peptides. For each identified pep-

tide, a representative cluster sequence was used to determine from which reference segment it originated; V, D or J. Each peptide is classified as V-, D- or J-pep-

tide depending on whether it overlaps with segments marked as V, D or J regions for the heavy chain sequence (peptides spanning more than one region, e.g. V

and J, are classified as both V-peptides and J-peptides)

Table 1. Comparison of the antibody repertoire generated by

IGREPERTOIRECONSTRUCTOR with the set of unique reads (heavy chain

Ig-seq data)

Unique reads IGREPERTOIRECONSTRUCTOR

# clusters 3 099 967 2 328 773

# singletons 3 027 123 2 267 863

Max cluster size 2 203 33 021

# clusters (>10) 5 532 12 346

# clusters (>50) 377 3 571

# clusters (>500) 7 206

# clones 602 536 538 928

# non-trivial clones 151 612 132 431

Avg. non-trivial clone size 15.64 12.90

Max clone size 30 571 15 977

Avg. non-trivial clone

divergence

0.21 0.23

The avg. clone divergence metric is computed as the fraction of the number

of columns in the multiple alignment of all antibodies in a clone that have mu-

tations or indels. The avg. non-trivial clone divergence shows the average

clone divergence computed over all non-trivial clones.
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1472 antibodies with exclusivity ðA;RÞ > 1:0]. Figure 4b shows

the peptide coverage over the position of each clone. Supplementary

Figure A7 illustrates the peptide coverage of a single clone.

3.7 Correlation between Ig-seq and MS/MS abundances
To compare the relation between peptides and their Ig-seq counter-

parts, we introduce the notions of total Ig-abundance and maximal

Ig-abundance of a peptide. Total (maximal) Ig-abundance of a pep-

tide is the total (maximal) abundance of antibodies that encode this

peptide. Supplementary Figure A8a shows the relation of the total

Ig-abundance for each peptide to its spectral count (number of

PSMs). Supplementary Figure A8b shows a histogram of spectral

peptide counts binned over maximal Ig-abundance for each peptide.

A strikingly large number of peptides, 2702, can be attributed to

singleton antibodies. The remarkable lack of correlations between

genomics-based and proteomics-based abundances further amplifies

the concern first expressed in Cheung et al. (2012). Supplementary

Figure A8c shows the correlations between clone abundances meas-

ured by MS/MS and Ig-seq (compare with Supplementary Fig. A9

that measures antibody, rather than clone, abundance). These plots

show the difference when considering the unit of a repertoire (anti-

body), and the unit of antibody evolution (the clone) raising the con-

cern that Ig-seq data do not adequately represent antibody

abundances. When considering only the antibodies, there is no cor-

relation with the MS evidence, as previously reported by Cheung et

al. (2012). However, when considering the amalgam of antibodies

forming each clone, a moderate correlation emerges

(q ¼ 0:5687614). One possible explanation is that certain antibod-

ies, within highly expressed clones, are not captured by MS.

4 Conclusion

Our study is the first to validate the constructed antibody repertoires

(by using complementary proteomics data) that confirmed that

IGREPERTOIRECONSTRUCTOR generates accurate repertoires. With an

accurate tool for constructing antibody repertoires, we can move to

studies of evolution of antibody repertoires, the analysis that has not

been possible in the past. Because analysis of antibody repertoires is

not unlike analysis of repeat subfamilies, the existing algorithms for

analyzing repeat evolution (Cordaux and Batzer, 2009; Price et al.,

2004) can be applied to study evolution of antibodies. We also ad-

dressed the problem of peptide identification in large and highly re-

petitive databases by designing multi-layer immunoproteogenomics

search algorithm. Finally, we revealed an alarming lack of correl-

ation between NGS-based and MS-based quantitation of antibodies

[consistent with Cheung et al. (2012)] and proposed a way to par-

tially restore this correlation by considering clone abundances rather

than individual antibody abundances.
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