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Abstract

Motivation: Discerning genetic contributions to diseases not only enhances our understanding of

disease mechanisms, but also leads to translational opportunities for drug discovery. Recent

computational approaches incorporate disease phenotypic similarities to improve the prediction

power of disease gene discovery. However, most current studies used only one data source of

human disease phenotype. We present an innovative and generic strategy for combining multiple

different data sources of human disease phenotype and predicting disease-associated genes from

integrated phenotypic and genomic data.

Results: To demonstrate our approach, we explored a new phenotype database from biomedical

ontologies and constructed Disease Manifestation Network (DMN). We combined DMN with

mimMiner, which was a widely used phenotype database in disease gene prediction studies. Our

approach achieved significantly improved performance over a baseline method, which used only

one phenotype data source. In the leave-one-out cross-validation and de novo gene prediction ana-

lysis, our approach achieved the area under the curves of 90.7% and 90.3%, which are significantly

higher than 84.2% (P< e�4) and 81.3% (P< e�12) for the baseline approach. We further demon-

strated that our predicted genes have the translational potential in drug discovery. We used

Crohn’s disease as an example and ranked the candidate drugs based on the rank of drug targets.

Our gene prediction approach prioritized druggable genes that are likely to be associated with

Crohn’s disease pathogenesis, and our rank of candidate drugs successfully prioritized the Food

and Drug Administration-approved drugs for Crohn’s disease. We also found literature evidence to

support a number of drugs among the top 200 candidates. In summary, we demonstrated that a

novel strategy combining unique disease phenotype data with system approaches can lead to

rapid drug discovery.

Availability and implementation: nlp.case.edu/public/data/DMN

Contact: rxx@case.edu

1 Introduction

Identifying the genetic basis for human diseases plays an important

role in elucidating disease mechanisms and discovering targets of drug

treatments (Hurle et al., 2013; Plenge et al., 2013). For computational

strategies to predict disease-associated genes, integrating new data

may lead to new discoveries (Barabási et al., 2011; Piro and

Di Cunto, 2012; Tiffin et al., 2009; Tranchevent et al., 2011; Wang

et al., 2011). Traditional approaches exploited genomic data and pri-

oritized genes for a disease if the genes are functionally similar to the

known disease genes (Aerts et al., 2006; Franke et al., 2006; Köhler

et al., 2008; Xu and Li, 2006). Recent studies incorporated clinical

phenotype data to increase the ability of identifying new disease-

associated genes (Hwang et al., 2012; Lage et al., 2007; Li and Patra,

2010; Vanunu et al., 2010; Wu et al., 2008, 2009), assuming that

similar disease phenotypes reflect overlapping genetic causes (Brunner

and Van Driel, 2004; Houle et al., 2010; Oti et al., 2008, 2009).

However, most current disease gene prediction approaches

(Hwang et al., 2012; Lage et al., 2007; Li and Patra, 2010;
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Vanunu et al., 2010; Wu et al., 2008, 2009) used only one single

data source of human disease phenotypes. Phenotypic similarity

databases were usually obtained by extracting phenotype knowledge

from texts, such as biomedical literature (Korbel et al., 2005) and

the phenotype descriptions in Online Mendelian Inheritance in Man

(OMIM) (Lage et al., 2007; Robinson et al., 2008; Van Driel et al.,

2006). Among them, mimMiner (Van Driel et al., 2006) and human

phenotype ontology (Robinson et al., 2008) are based on OMIM

and have been widely used in disease gene prediction studies

(Hoehndorf et al., 2011; Hwang et al., 2012; Li and Patra, 2010;

Natarajan and Dhillon, 2014; Vanunu et al., 2010). Recently, we

explored a different database containing phenotypic knowledge—

the semantic network in Unified Medical Language System

(UMLS)—and constructed a new phenotype network called Disease

Manifestation Network (DMN) (Chen et al., 2015). We demon-

strated that DMN not only reflects genetic relationships among dis-

eases, but also contains different knowledge compared with the

existing database (Chen et al., 2015). We hypothesize that integrat-

ing this new phenotype network with the widely used disease pheno-

type data will improve the prediction of disease genetics.

In this study, we developed a novel and generic approach to

combine multiple different data sources on human disease pheno-

type, and predict disease-associated genes from seamlessly integrated

phenotypic and genomic data. To demonstrate the approach, we

integrated DMN, mimMiner, a protein interaction network and

known disease–gene associations. We predicted new disease-associ-

ated genes from the heterogeneous network, and demonstrated the

benefit of incorporating an additional phenotype network DMN by

comparing with a baseline approach, which is also based on net-

work analysis but only used mimMiner.

We demonstrated that the disease–gene associations predicted by

our approach, in combination with the drug target data, may guide

the discovery of new candidate drugs. We used Crohn’s disease as

an example, which has increasing worldwide prevalence

(Molodecky et al., 2012) and is currently incurable (Atreya et al.,

2014; Cosnes et al., 2011). We predicted candidate genes for

Crohn’s disease, and prioritized candidate drugs based on the rank

of drug target genes. We validated the result with the Food and

Drug Administration (FDA)-approved therapies for Crohn’s disease.

Our result provides empirical evidence that our disease genetics pre-

diction strategy, which combined unique data and a novel system

approach, can lead to rapid drug discovery.

2 Methods

We integrated DMN, mimMiner and a genetic network based on

protein–protein interactions (PPIs), and constructed a heterogeneous

network in Figure 1. Given a disease, we prioritized the genes using

a ranking algorithm extended from the random walk model. We

validated our approach using well-studied disease–gene associations

from OMIM and compared the performance with a baseline disease

gene prediction method that used only one phenotype network. We

also evaluated our approach in predicting genes for diseases of dif-

ferent classes. Finally, we identified candidate drug therapies for

Crohn’s disease based on gene prediction results, and demonstrated

the translational potential of our newly predicted genes.

2.1 Integrate networks

We first constructed the DMN, mimMiner and the PPI network. To

construct DMN, we extracted 50 543 disease-manifestation pairs

from UMLS and calculated pairwise disease similarities based on

disease manifestations (Chen et al., 2015). Then we downloaded

mimMiner (Van Driel et al., 2006) and built the PPI network using

37 039 binary interactions among 9465 genes in the Human Protein

Reference Database, which has high coverage and accuracy

(Kann, 2010; Moreau and Tranchevent, 2012; Prasad et al., 2009)

and has been used in many disease gene discovery studies (Köhler

et al., 2008; Li and Patra, 2010; Vanunu et al., 2010; Wu et al.,

2008, 2009).

We connected the three networks as shown in Figure1. We

linked the disease nodes with the same semantic meanings in DMN

and mimMiner using 1313 pairwise mappings between UMLS and

OMIM identifiers from the UMLS Metathesaurus. We also con-

nected 1188 disease nodes in DMN and 1542 in mimMiner to the

gene nodes in the PPI network based on the disease–gene associ-

ations in OMIM. Note that our approach can easily incorporate

more phenotypic or genetic networks in the same way, given that

the new networks contain different knowledge from the existing

ones.

The adjacency matrix of the heterogeneous network is given as

follows:

A ¼

AG AGP1
AGP2

AT
GP1

AP1
AP1P2

AT
GP2

AT
P1P2

AP2

2
664

3
775; (1)

where P1, P2 and G represent DMN, mimMiner and the genetic net-

work, respectively, and the diagonal sub-matrices AG, AP1
and AP2

are their adjacency matrices. The off-diagonal AGP1
; AGP2

and AP1P2

are the adjacency matrices of the bipartite graphs connecting each

pair of the three networks, and AT
GP1

; AT
GP2

and AT
P1P2

represent their

transposes.

2.2 Predict disease-associated genes from the

integrated network
Our prediction model was based on random walk with restart,

which is a network-based ranking algorithm. The random walk

model avoids over-emphasizing the connections through high-degree

nodes and has been useful in biomedical applications (Berger et al.,

2010; Köhler et al., 2008; Li and Patra, 2010). It simulates a ran-

dom walker starting from a set of seed nodes and calculated the
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ranking scores for all the nodes as the probability of being reached

by the random walker after convergence. We set certain disease

nodes as the seeds and ranked all the gene nodes to predict their as-

sociation with the given diseases.

We extended the algorithm by regulating the movements of the

random walker between any two networks among DMN,

mimMiner and the PPI network with the jumping probabilities kNiNj

ðNi;Nj 2 fP1;P2;GgÞ (Fig. 1). For example, if the random walker

stands on a node in DMN, which is connected with both mimMiner

and the genetic network, it has the option to walk to mimMiner

with the probability kP1P2
, to the PPI network with the probability

kP1G or stay within DMN with the probability 1�kP1P2
�kP1G.

We calculated the ranking scores for all nodes as follows.

Assume p0 is a vector of initial scores for each node, pk is the score

vector at step k and was iteratively updated by

pkþ1 ¼ ð1� cÞMTpk þ cp0; (2)

where c is the probability that the random walker restarts from the

seeds at each step, and M is the transition matrix defined based on

the adjacency matrix in (1). We assumed the update converges if the

difference between scores in adjacent iterations was smaller than

1� e�8. The transition matrix consists of three intra-network transi-

tion matrices on the diagonal, and six inter-network transition

matrices off-diagonal:

M ¼

MG MGP1
MGP2

MT
GP1

MP1
MP1P2

MT
GP2

MT
P1P2

MP2

2
664

3
775 (3)

We calculated the inter-network transition matrices in (4), which

first normalized the adjacency matrices of the bipartite network

ANiNj
ðNi;Nj 2 fP1;P2;GgÞ, and then weighted them with the jump-

ing probabilities between networks Ni and Nj.

ðMNiNj
Þkl ¼

kNiNj
ðANiNj

Þkl=
X

l

ðANiNj
Þkl

X
l

ðANiNj
Þkl 6¼ 0

0 otherwise

8<
: (4)

The intra-network transition matrices were calculated in (5), which

normalized the adjacency matrix of a network Ni, and weighted the

matrix with the probability that the random walker jumps within

the same network.

ðMNi
Þkl ¼ ð1�

X
INj
� kNiNj

ÞðANi
Þkl=
X

l

ðANi
ÞklðANi

Þkl=
X

l

ðANi
Þkl

(5)

In (5), ‘�’ represents dot product and INj
is an indicator function,

whose value is 1 if the kth row of ANiNj
contains at least one non--

zero element. For the generic case, where N phenotype networks

were incorporated, the transition matrix M is defined as follows:

M ¼

MG MGP1
::: MGPN

MT
GP1

MP1
::: MP1PN

::: ::: MPi
:::

MT
GPN

MT
P1PN

::: MPN

2
666664

3
777775
: (6)

The inter-network transition matrices MNiNj
(off-diagonal) and

intra-network transition matrices MNi
(diagonal) can still be calcu-

lated with (4) and (5), respectively.

Our gene prediction model allows accumulating evidences

from different disease phenotype networks and preserves the

unique information in each network. For example, if a pair of

diseases is connected in both DMN and mimMiner, the random

walker can reach one disease node from the other with a strength-

ened probability; if the diseases are connected in only one network,

the random walker may still reach one disease from the other

through the links between networks, but with a relatively lower

probability.

2.3 Evaluate gene prediction in cross-validation
analyses

We first performed a leave-one-out cross-validation analysis and

compared our approach with a baseline method (Li and Patra,

2010), which only used one phenotype network. We removed one

disease–gene association each time, set the disease as the seed and

tested the rank of the retained gene. If the same disease appeared in

both phenotype networks (diseases from the two networks have the

same semantic meaning) and were connected to the same gene, the

redundant disease–gene association was also removed.

We evaluated the ranks of the tested genes with two metrics: (i)

we calculated the percentage of successful prioritizations, in which

the retained genes were ranked in top 1 (excluding the other known

disease genes) and (ii) we generated a receiver operating characteris-

tic (ROC) curve for each method and calculated the area under the

curve (AUC). To generate the ROC, we followed the definitions in

Aerts et al. (2006), Köhler et al. (2008) and Li and Patra (2010): sen-

sitivity refers to the percentage of tested genes that are ranked above

a particular threshold among all prioritizations, and specificity

refers to the percentage of genes ranked below this threshold. For in-

stance, a sensitivity/specificity value of 70/90 indicates that the cor-

rect disease gene was ranked among the top 10% of genes in 70% of

the prioritizations. The ROC shows the plot of sensitivity against

1�specificity when varying the rank threshold from the top to bot-

tom. The two metrics are complimentary: the AUC evaluates the en-

tire rank of genes, while the success ratio is more strict and evaluates

the top-ranked genes.

Currently, the causal genes for over 1500 genetic disorders re-

main unknown (Antonarakis and Beckmann, 2006). A primary ad-

vantage of phenotype-driven gene prediction approaches, compared

with the conventional gene function-driven approaches, is that they

can predict genes for diseases without known genetic basis.

Therefore, we further conducted a de novo gene prediction analysis

to evaluate our approach. In de novo gene prediction, we removed

all disease-gene links for a query disease each time. If the disease ap-

peared in both phenotype networks, we removed all its gene associ-

ations through both phenotype networks. Then we set the disease as

the seed, ranked all the genes and compared the AUCs between dif-

ferent approaches. In this experiment, we have different settings

from the leave-one-out cross-validation and tested multiple retained

genes in each prioritization. We generated an ROC curve for each

prioritization following the definitions in Chen et al. (2011) and

Hwang et al. (2012) and averaged AUCs across all prioritizations.

For each ROC, sensitivity is the percentage of retained genes that

are ranked above a threshold among all the retained genes in one

prioritization, and specificity is the percentage of negative genes

(genes that are not known disease genes) ranked below the threshold

among all the negative genes. Because the top-ranked genes are

more important than the lower ranked genes, we highlighted a set of

false positive cutoffs for the ROC curves and compared the corres-

ponding average AUCs between methods. A better method will rank

more true positive genes above the false positives, resulting in larger

average AUCs at smaller cutoffs.
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2.4 Evaluate gene prediction for different disease

classes
The degree that phenotypic associations reflect genetic overlaps

varies for different disease classes. Thus phenotype-driven gene pre-

dictions may have varying performance. We classified diseases into

nine groups based on International Classification of Diseases (10th

edition), and repeated the two cross-validation experiments within

each group to evaluate the performance variance of our method.

2.5 Drug discovery for Crohn’s disease based on
predicted disease-associated genes

We used Crohn’s disease as an example to demonstrate that our

gene prediction method has the translation potential to guide drug

discovery. Crohn’s disease is a chronic and relapsing inflammatory

disorder that affects millions of people and has an increasing preva-

lence (Molodecky et al., 2012). It involves genetic abnormalities

that lead to overly aggressive responses to commensal enteric bac-

teria (Sartor, 2006). Current treatment options, such as systemic

anti-inflammatory drugs, targeted drugs and surgeries, may be ef-

fective for only a subset of patients or lead to severe side effects

(Baumgart and Sandborn, 2007). Therefore, discovering new drug

therapies for Crohn’s disease is of great interests.

We first predicted genes for Crohn’s disease using our approach.

Then we compared the result with the disease-associated genes in

genome-wide association studies (GWAS) catalog (Hindorff et al.,

2009). We also evaluated the ranks of drug genes extracted from

DrugBank (Law et al., 2014). We hypothesized that if the predicted

genes are useful for guiding drug discovery, the top-ranked candi-

date genes would be enriched for the disease-associated genes in

GWAS and drug target genes.

Then we extracted 1190 drugs targeting on the genes in our PPI

network using the drug target data from DrugBank. We ranked

these candidate drugs based on the sum of the random walk scores

for their target genes. We validated our rank of candidate drugs

with seven FDA-approved Crohn’s disease drugs (extracted from the

drug-indication data in DrugBank), and further investigated the lit-

erature evidence for the top 200 candidate drugs.

3 Results

3.1 Integrating DMN with mimMiner significantly

improves the performance of disease gene predictions
We compared our gene prediction approach with a baseline method,

which integrated mimMiner and the PPI network used in our ap-

proach, and predicted disease gene associations with a random walk

model (Li and Patra, 2010). We chose parameters for both the meth-

ods to achieve optimal performance in the cross-validations and en-

sure fair comparison, but different parameter values only slightly

affect the results. For our method, the jumping probabilities kP1P2

and kP2P1
were set to 0.1; kP1G and kP2G were set to 0.7 and kGP1

and

kGP2
were set to 0.4. For the baseline method, the jumping

probability between mimMiner and the PPI network was set to 0.9.

The probability of restarting from seeds (c is (2)) was set to 0.7 for

both methods

3.1.1 Leave-one-out cross–validation

Our approach achieved significantly better success ratios and AUCs

than the baseline method. The integrated network in our approach

contains a total of 2397 unique disease–gene associations. If one dis-

ease appeared in the two phenotype networks and were connected

to a same gene, the two disease-gene links were counted only once.

In 1100 of the 2397 validation runs (45.89%), our approach suc-

cessfully ranked the retained genes in top 1. The success ratio is sig-

nificantly higher (P< e�4) than 10.36% for the baseline method

(Table 1). In addition, Figure 2 compares the ROC curves for gene

prediction methods. Our approach achieved an AUC of 90.65%,

which is significantly higher (P< e�4) than 84.2% for the baseline

approach.

3.1.2 De novo gene prediction

Our approach is effective in de novo gene predictions, and outper-

forms the baseline method by boosting the phenotype knowledge.

Specifically, our method achieves an average AUC of 90.33%,

which is significantly higher than 81.28% for the baseline method

using mimMiner alone (P< e�12). Figure 3 shows that at six false

positive cutoffs, integrating DMN and mimMiner achieves signifi-

cantly higher AUCs (P< e�18) than using only mimMiner. For ex-

ample, at the cutoff of 10, we achieve an average AUC of 59.19%,

while that for the baseline method is 24.17% (P< e�95). For the

diseases that only have one associated gene in OMIM, our method

successfully predicted the tested genes in top 1 for 52.12% of dis-

eases, while the baseline method succeeded in 11.47% prioritiza-

tions (P< e�4). These results show that de novo gene prediction

highly depends on disease phenotype relationships, and our

method successfully took the advantage of more comprehensive

knowledge in multiple phenotypic networks to achieve better

performance.

3.2 Our method achieves high but varying performance

for different disease classes
We evaluated the approach for nine disease classes. In the leave-one-

out cross-validation, 93.4% retained genes was ranked within top

Table 1. Ratios of successful disease–gene association predictions

in the leave-one-out cross-validation experiment

Phenotype networks Success number Success ratio (%)

mimMiner 219 10.36

DMN and mimMiner 1100 45.89

Note: All diseases were included in the experiment.
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Fig. 2. The ROC curves and AUCs for our method (red) and the baseline

method (blue) in the leave-one-out cross-validation analysis
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100, and the AUCs for all disease classes are close and above 90%.

But the ranks of the retained genes vary up and down within the top

100 for different disease classes. Figure 4 shows the top part of

ROC curves for each disease class. The corresponding AUC is the

highest for ‘congenital malformations and deformations’, and lowest

for ‘mental diseases’ and ‘malignant neoplasms’. Table 2 (the col-

umn of ‘All diseases’) compares the success ratio for all diseases be-

tween disease classes, and shows that our approach ranked 78%

retained genes for congenital malformations and deformations in

top 1, while prioritized 26% and 27% retained genes for malignant

neoplasms and mental diseases, respectively.

In the de novo gene prediction, we observed similar performance

variance among the nine disease classes. Figure 5 shows that the

averaged AUC is the highest for congenital malformations and

deformations and lowest for malignant neoplasms at all cutoffs.

Table 2 (the column of ‘Monogenetic diseases’) shows that for

monogenetic diseases, which have only one gene in OMIM, 90%

predictions ranked the disease genes for congenital malformations

and deformations in top 1, while 50% predictions succeeded for ma-

lignant neoplasms.

We traced the disease phenotype features to explain the perform-

ance variance. The congenital malformations and deformations

often have specific phenotypic features. For example, otospondylo-

megaepiphyseal dysplasia (OSMED) has manifestations such as ‘sen-

sorineural hearing loss’ and ‘Pierre Robin syndrome’. These features

link OSMED to phenotypically similar diseases in the network, such

as Stickler syndrome and Marshall syndrome, which are also genet-

ically related to OSMED. On the other hand, malignant neoplasms

usually have non-specific manifestations, such as pain, fever and as-

cites, which are common in cancers with different genetic causes.

Therefore, although our approach achieves high performance for all

disease classes, building disease-specific models and introducing

prior knowledge of disease phenotypes may further improve the ac-

curacy of disease gene predictions.

3.3 Our gene prediction method has the potential to

guide the drug discovery for Crohn’s disease
We ranked the 9465 genes in the PPI network for Crohn’s disease

and compared the result with 70 genes associated with Crohn’s dis-

ease from GWAS catalog. These 70 genes also appeared in our gene

rank, and have no overlap with the data in OMIM. Figure 6A1

shows that the number of GWAS genes drops when the rank based

on our approach changes from the top to the bottom, while this

number distributes evenly among random ranks (Fig. 6A2). Among

the top 10% in our rank, we found 19 overlaps with the GWAS

genes, which is a 2.5-fold enrichment (P< e�4) compared with the

average of 50 random gene ranks. The result shows that our ap-

proach can prioritize the disease-associated genes obtained through

statistical analysis on large-scale patient data.

Among the top genes in our rank, we found RIPK2, NLRC4 and

ERBIN, which have substantial literature supports on their roles in

Crohn’s disease (Gerard et al., 2013; Jostins et al., 2012; Kufer

et al., 2006; Lupfer et al., 2013; Philpott et al., 2014; Standaert-

Vitse et al., 2009; Tomalka et al., 2011) and directly interact with

NOD2 (a Crohn’s disease gene in OMIM). In addition, we also

found literature evidence to support a few top-ranked genes that are

not directly interacting with the disease genes from OMIM and were

not identified in GWAS. For example, NLRP3 (ranked top 32),

CASP1 (ranked top 45) and BCL10 (ranked top 46) are associated

with the innate immune responses to the intestinal microbiota,

which has been linked with the pathogenesis of Crohn’s disease

(Borthakur et al., 2007; Hirota et al., 2011; Netea et al., 2010;

Villani et al., 2008).

We also investigated the distribution of 1502 drug target genes

(from DrugBank) among our gene rank. Figure 6B1 and B2 shows
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Fig. 3. Average AUCs of de novo gene prediction for our approach (green)
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Table 2. Success ratios of disease–gene association predictions for

all diseases and monogenetic diseases in the nine disease classes

Disease classes All diseases (%) Monogenetic

diseases (%)

Congenital malformations

and deformations

77.97 90.48

Skin and subcutaneous

tissue disease

70.80 81.58

Nervous system disorder 66.67 89.89

Musculoskeletal and

connective tissue disorder

65.09 84.06

Digestive system disorder 65.06 80.00

Metabolic disorder 61.67 75.33

Cardiovascular disease 48.84 84.09

Mental disorder 27.12 71.43

Malignant neoplasm 26.04 50.00
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genes in each validation run
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that our rank is more likely to prioritize druggable genes than the

random ranks. The top 10% genes in our rank contain 331 drug tar-

get genes, which is a 2.1-fold enrichment (P< e�21) compared with

the average of random cases. The result shows that our top-ranked

predicted genes are enriched for druggable genes associated with

Crohn’s disease, and offer the opportunities to detect candidate

drugs for Crohn’s disease.

We ranked 1190 candidate drugs (from DrugBank) based on the

sum of the random walk scores for their target genes. Figure 6C1

and C2 shows that our approach can prioritize the approved

Crohn’s disease therapies. The top 200 in our rank contains four

FDA-approved drugs, which is a 3.3-fold enrichment (P< e�3) com-

pared with the average of random cases. Note that these four

approved drugs, including Sulfasalazine, Mesalazine, Adalimumab

and Natalizumab, do not directly target on the Crohn’s disease

genes in OMIM, and were detected through the prioritized genes

using our approach. We further investigated the other candidate

drugs in top 200 in our rank, and found that a number of them are
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Metabolic disorder
Musculoskeletal and connective tissue disorder
Nervous system disorder
Skin and subcutaneous tissue disease

Candidate gene selection for diseases in each class

A
U

C
0.

0
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Fig. 5. The ROC curves for each disease class in leave-one-out cross-validation. We compared the top part of ROC curves and AUC scores based on the top 100

genes in each validation run

Fig. 6. (A1, A2) Evaluate our gene rank with the genes associated with Crohn’s disease from GWAS. (B1, B2) Evaluate our gene rank with the drug target genes.

(C1, C2) Evaluate our drug rank with the FDA-approved drugs
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supported by literature evidence as candidate Crohn’s disease treat-

ments. Table 3 shows a few examples of candidate drugs and their

supports. Among them, the efficacy of tocilizumab has recently been

tested in a randomized clinical trial (Lazzerini et al., 2013) and

showed positive results in clinical remission.

4 Conclusion and discussions

Incorporating clinical phenotype data can improve the prediction

power of disease gene discovery methods. In this study, we de-

veloped a disease gene prediction framework leveraging multiple dif-

ferent human phenotype data sources. We explored a unique

phenotype data source and constructed a new phenotype network

called DMN. We designed an innovative strategy to predict disease-

associated genes from the heterogeneous network combining DMN

with mimMiner (a widely used phenotype database) and a genetic

network. Comparing with the gene prediction approach using only

one phenotype network, our approach significantly improved the

performance through boosting phenotypic knowledge. Using

Crohn’s disease as an example, we demonstrated that our gene pre-

diction result has translational potentials to guide drug discovery.

As more human disease phenotype data become available, our

approach can be further improved by integrating new disease pheno-

type networks, given that the new networks contain different know-

ledge. For example, our approach in this study included many

Mendelian diseases. Adding phenotypic associations involving com-

mon complex diseases may offer novel insights. Also, the phenotypic

relationships in this study are primarily based on disease-manifest-

ation pairs. Other kinds of disease phenotype data, such as disease

co-morbidities and gene expression profiles, may also reflect differ-

ent aspects of genetic mechanisms. In the future, we will develop

new approaches to rationally integrate heterogeneous phenotype

data. For common complex diseases, we will also incorporate mul-

tiple different types of genetic associations besides the PPI network,

such as the gene regulatory network into the approach.

In addition, phenotype-driven disease gene prediction

approaches are effective at different degrees for disease classes (as

we have demonstrated) and among different patients. Building dis-

ease-specific and patient-specific computational models may further

improve the quality of disease gene predictions. We recently studied

cancer-specific comorbidities and analyzed the variation of comor-

bidity patterns among stratified patients in different age and gender

brackets (Chen and Xu, 2014a, b). Based on these results, we plan

to build a cancer-specific gene prediction model.

Currently, we directly used disease–gene associations in drug dis-

covery. The method to identifying candidate drugs can be further

enhanced if more detailed information is available, including drug

actions and disease pathogenesis, such as the direction of the genetic

abnormality. For example, if a disease results from the loss of func-

tion, agonists will be potential drugs, whereas antagonists will lead

to side effects. In the future work, we will develop rational drug dis-

covery approach on the basis of our result and more data on both

diseases and drugs.
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