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Organisms and cells, in response to environmental influences or during development, undergo considerable changes in DNA methy-

lation on a genome-wide scale, which are linked to a variety of biological processes. Using MethylC-seq to decipher DNA methylome

at single-base resolution is prohibitively costly. In this study, we develop a novel approach, named MBRidge, to detect the methylation

levels of repertoire CpGs, by innovatively introducing C-hydroxylmethylated adapters and bisulfate treatment into the MeDIP-seq

protocol and employing ridge regression in data analysis. A systematic evaluation of DNA methylome in a human ovarian cell line

T29 showed that MBRidge achieved high correlation (R > 0.90) with much less cost (∼10%) in comparison with MethylC-seq. We

further applied MBRidge to profiling DNA methylome in T29H, an oncogenic counterpart of T29’s. By comparing methylomes of

T29H and T29, we identified 131790 differential methylation regions (DMRs), which are mainly enriched in carcinogenesis-related

pathways. These are substantially different from 7567 DMRs that were obtained by RRBS and related with cell development or differ-

entiation. The integrated analysis of DMRs in the promoter and expression of DMR-corresponding genes revealed that DNA methylation

enforced reverse regulation of gene expression, depending on the distance from the proximal DMR to transcription starting sites in both

mRNA and lncRNA. Taken together, our results demonstrate that MBRidge is an efficient and cost-effective method that can be widely

applied to profiling DNA methylomes.
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Introduction

DNA methylation plays a crucial role in epigenetic regulation and

it has been recognized as the ‘fifth base’ in most mammalian

genomes. As a covalent modification, it predominantly occurs at

the C5 position of cytosine (5mC) within CpG dinucleotides

(CpGs), but also presents at non-CpG cytosines (CHG and CHH,

where H ¼ A, T, or C) in embryonic stem cells and brains of

mammals (Lister et al., 2009, 2013; Xie et al., 2012). It is generally

accepted that pattern of DNA methylation can be stably transmitted

to daughter cells through cell mitosis in higher eukaryotic organ-

isms and the next generation via sperm as demonstrated in zebra-

fish (Jones, 2012; Jiang et al., 2013). However, in response to

environmental influences and during developmental process,

DNA methylation undergoes considerable changes (Meissner

et al., 2008; Christensen et al., 2009; Baylin and Jones, 2011).

Aberrant DNA methylation is unequivocally associated with patho-

genesis and progression of many diseases, including developmen-

tal disorders, cancer, and immunological dysfunction (Robertson

and Wolffe, 2000; Robertson, 2005). Therefore, detecting and

estimating the DNA methylome is of great importance for under-

standing relevance of DNA methylation in diseases and biological

processes.

Since introduction of next-generation sequencing technologies,

several methods have been developed aiming at profiling DNA

methylation on genome-wide scale. Of these, whole-genome bisul-

fite sequencing (MethylC-seq or WGBS) has been proved to be the

most powerful and complete strategy for quantitative genome-

wide detection of 5mC at single-base resolution (Cokus et al.,

2008; Beck, 2010; Harris et al., 2010). However, MethylC-seq

requires substantial sequencing effort—at least 30-fold coverage

of the entire genome, which equates to a minimum of �90 Gb

aligned data for a human genome (Lister et al., 2009; Satterlee
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et al., 2010). Within mammals and plants, 5mC accounts for �1%–

6% of total C nucleotides in a genome, with the vast majority of 5mC

occurring at CpGs (Lister and Ecker, 2009). Therefore, despite

falling of sequencing costs, under-representation of CpGs in the

genome (CpGs account for 4.76% of the total C nucleotides in a

human genome) makes MethylC-seq expensive and inefficient in

terms of sequencing per CpG site because only 20%–30% of

the MethylC-seq data provides relevant information about DNA

methylation (Ziller et al., 2013). In addition, mining underlying bio-

logical implication from resultant sequencing data is extremely

computing-intensive. For example, it typically takes �22 days on

a single 8-core processor with 24 GB RAM to obtain the DNA methy-

lation levels at single-base resolution from 100 Gb data, even when

using a fast tool such as BSMAP (Kunde-Ramamoorthy et al., 2014).

Restriction enzyme-based methods, including RRBS (Meissner

et al., 2008) and methylation-sensitive restriction enzyme sequen-

cing (MRE-seq) (Ball et al., 2009), combine digestion of genomic

DNA using certain restriction enzymes and high-throughput se-

quencing of the digested fragments. RRBS reduces the amount of

data required, saturating at �3 Gb, and generates a single-base

methylation profile covering �10% of all CpGs, which includes

most CpG islands (CGIs) in the human genome (Meissner et al.,

2008; Bock et al., 2010; Wang et al., 2012). MRE-seq relies on re-

striction enzymes that are sensitive to methylated CpG (mCpG)

and targets approximately 6% of unmethylated CpGs in the

human genome (Maunakea et al., 2010). However, most tissue

and cancer-specific differential methylation regions (DMRs) occur

in CGI shores rather than CGIs (Irizarry et al., 2009). Moreover,

�38% of CpGs in the human genome occur in repetitive elements

(REs), in which they are usually heavily methylated, especially in

Alu elements and long interspersed nucleotide elements (LINEs)

(Kochanek et al., 1993; Bestor, 1998; Schmid, 1998). As Nichol

and Pearson (2002) demonstrated, aberrant DNA methylation of

these repeat sequences can significantly affect their genetic

stability; therefore, the spectrum of whole DNA methylome

cannot be adequately represented by the one derived from RRBS

and MRE-seq.

Affinity enrichment-based methods, such as methylated DNA

immunoprecipitation sequencing (MeDIP-seq) and methyl-binding

domainsequencing(MBD-seq),capturemethylatedfractionofgenomic

DNA with 5-methylcytosine-specific antibody (5mC antibody) and

MBD2 protein, respectively (Down et al., 2008; Serre et al., 2010).

In contrast to restriction enzyme-based methods that target specific

genomic regions, affinity enrichment-based methods enable identi-

fication of all potentially methylated genomic regions on genome-

wide scale. However, MeDIP-seq and MBD-seq suffer from low

resolution (�100 bp) and bias derived from preferential affinity en-

richment of methylated DNA fragments (Laird, 2010). Therefore, they

provide only relative quantification of the DNA methylation levels in

comparison with the absolute levels obtained using bisulfite-based

methods (Takayama et al., 2014). To overcome this limitation,

researchers have developed bioinformatic approaches to calibrate

the DNA methylation levels from affinity enrichment-based sequen-

cing data, including: BALM (Lan et al., 2011) for MBD-seq; Batman

(Down et al., 2008), MEDIPS (Chavez et al., 2010), and MEDME

(Pelizzola et al., 2008) for MeDIP-seq; BayMeth (Riebler et al.,

2014) for both MBD-seq and MeDIP-seq; and methylCRF for

MeDIP-seq/MRE-seq (Stevens et al.,2013). While thesebioinformat-

ic tools possess their respective advantages, none of these tools

offers a good balance among single-base resolution, computational

efficiency, accuracy, and flexibility (Riebler et al., 2014).

To achieve genome-wide coverage at reduced cost without sac-

rificing single-base resolution, we developed a novel and efficient

DNA methylome profiling method, MeDIP-bisulfite sequencing

(MB-seq), which was modified from MeDIP-seq protocol to encom-

pass bisulfite treatment. In MB-seq, our innovative introduction of

C-hydroxylmethylated Illumina adapters (all the cytosines in the

adapters were hydroxylmethylated) rendered it more operation-

friendly than MeDIP-Bseq (Takayama et al., 2014). In data

process, we developed an accurate correction method to obtain

the absolute methylation levels from data derived from MB-seq

based on ridge regression. We applied the ridge regression

model to correct data generated by MB-seq in an ovarian epithelial

cell line (T29) and its oncogenic counterpart (T29H), resulted in re-

spective methylomes covering repertoire CpGs with single-base

resolution. Further analysis identified 131790 DMRs with high ac-

curacy between T29 and T29H, which are mainly enriched in

carcinogenesis-related pathways, and substantially different from

the ones obtained by RRBS. Taken together, we demonstrated

that MB-seq combined with ridge regression, namely MBRidge,

can accurately detect the whole DNA methylome at dramatically

reduced cost compared to MethylC-seq. Thus, our method is a

promising tool for large-scale and genome-wide studies on DNA

methylation.

Results

Convenient manipulation and high reproducibility of MB-seq

As shown in Figure 1A and B, we developed MB-seq for profiling

a DNA methylome at single-base resolution. MB-seq differed from

MeDIP-seq as follows: (i) C-hydroxylmethylated Illumina multiplex-

ing adapters were applied in the adapter-ligation step to replace

the corresponding Illumina multiplexing adapters in which all Cs

are unmethylated; and (ii) bisulfite treatment was performed

after MeDIP enrichment step. In addition, we assessed amplifica-

tion efficiencies of several commercial Taq polymerases under

the presence of cytosine 5-methylenesulfonate (CMS) generated

by bisulfite conversion of hydroxylmethylated C (5hmC) which

could hamper the Taq binding with DNA templates. We found

KAPA 2G robust polymerase achieved the best performance

(Supplementary Figure S1).

To ensure wide application of our DNA methylome profiling tech-

nology, it is critical that only the low quantity of genomic DNA start-

ing material is required. We therefore evaluate sensitivity and

reproducibility of MB-seq. As shown in Table 1, the same batch of

genomic DNA from T29 cell line was performed in our MB-seq ana-

lysis by using the various amounts of genomic DNA as input, includ-

ing 1 mg, 500 ng, 200 ng, and 50 ng, respectively. After removing

adapter contaminated, low qualitative, and clonal reads, 8.58,

10.25, 8.85, and 14.57 Gb of clean data were generated from

each replicate of the starting amount of genomic DNA, respectively.
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By counting CpGs with at least 10-fold sequencing depth, we deter-

mined the following Pearson correlation coefficient (PCC) values,

calculated against MB-seq #1 (1 mg): 0.96 for MB-seq #2

(500 ng), 0.94 for MB-seq #3 (200 ng), and 0.95 for MB-seq #4

(50 ng), respectively (Figure 1C–E). The high correlation between

our technical replicates suggested that MB-seq could achieve sat-

isfied reproducibility, even when the starting amount of genomic

DNA was used as low as 50 ng.

Cost-effectiveness of genome-wide identification of CpGs and

mCpGs by MB-seq

In order to evaluate efficiency of MB-seq, we compared the total

number and local context of CpGs and mCpGs in MB-seq with those

in MethylC-seq and RRBS using the same batch of genomic DNA

from T29. Analyzing 147.03, 14.57, and 8.39 Gb clean data gener-

ated by MethylC-seq, MB-seq, and our previously published RRBS

(Table 1), respectively, we plotted total coverage of genome-wide

Figure 1 Schematic diagram and reproducibility of MB-seq. (A) Schematic diagram of the MB-seq approach. Genomic DNA is randomly fragmented

to 100–500 bp and ligated to hydroxylmethylated Illumina adapters. The ligated fragments are captured using 5mC antibody. The

antibody-enriched DNA fragments are treated with bisulfite and amplified by PCR using Illumina paired-end PCR primers. PCR products of

270–370 bp in length are size-selected on gel and sequenced on the Illumina platform. (B) Schematic diagram of the MeDIP-seq approach.

The modified steps are marked with rectangular areas for a comparison with MeDIP-seq. (C–E) Scatter plots of PCC for MB-seq-measured DNA

methylation levels of CpG sites between different DNA input libraries, 500 ng vs. 1 mg (C), 200 ng vs. 1 mg (D), and 50 ng vs. 1 mg (E). The

color shade describes the relative difference in numeric terms. The more bright color indicates higher CpGs density. Black dots exhibit the 100

most ‘sparse’ points plotted over the smoothed density plot. The olive and red lines are curves of kernel and linear regression, respectively.
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CpGs and their respective depth (Figure 2A). MB-seq covered

88.1% of the total CpGs in the human genome, whereas

MethylC-seq and RRBS covered 96.1% and 26.8%, respectively.

By calculating the CpG recovery rate per Gb clean data in these

three methods, MB-seq, MethylC-seq and RRBS were observed

as 6.05%, 0.65% and 3.20%, respectively, suggesting that

MB-seq is the most cost-efficient method per CpG on genome-wide

scale. We also observed 83.2% genome-wide CpGs coverage in REs

(Figure 2B) by MB-seq, which was substantially greater than the

one observed by RRBS (14.3%) and less than that observed by

MethylC-seq (98.0%). By subdividing the data of MB-seq into dif-

ferent genomic features according to hg18 annotation in UCSC

database and calculating the proportion of each feature in all

data (Supplementary Figure S2A), we found that REs, introns and

Alu elements occupy 39.0%, 29.6%, and 18.2% of total MB-seq

data, respectively, which is similar to those found in genomic back-

ground. From these results, we conclude that MB-seq is also a cost-

effective method for profiling DNA methylation in REs and other

genomic features (Supplementary Figure S2B).

To further evaluate the coverage of mCpGs by MB-seq, we calcu-

lated the total number of mCpGs identified by MB-seq, MethylC-seq,

and RRBS (Figure 2C), respectively. Among a total of 24762688

mCpGs identified in all three methods, 77.9%, 98.8%, and 6.9%

of the total mCpGs were detected by MB-seq, MethylC-seq, and

RRBS, respectively. Of these, 0.81%, 20.96%, and 0.42% of the

total mCpGs were uniquely detected by MB-seq, MethylC-seq,

and RRBS, respectively. From those detected by MB-seq uniquely,

we randomly chose 120 mCpGs derived from 15 loci to perform

locus-specific bisulfite sequencing for validation (Supplementary

Table S2). Our result showed that all 120 mCpGs exhibited high

levels of methylation. We also explored distribution of the methy-

lation level among mCpGs detected by MethylC-seq uniquely

(Figure 2D) and found that 63.7% and 81.2% mCpGs presented

the methylation levels lower than 10% and 20%, respectively.

This result indicated that the unique mCpGs detected by

MethylC-seq were almost hypo-methylated, which is consistent

with the results in which MB-seq and MeDIP-seq were more prefer-

ential to detect highly methylated regions (Supplementary Figure

S3A). By calculating the mCpG recovery rate per Gb clean data in

these three methods, MB-seq, MethylC-seq and RRBS were

observed as 5.35%, 0.67%, and 0.82%, respectively. In summary,

we found that with much less data output than MethylC-seq,

MB-seq could efficiently detect a greater proportion of mCpGs in

the human genome.

Using MB-seq to exclude false positives generated by

non-specific enrichment of MeDIP

Currently, MeDIP-seq cannot be used to identify individual 5mC

sites in captured reads or distinguish un-methylated reads cap-

tured by 5mC antibody due to its non-specific binding (Chavez

et al., 2010; Harris et al., 2010); therefore, it significantly increase

rate of false positive in detecting mCGs. It is expected that the rate

of false positive in MeDIP-seq may be reduced by encompassing of

bisulfite treatment inMB-seq. By plotting ROCcurve,we investigated

the sensitivity and specificity in detection of mCpGs (predefined by

MethylC-seq with a binomial test, P , 0.01) among four different

methods (MethylC-seq, MB-seq, MeDIP-seq, and MEDIPS (normal-

ized MeDIP-seq)), respectively (Figure 3A). Our data showed

that the area under the curve (AUC) value were 99.6%, 97.9%,

78.0%, and 73.0% for MethylC-seq, MB-seq, MeDIP-seq, and

MEDIPS, respectively. It clearly indicated that MB-seq, similar to

MethylC-seq, exhibited robust the sensitivity and specificity to

detect mCpGs in contrast to MeDIP-seq and MEDIPS which is

derived from MeDIP-seq by employing normalized algorithm

with 50-bp resolution, suggesting that MB-seq is capable of ex-

cluding false positives derived from MeDIP, thereby improving

its accuracy.

To give a snapshot on excluding the false positives, we profiled

and annotated a specific genomic region. As shown in Figure 3B,

although the region was covered by reads in three sequencing

methods (MethylC-seq, MB-seq, or MeDIP-seq), this region was

identified as un-methylated in both MB-seq and MethylC-seq.

Thus, the region was a false positive signal which was presumably

derived from non-specific binding of 5mC antibody to un-methylated

DNA fragments in MeDIP-seq. In addition, we analyzed the methy-

lation level acrossthe entire dataset of MB-seq and found that 9.0%

Table 1 General information of the sequencing data for MethylC-seq, MB-seq, RRBS, and MeDIP-seq.

Sample T29 T29H

Methods and duplicate no. MethylC-seq MB-seq #1 MB-seq #2 MB-seq #3 MB-seq #4 RRBSa MeDIP-seq MB-seq RRBSa

Input 3 mg 1 mg 500 ng 200 ng 50 ng 500 ng 100 ng 50 ng 500 ng

Raw data (Gbp) 152.6 8.97 10.7 9.17 15.44 8.88 8.36 16.06 8.29

Clean data (Gbp) 147.03 8.58 10.25 8.85 14.57 8.39 7.42 15.74 7.76

Mapped data (Gbp) 134.19 7.06 8.38 7.73 12.73 7.5 5.5 11.17 6.27

Unique mapped data (Gbp) 128.42 6.47 7.67 7.18 11.82 6.82 4.73 10.53 5.45

Estimated conversion rate (%) 99.5 99.62 99.75 99.4 99.45 99.33 # 99.62 99.82

Methylation level of C (%) 4.63 7.23 7.08 7.05 6.65 6.96 # 5.35 5.92

Methylation level of CG (%) 54.48 80.21 79.93 82.1 81.06 48.64 # 72.16 42.31

Methylation level of CHG (%) 0.52 0.51 0.36 0.59 0.56 0.63 # 0.41 0.17

Methylation level of CHH (%) 0.5 0.38 0.25 0.6 0.55 0.67 # 0.38 0.18

Total number of mCG identified (Mbp) 24.43 5.38 6.75 13.79 20.15 1.87 # 17.82 2.25

Percent of covered base (%) ≥1× 91.25 41.83 46.3 65.24 73.71 11.15 33.58 77.66 12.75

Percent of covered C (%) ≥1× 97.62 45.54 50.39 72.45 81.25 13.91 32 85.48 14.52

Percent of covered CpGs (%) ≥1× 96.09 59.05 63.65 81.8 88.11 26.76 51.12 90.02 27.06

aGeneral information of the sequencing data for RRBS is obtained from the previous study (Wang et al., 2014b).
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of17659484 CpGscovered byMB-seq wereunmethylated (Figure3C).

Similarly, 6.4% of 11279092 CpGs covered by MeDIP-seq were

unmethylated (Supplementary Figure S3B). Therefore, it is reason-

able to conclude that 6.4%–9.0% of the CpGs identified by

MeDIP-seq are highly likely to be the false positive signals.

Motivation for correction of the methylation levels determined by

MB-seq

RRBS has been confirmed in multiple studies as capable of accur-

ate determination of the absolute methylation levels of CpGs (Bock

et al., 2010; Harris et al., 2010). Therefore, we tried to compare con-

cordance between the methylation levels of CpGs in MB-seq and

RRBS (Supplementary Figure S4A). In MB-seq, methylated DNA

fragments were preferentially enriched by 5mC antibody, which

resulted in generation of the relative methylation levels; thus,

the methylation levels of MB-seq and RRBS could not be directly

compared, indicating that the methylation level in MB-seq needs

to be corrected. Therefore, we first try to explore relationship

between the observed methylation levels on gene body plus its

flanking 2 kb regions in MB-seq with those derived from RRBS.

Despite being inflated, the methylation levels observed in

MB-seq showed an approximately linear relationship with those

in RRBS with R2 ¼ 0.8256 (Supplementary Figure S3C and D).

This linear correlated regularity suggested that the observed

methylation level in MB-seq could be potentially calibrated to the

absolute methylation level. Because regularized linear regression

models are appropriate for solving an ill-posed problem or prevent-

ing over-fitting, we selected three different regression methods

Figure 2 The comparison of different DNA methylation profiling methods used at single-CpG resolution. (A and B) CpG coverage as a function of

read coverage threshold for MethylC-seq (cyan), RRBS (medium-orchid), and MB-seq (green). X-axis denotes sequencing depth and y-axis denotes

the fraction of CpGs that are at or above a given sequencing depth. The percentage of CpGs that were covered genome-wide (A) or in repeat (B) are

plotted. (C) Venn diagram shows the overlap of mCpGs from three methylation profiling methods. The total mCpGs measured by all three methods

and percentages for each color block are shown. The three circles represent MethylC-seq (blue), RRBS (green), and MB-seq (red), respectively. (D)

Barplot represents the fraction of mCpG covered only by MethylC-seq, but not by MB-seq or RRBS.
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Figure 3 MB-seq can exclude MeDIP-seq false positives. (A) ROC curves are plotted by pROC in R CPAN for MethylC-level (cyan), MB-level (green),

MeDIP-depth (violet red), and MEDIPS-score (navy). The AUC value is reported for each measurement. (B) Barplot represents the fraction of CpGs

covered by MeDIP-seq. The different methylation levels were measured by MethylC-seq. At least 9% of all CpGs covered by MeDIP-seq are credibly

considered as artificial signals, because they present a zero level of methylation (violet bar). (C) IGV screenshot of a region demonstrates that

MB-seq can exclude false positives from MeDIP-seq. The black box (yellow-labeled) shows a captured region that has no methylated sites and

presents non-specific DNA reads captured by 5mC antibody.
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(ridge, elastic-net, and lasso regression) in R package glmnet

(Friedman et al., 2010) for calibration. To confirm which regres-

sion model is suitable for calibration of MB-seq, we performed

cross-validation in these three models. Among �3 million CpGs

covered by at least 10 reads in RRBS, we randomly selected 50%

of the CpGs with information of DNA methylation from RRBS and

the corresponding one from MB-seq as training data. The remaining

half of data from RRBS and the corresponding one from MB-seq

were used as testing data. The three regression models were

trained using the training data, and resultant models were

applied to the testing data of MB-seq to predict the methylation

levels. Based on calculated PCC values by correlating the predicted

methylation levels in MB-seq with the corresponding absolute

levels in the RRBS testing data, we found that ridge regression

had the best performance for the calibration (Supplementary

Table S3). The detail of our ridge regression model (shown in

Supplementary Figure S3E) is described in Materials and methods

section.

Robust performance of ridge regression calibration for MB-seq

To evaluate performance of ridge regression for MB-seq, we

compared the DNA methylation levels in MB-seq and RRBS in inde-

pendent cell lines T29 and T29H, both before and after ridge regres-

sion. As shown in Supplementary Figures S4A and S5A, before

ridge regression, PCC values for correlation of the methylation

levels between MB-seq and RRBS were 0.87 and 0.81 for T29 and

T29H cell lines, respectively. Following ridge regression, the PCC

values were elevated to 0.96 and 0.95 for T29 and T29H, respec-

tively (Supplementary Figures S4B and S5B). Consistent with a

previous study (Stevens et al., 2013), the methylation levels

calibrated by ridge regression displayed bimodal distribution that

is similar to those measured by RRBS. By defining methylation

proportion difference ,0.25 (Stevens et al., 2013), the methylation

level calibrated by ridge regression compared with the one in RRBS

is 92.7%, 92.3% concordant for T29 and T29H, respectively

(Supplementary Figures S4C and S5C). We further evaluated the

performance of calibration of ridge regression in various genomic

features for T29 cell line. For each genomic feature (the number

of CpGs used is illustrated in Supplementary Figure S4D), we

observed a significant improvement in PCC values after ridge re-

gression (with the range improving from 0.74–0.86 to 0.85–

0.96; Supplementary Figure S4E). In addition, ridge regression

could precisely calibrate the methylation levels in various genomic

features of T29H cell line with similarly improved PCC values to

T29 (Supplementary Figure S5D and E).

Next, we compared the DNA methylation levels of all CpGs iden-

tified by MB-seq before and after ridge regression with the ones

from MethylC-seq with sequencing depth ≥10 in T29 cell line.

Prior to ridge regression, the DNA methylation levels for MB-seq

vs. MethylC-seq were correlated at PCC ¼ 0.774; while after ridge

regression, PCC reached 0.905 (Figure 4A and B). The percentage

of CpGs with a methylation proportion difference ,0.25 between

MB-seq and MethylC-seq were 87.9% and 93.6% before and after

ridge regression, respectively (Figure 4C). For each genomic

feature (the number of CpGs used is illustrated in Figure 4D), we

observed significant improvement in concordance of the methyla-

tion levels between MB-seq after ridge regression and MethylC-

seq. For example, PCC values for MB-seq after ridge regression

vs. MethylC-seq within promoters, CGIs, 5
′ UTRs, repeats, enhan-

cers, and CDS, improved to 94.58%, 95.69%, 93.79%, 93.02%,

86.60%, and 96.53%, respectively (Figure 4E). All of above findings

strongly suggested that MB-seq combined with ridge regression,

termed as MBRidge, could achieve the satisfactory performance

as MethylC-seq both on genome-wide scale and with various

genomic features at single-base resolution. Such high concord-

ance is further demonstrated by genome browser visualization of

MethylC-seq, MBRidge, MB-seq, RRBS and MeDIP-seq in represen-

tative genomic loci (Supplementary Figure S6).

When using MeDIP-generated data, estimations of the DNA

methylation level can be confounded by variable density of mCpG

sites across a genome (Laird, 2010), which could be problematic

when analyzing CpG-poor (low density) regions (Down et al.,

2008; Pelizzola et al., 2008). Therefore, we examined performance

of MBRidge across different regions with varying CpG density. PCC

of the methylation levels in MBRidge vs. MethylC-seq showed that

the two methods were highly concordant and they did not vary sig-

nificantly based on various CpG densities (Figure 4F). Additionally,

we found that bias between MBRidge and MethylC-seq did not vary

significantly with the differing methylation levels (Supplementary

Figure S7). In summary, the strong correlation between results

of MBRidge and MethylC-seq regardless of genomic features,

the variable CpG densities, and the varying methylation levels,

suggest that MBRidge could detect a methylome with comparable

capabilities as MethylC-seq.

Evaluating contribution of methylation-related factors in

ridge regression

As multiple variables related to methylation were introduced

in ridge regression model (see Materials and methods section),

we tried to determine contribution of each variable in ridge regres-

sion model by a permutation test with comparison of the methyla-

tion levels between MBRidge and MethylC-seq. When all variables

were integrated, PCC value for the predicted methylation levels in

MBRidge vs. MethylC-seq was 0.905. Among all variables, the

methylation levels observed in MB-seq (MB level) and the mean

methylation levels flanking 100-bp region adjacent to local CpG

observed in MB-seq (MB back level) played the most import role

in our ridge regression model (Supplementary Figure S8A). This

could be supported by the result that PCC could reach to 0.903

when only considering the MB level and the MB back level in our

ridge regression model. In a previous study, genomic sequences

and features provided a default prediction of methylation status

(Stevens et al., 2013). However, in our analysis, PCC was equal to

0.774 when ridge regression was based on genomic features

alone with the assumption that the methylation level of CpGs

uncovered by MB-seq was zero (Supplementary Figure S8A).

Additionally, given that MB-seq reads depth covering individual

CpG (MB depth) can be regarded as data from MeDIP-seq, when

only including MB depth in our model with genomic features, PCC

was 0.784. This implied that the MB level and the MB back level
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Figure 4 Accuracy evaluation for the ridge regression model. (A and B) Scatter plots of PCC compare MB-seq vs. MethylC-seq (A) and MBRidge vs.

MethylC-seq (B). The bar displays a legend/color scale that describes the relative difference in numeric terms between different shades. Black dots

exhibit the 100 most ‘sparse’ points plotted over the smoothed density plot. (C) The number of CpGs as a function of the difference in methylation

levels between MethylC-seq and MBRidge. By defining the methylation difference ,0.25 and 0.10, the number of concordant CpGs between these

two methods are 93.6% and 76.6% of the total CpGs, respectively. The corresponding percentages of the number of concordant CpGs between T29

MethylC-seq and T29 MB-seq are 87.9% and 70.4%, respectively. (D) The number of CpGs in each genomic feature identified by MethylC-seq with

coverage of at least 10× depth. (E) PCC values from the comparison of MBRidge and MB-seq with MethylC-seq for annotated genomic features. The

axes in each radar chart represent annotated genomic features. (F) The concordance between MBRidge and MethylC-seq (measured by PCC) as a

function of CpG density (measured by CpGoe value). The left y-axis (cyan bars) indicates the number of CpGs corresponding to the CpG density.
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at single-base resolution, derived from bisulfite conversion in

MB-seq, were most important in the ridge regression model. It also

suggested the infeasibility to accurately predict the absolute methy-

lation level from MeDIP-seq data alone. Taken together, our results

strongly suggested that by taking advantage of a priori training

model, the ridge regression algorithm could effectively integrate

all variables with weighed coefficient factors into training data and

produce accurate predictions.

Reaching saturation in MB-seq and achieving higher accuracy

in MBRidge

For any given sequencing-based methylation profiling method,

how much sequencing data is required remains unclear because

it is directly related to the balance between sequencing costs and

accuracy of methylation profiling. By gradually analyzing coverage

of CpGs in sequencing data from MB-seq#4 (14.57 Gb clean data)

(Supplementary Figure S8B), we found that the coverage of CpGs

reaches �80% of the 28.2 million CpGs in the human genome

when sequencing data from MB-seq reached 9 Gb, similar to the

one which had been considered as saturation in a previous study

using MeDIP-seq (Chavez et al., 2010).

On the other hand, the amount of sequencing data required

for achieving satisfactory performance by the ridge regression

model is still yet to be explored. Thus, we randomly selected the

different amount of reads from RRBS or MB-seq to evaluate the per-

formance of the ridge regression model. By comparing the methy-

lation levels calibrated by our ridge regression on each data set

with those in MethylC-seq, we found that the minimum data size

required to achieve PCC about 0.9 was 1.4 Gb in RRBS and

7.5 Gb in MB-seq, respectively (Supplementary Figure S8C and D).

Based on the saturation-analysis of MB-seq, for a 3 Gb human

genome, �10.4 Gb clean data from RRBS (1.4 Gb) and MB-seq

(9 Gb) enable MBRidge to achieve satisfactory correction.

Aberrant alteration of DNA methylome in a human ovarian

cancer model revealed by MBRidge

To understand the role of DNA methylation in ovarian-

tumorigenesis, we generated DNA methylomes of both T29 and

T29H by MBRidge and identified DMRs according to our developed

pipeline (Wang et al., 2013). We observed prominent hypo-

methylation on genome-wide scale and almost elements while

upstream, CGI, promoter and 5-UTR elements were containing

tiny alternating for T29H compared with T29 (Supplementary

Figure S9A and B), which is consistent with a previous conclusion

regarding carcinogenesis and DNA methylation (Jones, 2012). We

found 131790 independent regions (ranging from 9 to 2996 bp

with median size of 162 bp; Supplementary Table S4; see

Supplementary Methods for more details) were candidate DMRs

that had significant differences in the methylation level between

two cell lines (t-test P , 0.05 and FDR , 0.05). This was substan-

tially more than 7567 identified previously by RRBS. MBRidge

uniquely detected 126936 DMRs, which primarily appeared in

repeats, Alu elements, and introns. By performing experimental

validation of DMRs using locus-specific bisulfite sequencing, all

of the 10 randomly chosen DMRs were in agreement with results

of the ridge regression model by displaying the differential levels

of DNA methylation between T29 and T29H (Figure 5A and B,

Supplementary Figure S10A–H), which further confirmed the

accuracy of MBRidge.

We foundthat 4910DMRswere located in2 kbflanking sequences

(defined as promoters) of transcription start sites (TSSs) in 3992

genes. ClueGO analysis revealed that DMRs were enriched in mul-

tiple pathways with hypergeometric P-value ,0.05 (Figure 6A), in-

cluding calcium signaling pathway, type II diabetes mellitus, Wnt

signaling pathway, Basal cell carcinoma, Rap1 signaling pathway,

AMPK signaling pathway, proteoglycans in cancer, pathways in

cancer, glycolysis/gluconeogenesis, Ras signaling pathway, MAPK

signaling pathway, and central carbon metabolism in cancer. Most

of them were related to tumorigenesis and metabolism (Karnoub

and Weinberg, 2008).

In contrast, we found that the DMRs located in promoters

account for only a small fraction of all DMRs and alteration of

methylation beyond promoters are far more dynamic than previ-

ously revealed by RRBS (Wang et al., 2014b) (Supplementary

Figure S9C). Therefore, we performed functional analysis of the

DMRs identified by MBRidge and RRBS by using GREAT tool to

analyze functional significance from cis-regulatory regions (McLean

et al., 2010), respectively. Intriguingly, we found that DMRs derived

from MBRidge were highly enriched in biological functions and

pathways mainly associated with carcinogenesis (Supplementary

Table S5), whileDMRsderivedfromRRBSwereprimarilyrelatedtofunc-

tions and pathways in development or differentiation (Supplementary

Table S6). This strongly suggests that distal DMRs from TSSs are bio-

logically meaningful for comprehensive functional interpretation of

DNA methylation alteration in cancers.

Integrated analysis of the relationship between DNA

methylation and gene expression

DNA methylation changes in promoter regions are integral to all

aspects of tumorigenesis and have been shown to have important

relevance with gene expression (Weisenberger, 2014). Recently,

transcriptome profiling has revealed that a significant subset of

transcripts longer than 200 nucleotides, located in non-coding

regions, known as long non-coding RNAs (lncRNAs), can modulate

gene expression, but their DNA methylation patterns remain poorly

understood. As a genome-wide approach, MBRidge enabled inves-

tigation of methylation patterns in lncRNA loci (downloaded from

database NONCODE v4) (Xie et al., 2014). We found that although

lncRNA genes exhibited methylation patterns similar to protein-

coding genes in the gene-body and flanking regions, they displayed

the higher levels of methylation around TSSs (Figure 6B and C). This

observation is contrary to the one derived from a previous study

based on MeDIP-seq data (Sati et al., 2012). Our observation indi-

cated that the generally higher levels of methylation in TSSs of

lncRNAs could account for the generally lower expression of

lncRNAs when compared with protein-coding genes (Derrien

et al., 2012).

In order to establish cross-association between DNA methylation

and gene expression, we performed RNA-seq with T29 and T29H

and identified 2191 and 2939 differentially expression transcripts
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(P , 0.01, FDR , 0.01, fold change ≥2) for protein-coding genes

and lncRNA genes, respectively (Robinson et al., 2010). We inte-

grated differentially expressed transcripts and DMRs occurring in

their corresponding promoters for both protein-coding and

lncRNA genes. Interestingly, in contrast to a previous study (Sati

et al., 2012), we observed 465 lncRNA genes in which expression

changes were inversely correlated with methylation alterations

(Figure 6D, Supplementary Table S7). This also occurs in 614

protein-coding genes (Figure 6E, Supplementary Table S8), sug-

gesting that methylation regulation is similar in lncRNA and

mRNA. Functional annotation of these inversely methylation-

regulated protein-coding genes revealed that these genes were

enriched in tumor associated pathways (Supplementary Figure

S9D) including Hippo signaling pathway, transcriptional misregula-

tion in cancer, Calcium signaling pathway, TGF-beta signaling

pathway, MAPK signaling pathway, and ECM-receptor interaction.

Interestingly, gene ontology analysis of these inversely methylation-

regulated lncRNA genes unveiled that these lncRNAs genes were

related to significant biological processes (Supplementary Figure

S9E) including mitotic prometaphase, negative regulation of

protein binding, protein trimerization, renal absorption, G2/M tran-

sition of mitotic cell cycle, water-soluble vitamin metabolic process,

fructose 1,6-bisphosphate metabolism, regulation of BMP signaling

pathway, response to mechanical stimulus, regulation of osteoblast

proliferation and protein complex localization. Intriguingly, the im-

portant roles of inversely methylation-regulated lncRNAs in cellular

proliferation of carcinomas were highlighted (White et al., 2014).

Taken together, our result provides a new insight of leveraging rele-

vant knowledge of those lncRNAs in carcinogenesis.

Surprisingly, we also found that the ability of DMRs to inversely

regulate gene expression was more significant along with more

close between DMRs and TSSs in both protein-coding and

lncRNA genes (Supplementary Figure S9F and G). Our discovery

was consistent with previous study which reported that methyla-

tion closest to TSS rather than flanking was a significant impedi-

ment to the polymerase extension in transcriptional initiation

(Brenet et al., 2011).

Discussion

An essential step towards unraveling complex role of DNA methy-

lation in phenotype is to generate methylomes with high resolution

and accuracy (Pomraning et al., 2009; Laird, 2010). In this study, we

developed a novel method to profile DNA methylome, named

MBRidge, which integrated innovation in molecular technology

(MB-seq) and bioinformatic algorithm (ridge regression model).

MBRidge showed high accuracy in generating the absolute

Figure 5 Experimental validation of DMRs between T29 and T29H cell lines identified by MBRidge. Genome browser views and line graphs show the

DMRs between T29 and T29H, validated by locus-specific bisulfite sequencing. The line graph shows the methylation levels measured by

MethylC-seq, RRBS, bisulfite PCR validation (BS-PCR), and MBRidge. (A) A representative DMR in chr10: 50492078–50492258. MBRidge

agrees with BS-PCR and MethylC-seq. (B) A representative DMR in chr11: 14870180–14870346. MBRidge agrees with BS-PCR for both T29

and T29H, while MethylC-seq and RRBS do not detect the region that is enriched by MeDIP-seq in T29 cells.
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Figure 6 Canonical DNA methylation profiles depicted by MBRidge and the relationship between DNA methylation and gene expression. (A)

Barplot shows the hierarchical order of the pathway enrichment of DMR-related genes, based on their enrichment scores (2log [hypergeometric

P-value]). The fraction number above each bar indicates the percentage of genes overlapped with DMRs in each term of pathway. (B and C)

Canonical DNA methylation profiles across regions in lncRNA (B) and mRNA (C), respectively. The canonical gene structure is defined by three dif-

ferent features, denoted by the x-axis. The length of each feature was normalized and divided into equal numbers of bins. Respective lines denote

the average methylation levels for T29 (red) and T29H (forest-green). Two black vertical dashed lines indicate the mean location of transcription

start sites (TSS) and transcription end sites (TES), respectively. The blue-violet line indicates the sum of CpG numbers. (D and E) Starburst plots

denote the relationship between DMRs and lncRNA (D) and mRNA (E) expressions, respectively. Log10 (P-value) is plotted for DNA methylation

(x-axis) and gene expression (y-axis) of each gene. If a mean DNA methylation level or gene expression value is higher (.0) in T29H, 21 is multi-

plied to log10 (P-value), providing a positive value. The black dashed lines indicate P-value at 0.05 for DMRs and 0.01 for gene expression. Data

points in orange and red indicate genes in which significant expression changes are positively correlated with significant methylation changes,

while blue and green points represent genes in which significant expression changes are inversely correlated with significant methylation

changes. The remaining genes are marked in black.
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methylation levels of each single-CpG, which were highly corre-

lated to the ones from MethylC-seq and RRBS in T29 with PCC

values of 0.905 and 0.96, respectively. The accuracy of MBRidge

was further confirmed by high accuracy of a methylome in T29H

cell line (PCC for MBRidge vs. RRBS: 0.95), which has aberrantly

induced by H-RasV12 to mediate carcinogenesis. Furthermore,

MBRidge is a cost- and time-efficient method for profiling the

DNA methylome. The ridge regression model required 9 and

1.4 Gb clean data from MB-seq and RRBS to reach satisfied accur-

acy for measuring a human DNA methylome, respectively (Wang

et al., 2012) which cost a small fraction (�10%) of MethylC-seq.

Finally, a satisfied reproducibility in comparison 1 mg with 50 ng

of input genomic DNA in MB-seq suggesting its potential for wide

application.

MB-seq in our MBRidge has substantial advantages over previ-

ous methods as elucidated as the following. Although previous

studies have utilized unmethylated or methylated adapters in

methylome sequencing (Down et al., 2008; Meissner et al., 2008;

Ball et al., 2009; Lister et al., 2009), these regular adapters were

unsuitable for our MB-seq approach due to the following reasons:

(i) if unmethylated DNA fragments were ligated with the regular

methylated adapters in advance, they would be pulled down non-

specifically in 5mC-antibody-enrichment step in MB-seq; (ii) cyto-

sine in the regular unmethylated adapters would be converted to

Us by sequential bisulfite treatment in MB-seq, resulting in

failure in Illumina sequencing. In MB-seq, as an optimal strategy,

C-hydroxylmethylated Illumina multiplexing adapters were firstly

introduced since they cannot be enriched by 5mC antibodies, and

5hmCs in adapters can hardly be converted to Us in the bisulfite

treatment (Huang et al., 2010; Jin et al., 2010). In contrast, recently

developed method MeDIP-Bseq, has two additional steps, including

random-primed PCR and restriction enzyme digestion. Furthermore,

our MB-seq protocol can produce strand-specific library, resulting

in generation of directional reads of either Bisulfite Watson (BSW)

or Bisulfite Crick (BSC). MeDIP-Bseq protocol reported previously,

however, performs two rounds of PCR, which resulted in yielding

BSW and BSC reads, as well as their reverse complementary reads

(BSWRC and BSCRC). The discrepancy between our MB-seq and

MeDIP-Bseq has immediate impact on the bioinformatic analysis

in terms of time-consumption and mapping accuracy. Consequently,

searching complexity of bisulfite read mapping procedure in

MeDIP-Bseq is double compared with that in MB-seq because

the Watson and Crick strands of bisulfite-treated DNA sequences

are not complementary to each other. Finally, benefiting from the

bisulfite treatment in MB-seq, we determined methylation status

of each CpG, and thereby significantly increased resolution and

reduced false positives compared with MeDIP-Bseq.

The performance of ridge regression in our MBRidge can sig-

nificantly improve with regard to resolution and accuracy compared

with that by using other affinity-enrichment based methods and

their corresponding bioinformatic tools. MEDME and BayMeth

can transform the observed read counts of MBD-seq or MeDIP-

seq data into the regional methylation levels with low resolution

(�100 bp) (Riebler et al., 2014). MEDIPS only obtains methyla-

tion scores (1–1000), rather than the methylation levels with

single-base resolution (Chavez et al., 2010). These scores are not

directly comparable with the methylation levels derived from

other non-affinity-enrichment based methods. Batman obtains the

methylation levels of each single CpG from MeDIP-seq data using

long-term calibration (Bock, 2012), but the methylation levels are

generally underestimated (Riebler et al., 2014). MethylCRF provides

the methylation levels at single-CpG resolution on a genome-wide

scale, but it exhibited a PCC value of 0.77 in comparison with

MethylC-seq when using the H1 cell line, and the accuracy of this

method may be further reduced when it is applied to aberrant DNA

methylomes such as those from cancers (Stevens et al., 2013).

We found that accuracy of the DNA methylation levels derived

from MBRidge will be unaffected by biases derived from variation

in CpG densities and the methylation levels, suggesting that

MBRidge is a promising method for detection of methylomes in

species with low global level of DNA methylation. This is in stark

contrast to MethylC-seq, whose accuracy is generally correlated

with sequencing depth and is relatively uneconomic to profile

methylome on species with the ultra-low global DNA methylation

level. Recently, MeDIP-Bseq provided the first unequivocal evi-

dence of cytosine methylation in Drosophila, which has long

been thought to lack cytosine methylation (Takayama et al.,

2014). Therefore, we prospect that MBRidge could be used to

detect methylomes in species such as the silkworm (Xiang et al.,

2010) and Locusta migratoria (Wang et al., 2014a), which have

large genome size but low CpG methylation levels.

Despite the advantages presented in this study, MBRidge still

has potential to be further improved. Firstly, by using bisulfite treat-

ment alone, MBRidge cannot distinguish 5hmC from 5mC. Secondly,

MBRidge is dependent on the actual methylation levels from RRBS

for correcting the methylation level derived from MB-seq. Given

the fact that NIH Roadmap Epigenomics Project’s current release

of the Human Epigenome Atlas deposited 108 RRBS data sets

for 67 tissues or cell lines with only 5 of these samples being

MethylC-seq data sets, by performing MB-seq on these samples,

our new method, MBRidge could convert the data into single-CpG

resolution, genome-wide methylomes, and thus significantly

increase value of the existing datasets.

In case study, MBRidge was used to evaluate the DNA methyla-

tion levels in a normal human ovarian epithelial cell line, T29, and

its oncogenic H-RasV12-mediated counterpart, T29H. We revealed

that only a fraction of DMRs between T29 and T29H occur in CGI

and promoter regions, while the remaining DMRs arise at other

regions such as repeats and Alu elements. This indicated that

MBRidge can detect genome-wide alteration of DNA methylation,

thereby providing an interpretation of the regulatory mechanism

involved in DMRs located proximally and distally to TSSs. In our

study, even in the promoter region, alterations to DNA methylation

enforced reverse regulation of gene expression depending on

the distance from the proximal DMR to TSSs in local genes. This

is similar to a previous observation in which specific histone

modifications achieved proper regulatory function in correlation

with their distance from TSSs (Chai et al., 2013). Although it is gen-

erally believed that DNA methylation in promoters can reversibly

regulate gene expression in local genes, our results suggest this
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assumption need to be carefully interpreted in context with the

position of DNA methylation in related to the distance to TSSs;

therefore, it is worth to explore spatial regulatory function of DNA

methylation in the future. Furthermore, by our analysis of DMR inte-

grated with local gene expression, both DMRs-regulated protein-

coding gene and lncRNA were enriched in several cellular pathways

(including metabolism, calcium signaling, cancer related path-

ways, and cell cycles), which could serve to decipher the roles of

DNA methylation to the sequential proteomic alteration and

phenotype induced by oncogenic HRAS in T29H cell lines as previ-

ously reported (Liu et al., 2004; Young et al., 2005). In summary,

MBRidge can provide an effective approach to obtaining

single-CpG resolution and a complete DNA methylome. As a cost-

efficient and accurate approach, we envisage MBRidge could be

potentially utilized in large scale genome-wide DNA methylation re-

search, such as studies of epigenomic plasticity within popula-

tions, clinical epigenomics, and ecological epigenomics.

Materials and methods

Hydroxylmethylated Illumina adapters

5-Hydroxymethyl-dC-CE phosphoramidite was purchased from

Glen Research (Sterling), and hydroxylmethylated oligonucleo-

tides were synthesized by Invitrogen. Both hydroxylmethylated

adapter1 (sequence 5
′-pho-GATCGGAAGAGCACACGTCT-3′) and

adapter2 (sequence 5
′-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-

3
′), in which all the Cs were hydroxylmethylated, were annealed

following the protocol previously described (Zheng et al., 2011).

Sample preparation

Human ovarian epithelial cell lines T29 and T29H were provided

by Dr Jinsong Liu (MD Anderson Cancer Center, University of Texas)

and cell lines were cultured as previously described (Young et al.,

2005). We extracted genomic DNA from the cell lines by using a

Qiagen DNeasy Blood & Tissue Kit (Qiagen), and 20 mg/ml RNase

(Qiagen) was used to degrade any contaminated RNA in the DNA

samples. We verified DNA integrity by agarose gel electrophoresis,

and DNA was quantified using Quant-iT PicoGreen dsDNA Kits on a

Qubit 2.0 fluorometer (Invitrogen).

Preparation of MB-seq library

From T29 cell line, various input amounts of genomic DNA (1 mg,

500 ng, 200 ng, and 50 ng) were fragmented to �100–500 bp

using a Covaris E210 sonicator (Covaris Inc.). Fragmented DNA

was end-repaired, A-tailed, and ligated to C-hydroxylmethylated

Illumina multiplexing adapters following the standard protocol of

TruSeq DNA Sample Prep kits (Illumina). Methylated DNA was

pulled down using the method of Weber et al. (2005), but with

some modifications. Briefly, adapter-ligated DNA was denatured

at 958C and then immunoprecipitated overnight at 48C with 2 ml

5-MeC-mAb (MeDIP, Calbiochem) in a final volume of 100 ml IP

buffer (comprising 20 mM sodium phosphate pH 7, 280 mM

NaCl, and 0.1% Triton X-100). We washed 20 ml Dynabeads

(M-280 Sheep anti-Mouse IgG, Invitrogen) with 1% PBS-BSA

buffer according to the manufacturer’s instructions, and added

this to the MeDIP-DNA mixture using a slow rotation during

incubation at 48C for 2 h. The Dynabead-MeDIP-DNA mixture was

then washed three times with 800 ml 1× IP buffer at 48C, and for

15 min each time. MeDIP enriched DNA was recovered from

Dynabead-MeDIP-DNA mixture by phenol-chloroform extraction

followed by ethanol precipitation. To evaluate MeDIP recovery effi-

ciency, we detected the resulting MeDIP-DNA by using qPCR with

SYBR according to methods described in a previous study, and

results are shown in Supplementary Table S1 (Li et al., 2010a).

MeDIP-DNA was then bisulfite-treated using EpiTect Bisulfite Kit

(Qiagen) with two rounds of the standard conversion. The bisulfite-

treated product was amplified for 12 cycles with Illumina multiplex-

ing PCR primer 1.0 and 2.0 (final concentration of 0.5 mM) in KAPA2G

Robust HotStart ReadyMix (Kapa Biosystems, Inc., Woburn, MA,

USA) by using large-scale amplification (8 × 25 ml) with 25 ml of re-

action volume for every 4 ml of the bisulfite-treated template.

Subsequently, the PCR products were purified by QIAquick PCR

Purification Kit (Qiagen, Germany) and subjected to a final size-

selection step on a 2% low melting agarose gel, and we excised eth-

idium bromide-stained gel slices containing fragments within the

range of 270–370 bp. Excised DNA was once again purified with

QIAquick and quantified by Quant-iT PicoGreen dsDNA Kits before

it was sequenced using an Illumina Hiseq 2000 with a TruSeq SBS

Kit v3-HS (200-cycles). The same protocol was used to construct

an MB-seq library from the genomic DNA of T29H cells.

Ridge regression model

The ridge regression model was implemented using ridge regres-

sion, a type of regularized linear regression (Hoerl and Kennard,

2000). Ridge regression is ideal for data with several predictors that

have non-zero coefficients and are drawn from a normal distribution

(Friedman et al., 2010). Ridge regression performs particularly well

when each of multiple predictors has small effect, and it prevents

coefficients of linear regression models with many correlated vari-

ables from being poorly determined and exhibiting high variance.

Ridge regression shrinks the coefficients of correlated predictors

equally towards zero. For example, given k identical predictors,

each would receive identical coefficients equal to 1/kth of the value

that any single predictor would receive if fitted alone (Friedman

et al., 2010). Thus, ridge regression does not force coefficients to

vanish and cannot select a model containing only the most relevant

and predictive subset of predictors. The ridge regression (2) estimator

solves the regression problem in (1) using ℓ2 penalized least squares:

y = m ln + Xb+ el, (1)

where y = (y1, . . . , yn)T is the vector of observed phenotypes, ln is a

column vector of n ones and m is a common intercept, X is a n × p

matrix of markers, b is the vector of the regression coefficients of the

markers, and el is the vector of the residual errors with var (e) = Is 2
e .

b̂ (ridge) = b
arg min

||y − Xb||22 + l ||b||22, (2)

where ||y − Xb||22 =
∑n

i=1 (gi − xT
i b)2 is theℓ2-norm (quadratic) loss

function (i.e. residual sum of squares), xT
i is the ith row of X,

||b||22 =
∑p

j=1 b
2
j is the ℓ2-norm penalty on b, and l≥ 0 is the
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tuning (penalty, regularization, or complexity) parameter that regu-

lates the strength of the penalty (linear shrinkage) by determining

the relative importance of the data-dependent empirical error and

the penalty term. The larger the value of l, the greater is the amount

of shrinkage. As the value of l is dependent on the data, it is deter-

mined using cross-validation, a data-driven method.

According to previous studies (Down et al., 2008; Pelizzola et al.,

2008; Chavez et al., 2010; Nair et al., 2011; Riebler et al., 2014),

most features related to methylation are approximately linear

where the methylation levels are absolute, with the exception of

genomic annotations, for which methylation displays distinct

genomic feature-specific characteristics (Li et al., 2010b; Stevens

et al., 2013). We introduced multiple features related to methyla-

tion as the predictors of ridge regression as follows: the methyla-

tion levels observed in MB-seq (MB level), mCpG numbers (MB

mCG), read densities covering individual CpG (MB depth), the

mean methylation levels flanking 100-bp region adjacent to local

CpG observed in MB-seq (MB back level), mean number of

mCpGs within windows of 200 bp centered on local CpG (MB

back mCG), genomic CpG density, GC content, and CpG-OE value

within windows of 200 bp centered on local CpG. We used an R

package, glmnet, to implement the ridge regression algorithm,

and cross-validation was used to estimate the model’s prediction.

Data (predictors and true methylation) were divided into training

and testing datasets. Among �3 million CpGs (definite CpGs)

with at least 10× coverage in RRBS, we randomly selected 50%

of CpGs to be used as the training data; the remaining 50%

became the testing data. The model was trained using the training

data before being applied to the testing data and datasets of CpGs

covered by MB-seq but uncovered by RRBS. We then calculated the

PCC between the predicted methylation values and RRBS mea-

sured levels in the testing data. This procedure was repeated

1000 times and the mean PCC was computed to represent the pre-

diction accuracy of the model. For each genomic feature, we trained

and tested ridge regression separately. For CpGs that were anno-

tated with multiple features, we combined the methylation predic-

tions by averaging the corresponding ridge predictions and giving

each prediction equal precedence. The methylation levels were pre-

dicted on a genome-wide scale and the methylation levels of definite

CpGs were inherited from RRBS. Specifically, all CpGs uncovered by

MB-seq were assumed to be unmethylated (i.e. with a methylation

level of zero) and were excluded from calibration because, with suf-

ficient sequencing depth, MeDIP-based methods are sensitive even

to very low methylation (see Supplementary Figure S3A). Predicted

methylation levels that were ,0 and .1 were forced to 0 and 1, re-

spectively, based on the principles of ridge regression (representing

background noise and over-saturation of the sequencing derived

antibody enrichment, respectively). In T29 and T29H, outliers such

as these accounted for only �0.55% and �0.71% of all CpGs, re-

spectively. The complete ridge regression model is illustrated in

Supplementary Figure S3D.

System evaluation of MB-seq and MBRidge

We performed MethylC-seq and MeDIP-seq for T29 cell lines, and

systemly compared the performance of our method to MethylC-seq,

RRBS and MeDIP-seq at genome-wide and different genomic fea-

tures. For additional details, see the Supplementary material.

Integrated analysis of DNA methylome and transcriptome

Integrated analysis and validation of differential DNA methylome

and differential transcriptome were performed between T29 and

T29H cell lines. For additional details, see the Supplementary

material.

Supplementary material

Supplementary material is available at Journal of Molecular Cell

Biology online.
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