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in the Therapy of Airway Inflammation?
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Abstract

Significance: NADPH oxidase (NOX) enzymes, which are widely expressed in different airway cell types, not
only contribute to the maintenance of physiological processes in the airways but also participate in the path-
ogenesis of many acute and chronic diseases. Therefore, the understanding of NOX isoform regulation, ex-
pression, and the manner of their potent inhibition might lead to effective therapeutic approaches. Recent
Advances: The study of the role of NADPH oxidases family in airway physiology and pathophysiology should
be considered as a work in progress. While key questions still remain unresolved, there is significant progress in
terms of our understanding of NOX importance in airway diseases as well as a more efficient way of using NOX
modifiers in human settings. Critical Issues: Agents that modify the activity of NADPH enzyme components
would be considered useful tools in the treatment of various airway diseases. Nevertheless, profound knowledge
of airway pathology, as well as the mechanisms of NOX regulation is needed to develop potent but safe NOX
modifiers. Future Directions: Many compounds seem to be promising candidates for development into useful
therapeutic agents, but their clinical potential is yet to be demonstrated. Further analysis of basic mechanisms in
human settings, high-throughput compound scanning, clinical trials with new and existing molecules, and the
development of new drug delivery approaches are the main directions of future studies on NOX modifiers. In
this article, we discuss the current knowledge with regard to NOX isoform expression and regulation in airway
inflammatory diseases as well as the aptitudes and therapeutic potential of NOX modifiers. Antioxid. Redox
Signal. 23, 428–445.

The Presence and Activation of the NADPH Oxidase
in the Airway

NADPH-oxidase (EC 1.6.3.1) is the major source of
nonmitochondrial cellular reactive oxygen species

(ROS) and a highly regulated dynamic complex containing
both membrane and cytosolic proteins. This enzyme was first
discovered in phagocytes, as an essential defense mechanism
against different pathogens. Currently, it is known that non-
phagocytic cells also express various isoforms of NADPH
oxidases and are able to produce ROS. ROS, derived from
NADPH oxidases, are one of the most important mechanisms
of host defense and innate immunity. However, during pro-
longed, unresolved inflammation, tissue injury, or dysregu-
lated balance between ROS-generating mechanisms and

antioxidants, they might lead to detrimental consequences
and various diseases. Therefore, understanding mechanisms
leading to the NADPH oxidase activation, expression, and
regulation of their various isoforms and potential ways of
effective blockade may lead to the development of more ef-
fective therapies in airway diseases.

Seven NADPH oxidase homologues form the NOX family
(97): NOX1 to NOX5, dual oxidase 1 (DUOX1), and
DUOX2. Their expression profile varies in various cell types
in the airways (Fig. 1) and is different in the steady state or
during inflammation. Depending on the NOX isoforms, the
enzymatic activity of NADPH oxidases is modulated, inter
alia, by regulatory subunits or calcium binding (126). The
structure and function of NADPH oxidases have been ex-
tensively reviewed elsewhere (26, 77). The mechanisms
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through which the activation of NADPH oxidase is regulated
still remain unclear.

NOX2 (initially designated as gp91phox)—the phago-
cytic, first described and the most abundant isoform of
NADPH oxidase, requires the assembly of several compo-
nents for its activation (Fig. 2). They comprise the membrane-
bound p22phox, which stabilizes the NOX protein and
docks cytosolic factors and the cytosolic proteins: p47phox,
p67phox, Rac, and modulatory p40phox. p47phox is re-
garded as an organizer protein. Cell stimulation leads to the
phosphorylation and translocation of p47phox to the cell

membrane. The translocation of p67phox, which is an acti-
vator subunit, requires the presence of p47phox, which has
been confirmed in p47phox-deficient neutrophils (41). At the
cell membrane, p67phox directly interacts with the NOX2
activating it (148). The next component Rac protein is not an
NOX subunit in the strict sense, because it regulates other
cellular functions; nevertheless, it is required for NADPH
oxidase activation. The GTP-bound Rac protein is recruited
to the membrane on cell stimulation independently of
p47phox or p67phox, but at the membrane, it interacts di-
rectly with p67phox via the N-terminal domain (75). Finally,

FIG. 1. NOX isoforms expres-
sion in the lung in the steady state
and on pathologic conditions.
Phygocytic and nonphagocytic
cells of the airway express various
isoforms of NADPH oxidases and
are able to produce reactive oxygen
species (ROS). ROS, derived from
NADPH oxidases, are one of the
most important mechanisms of host
defense and innate immunity.
However, during prolonged, unre-
solved inflammation, tissue injury
or dysregulated balance between
ROS-generating mechanisms and
antioxidants, they might lead to
detrimental consequences and var-
ious diseases. Refer to text for re-
lated details.

FIG. 2. Schematic illustration
of NADPH oxidase NOX2 iso-
form association with cytosolic
regulatory subunits for their ac-
tivation. The oxidase is a multi-
subunit protein, activated by
translocation of the cytosolic sub-
units—p47phox, p67phox, and Rac
to the NOX/p22phox membrane
complex. Cytosolic components
phosphorylation results in the
movement of the proteins and in-
teraction with p22phox. On acti-
vation, there is an exchange of
GDP for GTP on Rac, leading to its
activation. FAD, flavin adenine
dinucleotide; NADP, nicotinamide
adenine dinucleotide phosphate.
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the most recently discovered subunit p40phox appears to be
modulatory, rather than obligatory, though it constantly as-
sociates with p67phox and interacts with p47phox, at least in
the resting state (8, 29, 149). Together, the assembly of this
complex forms the functional NOX2 enzyme. NOX2 iso-
forms are ubiquitously expressed, and they are present in the
lungs endogenously in the steady state and are overabundant
during inflammatory conditions (16, 30, 60, 156). The main
NOX2-expressing cell types within the respiratory tract in-
clude alveolar macrophages, dendritic cells, and/or other
resident or infiltrated inflammatory-immune cells (e.g., neu-
trophils, eosinophils, and lymphocytes) (Fig. 1) (156). Air-
way epithelium and pulmonary endothelial cells also express
NOX2 (157).

Pulmonary endothelial cells express NOX 1–4, while
NOX4 was demonstrated in the airway smooth muscle cells
(SMCs), pulmonary epithelial cells, and pulmonary fibro-
blasts as well (15, 65, 113, 145). NOX5 expression has been
shown in immortalized human microvascular endothelial
cells-1 (HMEC-1) (9) and lung cancer cells (5, 95). Its ex-
pression, though, was not confirmed in primary human artery
endothelial cells or human lung microvascular endothelial
cells (113), making NOX5 localization in the lungs uncertain.
NOX1, similar to NOX2, depends on Rac activity (79). An
exception is NOX4, which seems to require only p22phox to
be active, and its activity has been described to be determined
only by its mRNA/protein levels (100, 126).

The dual oxidases DUOX1 and DUOX2 are the isoforms
of NADPH oxidase generating mainly H2O2 (122), found in
the airway epithelial cells. DUOX comprises an NOX2 ho-
mology domain typical for all members of the NOX family,
intracellular EF hand-type Ca2 + -binding pockets, and an
extracellular domain that is not found in other NOXs in
humans (47). In the airways, a major function of DUOX is
to support lactoperoxidase (LPO) to generate OSCN - (bac-
tericidal hypothiocyanite) (47). DUOX1 and DUOX2 do
not require p22phox for their activity and are activated by
agonist-induced increases in intracellular calcium and vari-
ous phosphorylations (2).

Under specific inflammatory/pathologic conditions, in
different parts of the airways, each member of the NOX
family might be present, though the expression level might
differ significantly (Fig. 1).

Recently, many reviews considering NADPH oxidase in-
hibitors have emerged (26, 45, 46, 82), most of which appear
to be clinically irrelevant; thus in this review, we focus on the
significance of specific NOX isoforms in various airway
diseases, mechanisms regulating their expression and acti-
vation in the airways, and the inhibitory potential of existing
molecules.

The Role of NADPH Oxidase and Subunits in Airway
Diseases

There is now increasing evidence that ROS are generated
by immune and structural cells of the airways and lungs, but
above all—inflammatory cells. Overabundant ROS produc-
tion, known as oxidative stress, is associated with acute and
chronic respiratory diseases of profound inflammatory com-
ponents; for example, asthma, chronic obstructive pulmonary
disease (COPD), acute respiratory distress syndrome
(ARDS), pulmonary fibrosis, cystic fibrosis (CF), pulmonary

arterial hypertension (PAH), pulmonary complications in
sickle cell disease (SCD), and others (58, 120). ROS might
initiate inflammatory responses in the airways and lungs via
the activation of redox-sensitive transcription factors (such as
activator protein 1 [AP-1], hypoxia-inducible factor 1-alpha
[HIF-1a] or nuclear factor kappa-light-chain-enhancer of
actived B cells [NF-jB]) and furthermore—expression of
pro-inflammatory gene expression (e.g., vascular cell adhe-
sion molecule-1 [VCAM-1], cytosolic phospholipase A2

[cPLA2], intercellular adhesion molecule-1 [ICAM-1], matrix
metalloproteinase-9 (MMP-9), cyclooxygenase-2 [COX-2],
and others) (12, 13, 90, 96). In addition, prolonged and un-
controlled inflammation itself leads to aggravation of oxi-
dative stress in the airways and lungs, and for that reason,
ROS and its sources appear to be crucial factors in the control
of airway inflammatory diseases, and offer potential targets
for therapeutic interventions (90) (Fig. 3). However, since
every chronic inflammatory disease of the airways might be
complicated by the recurrent bacterial or viral infections,
understanding the disease pathogenesis and its different
stages is crucial to face the challenges in the development of
efficient but safe NOX modifiers.

FIG. 3. NOX/ROS play a role in the development and
regulation of airway diseases. Through activation of
redox-sensitive transcription factors and pro-inflammatory
gene expression, NOX-derived ROS initiate inflammatory
responses in the airways. A correlation between ROS for-
mation and protein kinase C (PKC) activation might play an
important role in regulating inflammatory gene transcription.
Uncontrolled inflammation, in turn, intensifies ROS genera-
tion; thus, NADPH oxidases, as ROS sources, seem to be
pivotal therapeutic targets (90)—modified. Some of the cur-
rently studied NOX inhibitors have shown promising effects
in human settings (in vitro or in vivo) or in animal models of
airway diseases. AP-1, activator protein 1; HIF-1a, hypoxia-
inducible factor 1-alpha; VCAM-1, vascular cell adhesion
molecule-1; cPLA2, cytosolic phospholipase A2; ICAM-1,
intercellular adhesion molecule-1, MMP-9, matrix metallo-
proteinase-9; COX-2, cyclooxygenase-2; COPD, chronic
obstructive pulmonary disease; ARDS, acute respiratory
distress syndrome. Refer to text for further details.
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Asthma

Airway structural cells (epithelial cell, SMCs, resident
macrophages, etc.) and infiltrating inflammatory cells (eo-
sinophils, lymphocytes, and dendritic cells) are implicated in
the pathogenesis of asthma at different stages of the disease.
Respiratory epithelium plays a crucial role in inflammatory
responses regulation—from response to commonly inhaled
allergens to inhaled pathogens and allergic sensitization
(61). Since airway and alveolar epithelial cells expressing
NOX1–2 and DUOX 1–2 are able to generate ROS in re-
sponse to stimulation, epithelial ROS production is consid-
ered important in asthma pathogenesis (157). Data presented
by Schwarzer et al. (128) revealed the high expression of
DUOX1/2 in whole lung and in the human tracheal epithe-
lium where both DUOX1/2 were expressed at levels that were
1000 times more compared with other NOX isoforms and,
thus, represent the major NOX isoforms in airway epithelial
cells. Furthermore, it was demonstrated that the baseline
DUOX1 expression was consistently higher than DUOX2.
DUOX1 expression increased two to five-fold after treatment
with IL-4 or IL-13, key cytokines in Th2-derived allergic
inflammation (62). Therefore, in addition to its proposed role
as a host defense enzyme within the airway lumen (107), it
was further established that DUOX1 may be a mediator of
redox signaling within the epithelium and might be a po-
tential target of therapeutic modulation at the initial stages of
allergic sensitization. Moreover, ROS may cause direct
contraction of the airway smooth muscle, which might be
enhanced when the epithelium is injured or removed. Ex-
cessive ROS production or an imperfect protective system
also results in bronchial hyper-responsiveness, which is
characteristic in asthma (23, 90). NOX4 is overexpressed in
the airway SMCs in patients with asthma (145). Airway
smooth muscle from these patients exhibited increased ag-
onist-induced contraction, and this was abrogated by NOX4
small interfering RNA knockdown and less specific NOX
pharmacological inhibitors, diphenylene iodonium (DPI)
and apocynin (4-hydroxy-3 methoxyacetophenone) (145).
In this sense, NOX4 might serve as a potential target to
prevent bronchial hyper-responsiveness. Apocynin has al-
ready been shown to prevent ozone-induced asthma exac-
erbation in asthmatics (117), confirming ROS implication in
airway hypersensitivity. Analysis of several biomolecular
oxidation markers such as bromotyrosine, isoprostanes,
nitrates, and nitrites revealed their presence in the airways
or lung tissue of asthmatics often in correlation with the
extent of ongoing inflammation and with the severity of
clinical symptoms (127, 167). Isoprostane F2a-III, a bio-
marker of lung oxidative stress in vivo, is a potent con-
strictor of human airways, and hydrogen peroxide constricts
airway smooth muscle in vitro (90). We and others have
shown that these markers are useful for noninvasive moni-
toring to the extent of oxidative stress in the airways. We
have also shown that apocynin significantly decreases se-
lected ROS and reactive nitrogen species (RNS) in mild
asthmatics (141).

COPD and Pulmonary Emphysema

In COPD, oxidants present in cigarette smoke can stimu-
late alveolar macrophages to produce ROS and to release
mediators attracting inflammatory cells to the lungs. Oxi-

dants can also directly damage epithelial and endothelial
cells, contributing to the pathogenesis of COPD. Oxidative
stress also contributes to a proteinase-antiproteinase and an
antioxidant-oxidant imbalance (151, 153). Primary macro-
phages isolated from mice overexpressing antioxidant
enzyme-extracellular superoxide dismutase or from NOX2-
deficient mice showed reduced oxidative stress in response to
cigarette smoke treatment (151). Similarly, p47phox-null
mice have reduced inflammation and inflammatory cytokines
levels in the lung lavage specimens (87). However, there are
also contradictory reports showing increased cigarette-smoke
induced lung inflammation and emphysema in NOX2 and
p47phox-deficient mice, apart from the overall decrease in
ROS production (176). The same authors, though, pointed out
the differences in the responses to cigarette smoke in dif-
ferent strains of mice (175), underlining the importance of the
more definitive human studies. There are a few studies
showing the contribution for p22phox gene (official gene
name designated as CYBA (human) or Cyba (mouse)—here,
we used p22phox throughout for clarity) to the respiratory
system disorders. Associations of its genotypes with COPD
have been analyzed (161), indicating a positive association of
the p22phox polymorphisms with COPD, claiming that
p22phox is an important oxidative stress candidate. There are
limited reports with regard to the function and expression of
p22phox in the lungs, but there are data from other systems.
For example, cigarette smoke was shown to increase
p22phox in the brain of Lewis rats, along with the enhanced
expression of NOX4 and DUOX1 (78).

Emphysema is a complication and an end stage of COPD,
with no clear pathogenesis. Unexpectedly, recent data point
at the role of the NOX3 isoform in this process. TLR4 defi-
ciency caused up-regulation of NOX3 in the lungs of aging
mice, resulting in increased oxidant generation, enhanced
elastolytic activity, and development of emphysema. The
treatment of TLR4 - / - mice or endothelial cells with che-
mical NADPH inhibitors (apocynin and DPI) or NOX3
siRNA reversed the observed phenotype (180). This study
raises a hope for targeting NOX3 as a modulating strategy in
this otherwise-irreversible condition, though further studies
are needed to evaluate these findings.

Smoking cessation is one of the most important of first-line
therapies in COPD. However, it is known that once activated,
oxidative stress is not easily quenched in the airways of
COPD patients, even after quitting smoking (94). In this
sense, an effective NOX modulator might be a beneficial add-
on therapy to prevent the deleterious effects of prolonged
oxidative stress in the airways. We have shown that treatment
with nebulized apocynin significantly decreases concentra-
tions of hydrogen peroxide and nitrite in exhaled breath
condensate in patients with COPD (140).

Acute Respiratory Distress Syndrome

Acute lung injury or acute respiratory distress syndrome
(ALI/ARDS) is a condition with substantial morbidity and
mortality that is diagnosed both clinically and radiologically
based on the presence of noncardiogenic pulmonary edema
and respiratory failure in critically ill patients (74). Lung
infection, aspiration, sepsis, trauma, or other insults lead to
the disruption of the lung endothelial and epithelial barriers,
inflammation, and pulmonary edema (74). The role of NOX
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enzymes in ARDS has been reviewed elsewhere (16, 58).
NOX1, NOX2, and NOX4 in different cells in the airways are
involved in the pathogenesis of ARDS (16). NOX1 in alve-
olar epithelial cells plays a crucial role in the mediation of
hyperoxic lung damage in mice (16). Both NOX1 and NOX4
might be involved in epithelial cell death and, in addition,
NOX4 might be involved in fibroblast proliferation and
fibrotic responses (15). Hyperoxia, a model condition of
mechanical ventilation-induced lung injury, increases non-
mitochondrial ROS production in human pulmonary endo-
thelial cells (111). From all four NOX isoforms expressed
in pulmonary endothelial cells (pulmonary artery and
microvascular endothelium), NOX4 seems to be the most
abundantly present and its expression is further enhanced
by hyperoxia (113). NOX2 is probably most important
in ARDS-associated inflammatory responses (83). NOX2-
deficient mice have reduced but not totally abrogated hy-
peroxia-induced pulmonary edema and neutrophil influx to
the lungs, suggesting the possible redundancy between
NOX2 and other NOX isoforms (113). Nitrogen oxides and
H2O2 have been proposed for a noninvasive monitoring of the
course of lung injury in animals (34). In terms of possible
treatment of ALI/ARDS, less specific strategies of ROS
scavenging or more than one NOX isoform inhibition have
proved their partial potency in animal models. N-acytylcys-
teine reduced the apoptosis of epithelial cells and neutrophil
lung infiltration in rats exposed to mechanical ventilation
(147). Apocynin significantly reduced ROS generation and
the extent of septic lung injury in guinea pigs (166).

Pulmonary Fibrosis

Pulmonary fibrosis is a lung-specific response to known
(e.g., drugs, autoimmune diseases, environmental cues, and
radiotherapy) or unknown (idiopathic) factors (80). Idio-
pathic pulmonary fibrosis (IPF) is a chronic interstitial lung
disease associated with aging that is characterized by the
radiological and histopathological pattern of interstitial
pneumonia. Recent data indicate that fibrotic response might
be driven by abnormally activated alveolar epithelial cells,
leading to the activation of myofibroblasts and the deposition
of extracellular matrix (81). Sustained exposure to ROS from
exogenous or endogenous sources is able to cause a direct
injury to the alveolar epithelium, which may lead to fibrosis.
Cui et al. demonstrated that oxidative stress contributes to the
induction and persistence of transforming growth factor
(TGF)-b1-induced pulmonary fibrosis (32). Increasing sci-
entific evidence points to NOX4 as the key source of ROS in
the pathogenesis of IPF (15, 65). The severity of fibrosis has
been correlated with increased levels of H2O2 in IPF patients’
exhaled breath condensate. Phagocytic NOX-derived ROS
signaling has been demonstrated to play a key role in pro-
moting tumor necrosis factor (TNF)-induced, NF-jB-
dependent acute inflammatory responses and tissue injury
specifically in the lungs (179). Insulin growth factor 1
(IGF-1) has been recently implicated in the pathogenesis of
lung injury and fibrosis, with proven potency of IFG-1 re-
ceptor blockade in the murine bleomycin-induced lung injury
(24). Although there are no data directly linking IGF-1 with
NOX enzymes in the airways, there are some from other
systems. Edderkaoui et al. recently described a mechanism in
which IGF-1 activates NADPH oxidase through transcrip-

tional up-regulation of p22phox in pancreatic cancer cells
(43). The authors demonstrated that growth factors can
stimulate Akt, mediating the activation of NF-jB transcrip-
tion factor which up-regulates p22 phox expression (14, 67)
(Fig. 4).

Recently, developed selective inhibitors of NOX1 and
NOX4, derivatives of pyrazolo-pyrido-diazepine dione (e.g.,
Genkyotex compounds GKT 136901 and GKT137831),
showed significant potency in in vitro assays and are cur-
rently expected for further clinical trials in pulmonary fi-
brosis (49, 88).

Cystic Fibrosis

CF is caused by mutations in the gene encoding the cystic
fibrosis transmembrane conductance regulator (CFTR) pro-
tein. It results in the dysfunction or total lack of CFTR in the
plasma membrane and abnormal Na + and Cl - ion transport
in various tissues, including lungs, sweat glands, pancreas,
gastrointestinal tract, liver, and male reproductive system
(124). In the course of the disease bacterial colonization in
the lungs, recurrent airway infections and progressive airway
obstruction are mainly responsible for mortality (124). Nor-
mal CFTR is expressed in the apical membrane of airway
epithelial cells. Since DUOX1–2 expression and function has
been strongly indicated in airway defense (107), a reduction
in ciliated cells in a de-differentiated phenotype is expected
to deprive the epithelium of an important defense mechanism
(47). Currently, there are a few mechanistic hypotheses that
require normal CFTR function for the DUOX/LPO system in
the airways to work properly (50). Moskwa et al. showed that
healthy airway epithelial cells are the source of a strong
bactericidal agent OSCN - , which requires DUOX function
along with CFTR-dependent SCN - secretion and LPO ac-
tivity (107). In CF, OSCN - generation is diminished due to a
CFTR-dependent defect in SCN - secretion, which leads to a
collapse of the oxidative antimicrobial mechanism (107).
Shao and Nadel proved that DUOX1 plays a crucial role in
mucin expression in the airway epithelial cells via PKCd/
PKCh-DUOX1-ROS-TACE-pro-ligand-EGF receptor cas-
cade (tumor necrosis factor-a-converting enzyme [TACE],
Fig. 5). Furthermore, a signaling pathway mediating mucin
production involving PKCd/h-DUOX1-ROS-TACE-pro-
TGF-a-EGFR-mitogen-activated protein kinase has been
identified in airway epithelial cells (133). Another study
suggests that the bacterium Pseudomonas aeruginosa, a most
common pathogen in CF, uses ROS to up-regulate mucin
expression through a protein kinase C (PKC)-NADPH oxi-
dase signaling pathway in human airway epithelial cells
(173). Moreover, data provided by Sham et al. emphasize a
pivotal role of DUOX1 in epidermal growth factor receptor

FIG. 4. Mechanism of anti-apoptotic effect of growth
factors mediated by p22phox component in cancer cells.
Akt mediates insulin growth factor 1 (IGF-1)-induced nu-
clear factor kappa-light-chain enhancer of activated B cells
(NF-jB) activation through which the GFs stimulate
p22phox expression. Anti-apoptotic effect of Akt is medi-
ated, at least in part, through up-regulation of p22phox (43).
IGF-I pathway has been recently implicated in the patho-
genesis of lung injury and fibrosis (24).
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(EGFR) transactivation in airway epithelial cells and indicate
Src and ADAM metallopeptidase domain 17 (ADAM17,
tumor necrosis factor-a-converting enzyme [TACE]) as tar-
gets for redox regulation in response to DUOX1 activation
(131).

Taken together, in the early phases of CF, an aberrant
epithelial DUOX1–2 function and the decreasing number of
H2O2-producing ciliated cells (50) lead to the inefficient
oxidative innate immunity response. This results in chronic
bacterial colonization and neutrophil infiltration. In advanced
phases of chronic infection of CF lungs, neutrophil-derived
ROS are predominant (47), and now, they are a source of
deleterious oxidative stress, tissue injury, and airway nar-
rowing. Therefore, a profound understanding of the role of
NADPH oxidases in the initiation, course, and chronicity of
CF is needed to predict the usefulness, timing, and efficiency
of specific NOX inhibitors.

Sickle Cell Disease

Lung disease is a major cause of morbidity and death
in SCD. Vendramini and colleagues investigated the preva-
lence of airway hyper-responsiveness in adult sickle cell
patients, as it has been noted in children (159). Their study
suggests that there is a high prevalence of airway hyper-
responsiveness in adult patients with SCD without a history
of reactive airway disease. In patients suffering from SCD,
increased phosphorylation of p47phox in monocytes was
observed after phorbol 12-myristate acetate (PMA) stimula-
tion, compared with normal control subjects. This suggests
that NADPH oxidase in these cells is preactivated and ca-
pable of more extensive further activation (99). Increased
expression of NOX2 and higher phosphorylation of p47phox,
occurring in monocytes, according to authors is presumably
mediated by interferon gamma (IFN-c) and other inflamma-
tory mediators, which are present in augmented amounts in
SCD patients (99). In the recent study, George et al. dem-

onstrated that a significant part of ROS production in sickle
cells is mediated enzymatically by NADPH oxidase, which is
regulated by PKC, Rac GTPase. Moreover, they also showed
evidence that NADPH oxidase activity in red blood cells can
be induced by plasma inflammatory cytokines. These findings
suggest a novel pathogenic mechanism in SCD, namely that
systemic inflammation and enzymatically derived ROS within
the sickle erythrocyte act in a positive-feedback loop to con-
tribute to acute and chronic organ damage of SCD (53).

Bacterial and Viral Lung Infections

NOX-dependent ROS production has long been known as
one of the most important mechanisms of the antibacterial
innate host defense. This knowledge has been derived from
the studies on chronic granulomatous disease (CGD), a pri-
mary immunodeficiency, resulting from the genetic defects
in NADPH oxidase components (37). CGD phagocytes are
not able to neutralize bacterial and fungal pathogens, which
leads to recurrent life-threatening infections. Mutations in
the genes encoding NOX2 and p47phox are responsible
for*90% of CGD cases (35, 70, 170). One of the major, very
susceptible sites of infection are the lungs. The majority of
CGD patients suffer from respiratory disease, including
pneumonia, lung abscess, and pulmonary fibrosis. Apart from
NOX2 and p47phox, p67phox subunit also contributes to
CGD pathogenesis. In p67-phox-deficient CGD mutants, the
NOX2 complex is in an inactive state. The addition of re-
combinant p67-phox drives the transition from the inactive to
the active state (160). A recent study by Honda et al. analyzed
the potential of recombinant proteins to compensate for de-
fective components—p67phox and p47phox deficiency in
CGD neutrophils. It appeared that the delivered p67phox and
p47phox subunits localize in the cytoplasm and move to the
membrane on stimulation. Moreover, they elicit minimal
nonspecific activation in neutrophils (68). This unique ‘‘gain-
of-function’’ NOX-modifying therapeutic strategy might be
crucial for CGD patients. On the other hand, bacterial and
fungal infections are common complications of every chronic
inflammatory airway disease. Therefore, it is crucial to un-
derstand CGD pathogenesis and the importance of ROS-
generating mechanisms in host defense, in an attempt to
develop a potent and safe NOX inhibition strategy in chronic
airway diseases.

Apart from the various bacteria, viruses are very common
airway pathogens that may lead to primary severe lung in-
fections or exacerbation of chronic lung diseases. Excessive
ROS production has been shown to exert deleterious effects
in influenza A-induced lung injury (71). NOX2-deficient or
p47phox-deficient mice have decreased ROS production and
inflammatory lung infiltration, reduced edema and lung in-
jury, as well as diminished airway epithelial cell apoptosis in
response to influenza A infection (71, 163, 164). Moreover,
viral clearance rate and lung function is significantly im-
proved in these mice (136, 163). On the other hand, NOX2
has also been identified as an essential modulator of antiviral
responses in airway epithelial cells (139). Soucy-Faulkner
et al. showed that NOX2-derived ROS are critical in the
activation of IRF3 transcription factor and the expression of
downstream antiviral genes—IFIT1 and IFNb (139). More-
over, it has been shown that NOX1 acts as a protective agent,
suppressing influenza A-induced lung inflammation and

FIG. 5. Mechanism of DUOX1- and ROS-dependent
mucin production involving PKCd/h in airway epithelial
cells. Schematic model of Shao and Nadel (modified) (133).
PKC isoforms are activated by stimulus (e.g., phorbol
myristate acetate [PMA]). PKC then stimulates DUOX.
In turn, ROS generated by DUOX activate TACE, which
cleaves pro-TGF into TGF. TGF activates EGFR and initi-
ates MAPK, leading to mucin gene expression. TACE, tu-
mor necrosis factor-a-converting enzyme; TGF,
transforming growth factor; EGFR, epidermal growth factor
receptor; MAPK, mitogen-activated protein kinase; DUOX,
dual oxidase.
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oxidative stress (130). However, rhinovirus-induced barrier
dysfunction in polarized airway epithelial cells is mediated
by the activation of Rac1 and NOX1 activity (28), suggesting
possible virus-specific NOX responses in different cells.
Therefore, a specific therapeutic approach against NOX
isoforms and subunits serves as an interesting possibility to
prevent noxious effects of viral infections. Nevertheless,
further studies and cautious, possibly virus-specific, cell-
targeted approaches are needed to develop truly specific and
safe agents.

Molecular mechanisms of NOX and subunit regulation
in airway inflammation

Although the developmental pathways and transcription
factors triggering the expression of different NADPH oxidase
components in various tissues have been, at least, partly es-
tablished, the putative regulatory mechanisms that counter-
balance these factors are still unclear (155). NOX2 has been,
so far, the best studied isoform in the airways and elsewhere.
NOX5 expression in the lungs is uncertain, thus next, we
describe pathways of NOX1–4 regulation. A deeper under-
standing of the molecular regulatory mechanisms of NOX
isoforms and subunits would help predict the desired and
unwanted effects of NOX modifiers.

Transcriptional regulation of expression for the NOX2
system

While alternative mRNA splicing has been shown to in-
fluence the activity of several NOX-family proteins, NOX2
splice variants that would be functionally relevant have not
been previously demonstrated. Harrison et al. recently pro-
vided evidence that NOX2 undergoes alternative mRNA
splicing and yields a 30 kDa protein, NOX2b, regulating
NADPH oxidase activity in mice and human macrophages
(63) (Fig. 6). This variant lacks several regions binding pros-
thetic groups involved in the electron transfer from NADPH to
molecular oxygen (56). Possibly, these splice variants repre-
sent novel regulatory protein groups that are incorporated into
their respective NADPH oxidase complexes to enhance the
catalytic activity of the full-length NOX proteins.

Several transcription factors regulate NOX2 gene expres-
sion (official gene name designated as CYBB [human] or
Cybb [mouse]—here, we used NOX2 throughout for clarity)
through cis-elements in a 450-base pair sequence in the 5¢-
flanking region of the gene. Yang et al. presented data
showing the eosinophil-specific regulation of the NOX2 gene
by transcription factors GATA-1 and GATA-2 through the
GATA-binding site (174). It has long been considered that
the expression mechanism of NOX2 in eosinophils is the
same as that in other phagocytes. A restricted expression of
NOX2 in eosinophils from X-linked CGD patients implied a
certain eosinophil-specific expression mechanism of the
gene. Although an eosinophil-specific GATA-3 suppression
mechanism was suggested by Sadat et al. (125), no positive
regulatory mechanisms of the gene have, however, been
shown in eosinophils. Eklund et al. (44) have proposed a
cooperative activation of the NOX2 gene by PU.1 and inter-
feron regulatory factor-1 in myeloid cell lines, and Suzuki
et al. have shown that PU.1 is an essential activator for the
expression of the NOX2 gene in human neutrophils, mono-
cytes, and B-lymphocytes (146).

In isolated rat lungs, NOX2 expression was increased by
an ethanol-stimulated increase in renin-angiotensin system)
activity (118). These findings extend previous work linking
ethanol ingestion to oxidative stress in the lung and suscep-
tibility to lung injury (59), but the precise mechanism remains
unknown. Interestingly, lung p22phox or p47phox expression
levels remained unchanged.

The transcriptional regulation of the p22phox gene is a
mechanism that controls NADPH oxidase activity (162).
According to Gauss et al., p22phox gene is regulated by
NF-jB and AP-1 (52). The authors provide evidence that in
human aortic SMCs, the inhibition of the AP-1 pathway re-
duces the activity and expression of NADPH oxidase and that
AP-1 physically interacts with p22phox gene promoter. Since
AP-1 is a redox-sensitive transcription factor, it might be
presumed that there is a positive feedback mechanism in
which ROS, generated by the NADPH oxidase, is important
for the persistent superoxide generation. This hypothesis is
supported by data obtained from endothelial cells, with re-
gard to the redox regulation of the NADPH oxidase subunit
p22phox in endothelial cells (38).

The activation of NOX2 is strictly dependent on the
p47phox subunit. Using p47phox-and NOX2-deficient mice
that lack NADPH oxidase function, Segal et al. showed that
NOX limits inflammation by attenuating the pro-inflammatory
transcription factor NF-jB and by activating nuclear factor
erythroid 2-related factor (Nrf2), a key redox-sensitive anti-
inflammatory transcription factor. The studies demonstrate
the pharmacological activation of Nrf2 as a potential thera-
peutic strategy in CGD. This work identifies NADPH oxidase
as a critical regulator of innate immunity and provides a novel
understanding of the mechanisms that regulate lung inflam-
mation (129).

FIG. 6. The scheme of NOX2b protein. NOX2b is a
novel splicing variant of NOX2 isoform. p47-BS indicates the
conserved binding sites of p47phox (63). The NOX2b variant
lacks several regions binding prosthetic groups. These are
four conserved histidine residues that are postulated to bind
two Fe-heme complexes and which are involved in the
electron transfer from NADPH to molecular oxygen.
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Direct regulation of activity for the NOX2 system

The process of regulation of NADPH oxidase complex is
complicated by various issues, which are necessary in its ac-
tivation (Table 1). Moreover, the strict control is needed to
deliver the activation at the appropriate time and place. Thus,
several signaling pathways have been established that regulate
the NADPH oxidase downstream of cell surface receptors.
Phosphatidylinositol 3-kinase (PI3K)-dependent pathways,
the blockade of which severely limits activation of the oxidase
to several stimuli, play a pivotal role. The precise roles of the
phosphoinositide products of PI3K activity in regulating
NADPH oxidase assembly and activation are still unclear;
however, emerging data suggest that they might play an im-
portant role via the regulation of guanine nucleotide exchange
in the Rac component. There is also strong evidence that the
PI3K products—PtdIns(3, 4)P2 and PtdIns3P can bind directly
to the phox homology (PX) domains, which are located in the
p47phox and p40phox, respectively (64). Based on available
studies, Yamamori et al. presented a model of signal trans-
duction pathways leading to p47phox phosphorylation and
NADPH oxidase by the activation of PKCs (Fig. 7) (172).

According to Gao et al., superoxide production is required
for the induction of sepsis-induced lung microvascular injury
in the murine model. The authors suggest that NADPH
oxidase-derived O2

� - generation has an important bacteri-
cidal role, such that an impairment in bacterial clearance in
NADPH oxidase-defective mice results in increased che-
mokine generation and lung tissue PMN infiltration (51).

Translocation of Rac-GTPase to the plasma membrane,
independent of p47phox and p67phox, is essential for the
assembly and activation of NADPH oxidase (116). Current
studies support a complex formation between p67phox and
Rac in the membrane for optimal electron transport through
NOX2 in O2

� - production. However, molecular mechanisms
regulating the activation of Rac GTPases in phagocytosis and
ROS generation remain to be clearly defined (Fig. 8). Several
NOX isoforms have been implicated in Rac-dependent ROS
generation and are regulated via Rac (69, 106). However, it
remains unclear as to whether Rac1 interacts directly or re-
quires other components—p47phox or NOXA1—to regulate
NOX isoforms. Dang et al. demonstrated that p67phox is
constitutively phosphorylated in resting human neutrophils
and furthermore, that the state of p67phox phosphorylation is

controlled by an upstream tyrosine kinase, MEK1/2 and the
serine/threonine phosphatases PP1/2A. Dysregulation of the
balance between these two activities could play a role in ROS
production by human neutrophils at inflammatory sites (33).
How this constitutive phosphorylation of p67phox may reg-
ulate NADPH oxidase activation remains unknown, but it is
speculated that it could have a role in maintaining the oxidase
inactive in the cytosol or it could prepare p67phox for more
efficient activation of the enzyme (33). The phosphorylation,
according to the authors, has no modifying effects on the
binding of p67phox to the p40phox and p47phox complex.
Unlike p47phox or p67phox, the p40phox component is an
alternative for NOX2 activity. It is absent from CGD patients
who lack p67phox, suggesting that the protein is stable only
on binding to p67phox (103). However, available data sug-
gest that p40phox is specific for NOX2 though as NOX1 and
NOX3 could potentially be activated by the p47phox/
p67phox complex, a role of p40phox in this scenario cannot
be excluded (8). Using ionizing radiation Ostuni et al. dem-
onstrated that ROS might stimulate NOX activity (110). The
study shows that p67phox integrity is crucial for the oxidase
activity and that irradiation of p67phox drastically decreases
its interaction with arachidonic acid (AA) and destabilizes
the p47phox–p67phox complex (93, 110). The precise role
played by AA still remains unclear, though Souabni et al.
have shown that trans-arachidonic acid (trans-AA), in con-
trast to cis-AA, cannot activate the NADPH oxidase but is
able to inhibit cis-AA-activated generation of O2

� - through a
direct interaction with p67phox and with the membrane
fraction, probably indirectly via modification of the mem-
brane physical properties (138).

NOX1, NOX3, and NOX4 Modulation Mechanisms

Although each NOX family member is typified by six
transmembrane domains along with a cytoplasmic domain
that binds NADPH and flavin adenine dinucleotide (FAD),
each isoform is distinguished by the specific catalytic sub-
unit, interacting proteins, and subcellular localization.

NOX1

The considerable constitutive activation of NOX1 in the
absence of cell stimulation is explained partly by the absence

Table 1. Summary of Mechanisms Regulating Activity and Expression of NOX and DUOX Enzymes

NOX/DUOX Regulatory subunits Other regulatory issues Requiring of p22phox

NOX1 NOXO1, NOXA1, Rac1 STAT1, INF-c, LPS, angiotensin II, urokinase
plasminogen activator, platelet-derived
growth factor, prostaglandin F2, phorbol
ester, activated K-Ras

Yes

NOX2 p47phox, p67phox,
p40phox, Rac2/1

Yes

NOX3 NOXO1, NOXA1 Yes
NOX4 Constitutively active Nrf2, MAPK, MEK1-ERK1/2 Yes
NOX5 Ca2 + and phosphorylation No
DUOX1 Ca2 + IL-4, IL-13 No
DUOX2 Ca2 + IL-1a, IL-1b, IFN-c No

DUOX, dual oxidase; ERK1/2, extracellular signal-mediated protein kinases 1 and 2; IFN-c, interferon gamma; IL, interleukin; LPS,
lipopolysaccharide; MAPK, mitogen-activated protein kinases; MEK1, dual threonine and tyrosine recognition kinase; Nrf2, nuclear factor
erythroid 2-related factor.
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of regulatory phosphorylation sites on NOXO1 and the
ability of NOXO1 to localize to the resting cell membrane via
its PX domain (20). NOXO1 is a p47phox homolog, which, in
contrast to p47phox, has a total of four different splice vari-
ants (19). The major difference between p47phox and
NOXO1 is the presence of an autoinhibitory domain in
p47phox that does not occur in NOXO1. This domain pre-
vents association with p22phox (42).

NOX1 transcription is activated by inflammatory media-
tors such as INF-c or lipopolysaccharide, which also induce
the expression of NOXO1. NOX1 is up-regulated by growth
factors and growth-related agonists; for example, angiotensin
II, urokinase plasminogen activator, platelet-derived growth
factor, prostaglandin F2, phorbol ester, and mutationally
activated K-Ras in various tissues (25, 86, 89, 98).

Unlike the NOX2, the NOX1 system seems to have rela-
tively few regulatory elements. Only guanine nucleotide
exchange on Rac1 is convincingly documented as a regula-
tory trigger, although NOX1 activation by Rac1 is apparent
only when cellular levels of NOXO1 and NOXA1 are
low (18).

In a human pulmonary epithelial cell line, increased NOX1
expression is caused by hypoxia, which, in addition, activates
HIF-1a-dependent pathways. It is not yet established whether
HIF1a itself induces NOX1 expression (55, 89).

NOX3

NOX3 is the closest homologue of NOX2 (58% identity) in
the NOX protein family (17). NOX3 is unique in its ability to
be activated by NOXO1 alone in the absence of activator
subunits. Cheng et al. characterized the requirements of
NOX3 for regulatory subunits, including p47phox, p67phox,
NOXO1, and NOXA1. The research team suggested that
NOX3 shows unusual flexibility in its ability to be activated
by both phox and NOX regulatory proteins, although they
concluded that NOX3 regulation does not require an intact
activation domain of p67phox, indicating that other regions
of p67phox are important for regulating NOX3 activity.
NOX3 appeared to be maximally activated by NOXO1 alone,
and with no requirement of NOXA1 (21).

Using human kidney cells and Chinese-hamster ovary
cells, Nakano et al. indicated that p22phox is physically as-
sociated with both NOX3 and NOXO1. The plasma mem-
brane localization of NOX3 but not of NOXO1 requires
p22phox. Moreover, the glycosylation and maturation of
NOX3 requires p22phox expression, suggesting that
p22phox is required for the proper biosynthesis and function
of NOX3 (108).

FIG. 7. NADPH oxidase activation via PI3K. Ligand
binding to fMLP receptors triggers phosphatidylinositol 3-
kinase (PI3K) activation and subsequent phosphatidylino-
sitol 3,4,5-triphosphate (PIP3) production. PIP3 induces
protein-dependent kinase (PDK) activation, and PDK, in
turn, phosphorylates and activates Akt. Phospholipase Cc2
(PLCc2) is directly activated by PIP3 and leads to the ac-
tivation of diacylglycerol (DG)-dependent protein kinases
C, cPKC, and PKCd. The activation of these PKCs results in
p47phox phosphorylation and the subsequent NADPH oxi-
dase activation (172). fMLP, formyl-methionyl-leucyl-phe-
nylalanine.

FIG. 8. Rac1-dependent NADPH oxidase activation
and ROS generation. Schematic illustration of the mech-
anism dependent on Rac1 subunit, leading to phosphoryla-
tion/translocation of p47phox and activation of endothelial
NADPH oxidase (116)—modified. Stimulation of cells re-
sults in phospholipase D1 and D2 (PLD1 and PLD2) activa-
tion and activation of Rac1/Tiam1 (which are regulated by
phosphatidic acid [PA]). This leads to Src-dependent phos-
phorylation of p47phox and cortactin. Subsequently, assembly
of the NADPH oxidase complex occurs for ROS generation.
Tiam, T-cell lymphoma invasion and metastasis 1.
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It is, though, important that subunit regulation differs de-
pending on species: Human NOXO1 dramatically stimulates
NOX3 activity in the absence of NOXA1 or p67phox (21).
However, mouse NOX3 activity requires both NOXO1 and
NOXA1 (7).

NOX4

NOX4 isoform of NADPH oxidase strongly contributes to
lung pathologies, especially to pulmonary fibrosis. Tran-
scriptional regulator of antioxidant genes, Nrf2, has been
demonstrated to regulate NOX4 expression that was con-
firmed in human lung endothelium in response to hyperoxia
and in the mouse lung. Lack or diminished levels of hyper-
oxia induce NOX4 expression in human lung endothelial
cells or mouse lung with reduced levels of Nrf2. Moreover,
Nrf2 expression knockdown with siRNA attenuates the ex-
pression of NOX4 (114, 115).

Recent studies implicate a role for the NOX4 in tissue
repair functions of myofibroblasts and fibrogenesis. NOX4 is
also up-regulated in type II epithelial cells in IPF patients and
participates in TGF-b-induced epithelial cell apoptosis, an
early crucial step in the pathogenesis of IPF. The data indi-
cate that NOX4 is up-regulated in human IPF as well as in
mice lungs with bleomycin- or hapten-induced injury (65).

TGF-b1 has been shown to induce NOX4 expression in
human lung mesenchymal cells through SMAD-3 protein.
This pro-fibrogenic mediator specifically induces mRNA/
protein expression and enzymatic activation of the NOX4
isoform in differentiated myofibroblasts. NOX4-dependent
H2O2 generation seems to be required for myofibroblast
differentiation, synthesis of ECM proteins, and contractility
mediated by TGF-b1. Moreover, in murine models of lung
injury, genetic or pharmacologic targeting of NOX4 attenu-
ated fibrogenesis (3, 65, 76).

Inhibitors of NOX/NADPH Oxidases

NADPH oxidases inhibitors may be grouped into two main
categories: small molecules (nonpeptide, chemical inhibitors)
and peptide inhibitors synthesized to target specific NADPH
oxidase complex subunits. So far, most of them have been used
in in vitro and animal model-based experiments. However,
among them, there are some with proven safety and efficacy in
small clinical studies in human airway diseases (e.g., apoc-
ynin). Others are currently used in clinics in the nonairway-
related disorders, but their newly discovered NOX inhibitory
potential may lead to broadening their spectrum of use (e.g.,
nebivolol). Recent discoveries have questioned the selectivity
of most widely used small-molecule inhibitors, while the
newer peptide based are facing problems with the targeted
delivery, stability, and potential immunogenicity. Never-
theless, significant progress has been made and high-through-
put screening technologies may result in the development of
the selective, stable, nontoxic, and efficient NOX modifiers.

Small-Molecule Inhibitors

One of the first identified NADPH oxidase inhibitors, still
widely used in in vitro experiments, is DPI, which inhibits
NOX activity (92, 119). DPI suppressed ROS production by
NOX4 and significantly decreased the radiation-induced
expression of a-smooth muscle actin and fibronectin in hu-

man lung fibroblasts (112). Moreover, it attenuated the pul-
monary injury induced by PMA in guinea pigs (165).
However, it is also known that DPI is a nonspecific blocker of
many flavoprotein-dependent enzymes, including complex I
of the mitochondrial electron transport chain, nitric oxide
synthases, and cytochrome P450 (132).

Phenylarsine oxide (PAO), a sulfhydryl reagent for vicinal
or proximal thiol groups, and 4-(2-aminoethyl)-benzene-
sulfonyl fluoride (AEBSF) inhibit NADPH oxidase through
preventing assembly of the complex (36, 39). However, these
agents are also known as inhibitors of other enzymes. PAO is
a phosphotyrosine phosphatase inhibitor, and AEBSF is a
serine protease inhibitor. An intraperitoneal injection of PAO
to rats reduced ROS production by rat phagocytes and neu-
trophil infiltration into the lung after the inhalation of lipo-
polysaccharide (123). According to Weissmann et al.,
AEBSF attenuated alveolar macrophage oxidative burst eli-
cited by PMA in rabbit system, in a dose-dependent manner
(168). AEBSF inhibits binding of the cytoplasmatic subunit
p47phox to the NOX2/p22phox complex, but still, little is
known about its usefulness in airway tissues (36).

Accumulating evidence confirm a connection between the
actin cytoskeleton as well as actin-binding proteins and NOX
activation (phagocytic and nonphagocytic) (104). The acti-
vation of NADPH oxidase by actin-destabilizing agents (e.g.,
cytochalasin D) may involve multiple signaling pathways
that are associated with actin cytoskeletal reorganization
(154). Coronin and cortactin—actin-binding proteins are
known to interact with NADPH oxidase components and are
engaged in the regulation of oxidase-dependent ROS pro-
duction. A role for cortactin in hyperoxia-induced translo-
cation of p47phox and the activation of NADPH oxidase and
the generation of ROS/O2

� - has been demonstrated in human
lung endothelium (152, 154).

A broad spectrum of targets of the agents described earlier
significantly decrease their potential in clinical settings,
raising the possibility of adverse effects and unexpected
toxicity. Therefore, in recent years, substantial effort has
been invested into (i) performing small but well-designed
and controlled clinical trials with existing, nonspecific
NOX modifiers in clearly defined patient populations; (ii)
redefining currently used drugs, but with newly described
characteristics into a new disease spectrum; and (iii) high-
throughput screening approaches to find new selective NOX
inhibitors. These three strategies have led to the development
of new agents and the re-introduction of older agents as po-
tential new treatment options.

One such example is apocynin, a molecule structurally
related to vanillin, believed to interact with p47phox (171). In
a rat model, the administration of apocynin attenuated the
inflammatory response, lung permeability, and ischemia re-
perfusion in the isolated, perfused lung (22). Nevertheless,
apocynin can also inhibit NOX1 and it can scavenge ROS,
which makes it a nonspecific NOX inhibitor (46, 66).
Moreover, there are studies suggesting that apocynin is not an
NOX inhibitor but an antioxidant, or that it increases ROS
generation by NADPH oxidase instead of decreasing it (66,
158). However, in vivo, a metabolite of this compound may
act as a true NOX inhibitor, and it may show some specificity
for NOX2. We and others have shown that nebulized apoc-
ynin is safe (142), prevented ozone-induced exacerbations of
asthma, and decreased selected ROS and RNS in mild
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asthmatics and patients with COPD (117, 140, 141). There-
fore, even the nonselective ROS-scavenging and NOX-
modifying strategy might be beneficial in inflammatory
airway disorders and deserves further clinical studies in
clearly defined populations and with the reasonable caution
of the possible adverse effects and cytotoxicity.

Nebivolol, a b1 receptor blocker, is currently used in the
treatment of hypertension and left ventricular failure (1).
Recently, it was shown to also act as an NOX inhibitor. It
decreases oxidase expression by the inhibition of membrane
association, an interaction of p67phox and Rac. Moreover,
nebivolol inhibits NOX1-dependent superoxide production
(102, 105). Therefore, as a drug of known pharmacological
characteristics, it raises a hope for broadening its use in
pulmonary diseases; for example, in idiopathic pulmonary
hypertension (101).

Data provided by Smith et al. indicate that ebselen and its
analogs represent a class of compounds which inhibit ROS
generation by interrupting the assembly of NOX2-activating
regulatory subunits (135). Ebselen and analogs potently in-
hibit NOX1 and NOX2 activity, and they were less effective
against other isoforms. Ebselen also blocked the transloca-
tion of p47phox to neutrophil membranes. Furthermore,
previous investigations in challenged guinea pigs suggest that
ebselen significantly inhibits late airway response and sup-
presses airway inflammation (177). Ebselen also inhibits
cigarette-smoke-induced lung inflammation in mice (40). It
has been tested in humans in stroke (57) and bipolar disorders
(134) clinical trials.

Finally, discovered by application of a high-throughput
screening technology, derivatives of pyrazolo-pyrido-diazepine
dione (e.g., Genkyotex compounds GKT 136901 and
GKT137831) appear highly promising therapeutics for the
treatment of IPF and other nonpulmonary diseases, as they
target NOX4 and NOX1 isoforms (6, 49, 88). These com-
pounds, especially one called 7c, are highly potent in in vitro
assays on human lung fibroblast differentiation and in murine
models of bleomycin-induced pulmonary fibrosis. They
demonstrate a superior efficiency to Pirfenidone, which is the
only drug accepted for the treatment of IPF in Japan and
Europe these days (49, 88).The specificity of these com-
pounds was confirmed in in vitro pharmacological profile,
showing concomitant benefits such as good oral bioavail-
ability and high plasma concentrations in vivo (6, 49, 88).

High-throughput screening technology has also led to the
development of fulvene-5 and its derivatives, potent and ef-
ficacious inhibitors of NOX2 and NOX4 (11), as well as
ML171, a specific and selective NOX1 inhibitor (54). Ful-
vene-5 has been successfully applied in vivo to block the
growth of endothelial tumors of mice (11). However neither
of them has yet been used in the context of lung diseases.

Peptide-Based Inhibitors

Peptide-based inhibitors seem to be promising for pro-
viding NOX isoform-specific inhibitors. NOX2, p47phox,
p67phox, and Rac are likely targets for peptides directed
against their unique sequences (46).

Peptides derived from NOX2 have been used to inhibit
NADPH oxidase. A peptide mimicking one of NOX2/
p47phox interaction sequences that corresponds to amino ac-
ids 77–93 has a potent inhibitory effect on human NADPH

oxidase. By binding to p47phox, NOX2ds-tat (designated also
as gp91ds-tat) inhibits the activity of not only NOX2, but quite
probably also NOX1, although this hypothesis has been re-
cently challenged (31) NOX2ds-tat was described as the
strongest in inhibiting superoxide generation in the vascular
system, where NOX1 and NOX4 play a key role (26). This
chimeric peptide that consists of a tat site derived from the tat
peptide of the HIV is cell permeable. It also contains a frag-
ment of NOX2, which has previously been shown to prevent
the interaction of p47phox with the NOX subunits in cell-free
preparations (72, 121, 150). In many studies, NOX2ds-tat has
been used as a specific NADPH oxidase inhibitor (48, 84, 109),
often in two forms—scrambled (tat scrambled) and un-
scrambled (tat unscrambled) (144, 150, 178). In human leu-
kocytes, unscrambled but not scrambled NOX2ds-tat
significantly reversed TNF-induced core 2 b-1,6-N-acet-
ylglucosaminyltransferase (C2GNT) activity, demonstrating a
novel signaling cross-talk between C2GNT, NADPH oxidase,
and specific PKCb1/2) (150). Furst et al. demonstrated that
NOX2ds-tat reduced superoxide production even below con-
trol levels after an increase by atrial natriuretic peptide in the
endothelium of intact rat lung vessels (48). On the other hand,
Krotz et al. suggest that although NOX2ds-tat was able to
reduce significantly basal superoxide release, it did not affect
O2
� - formation after an incubation with mycophenolate acid

(MPA) anymore, suggesting that MPA had been blocked be-
fore this basal activity of endothelial NADPH oxidase in hu-
man umbilical vein endothelial cells (84). Furthermore, a study
conducted by Norton et al. using NOX2ds-tat enabled to ef-
fectively and selectively inhibit NOX2 in isolated rat lungs
(109). The data of the successful use of NOX2ds-tat in ex-
perimental vascular disease models suggest its potential in
PAH, which, in general, lacks treatment options.

A sequence corresponding to amino-acid residues 323–
332 inhibits the phosphorylation of p47phox, and its trans-
location, therefore, inhibits NADPH oxidase activation in a
cell-free system (169). This peptide may compete either for
p47phox phosphorylation or for an interaction with the
NOX2/p22phox complex or p67phox, by acting as a pseu-
dosubstrate for protein kinases. Another synthetic peptide,
corresponding to residues 314–331, also inhibits p47phox
phosphorylation and translocation in human neutrophils and
inhibits PKC-mediated phosphorylation of p47phox (10).

Peptide-based inhibitors appear to be the most promising
candidates for therapy. Nevertheless, the main problems with
inhibitory peptides are their cell delivery and their stability in
live organisms. Apart from limited bioavailability, peptides
are challenged due to their gut degradation, associated tox-
icity, and inability to cross the plasma membrane of living
cells. However, in terms of many lung diseases (e.g., asthma,
COPD), inhaled aerosol administration route of the drug is
the preferable one. Therefore, this drawback in other disor-
ders may, in fact, facilitate the development of efficacious
airway peptide-based therapy (4). Nanoparticles and poly-
meric microparticles also hold promise for more efficient and
targeted drug delivery, which has been an extensive field of
research in recent years (85).

Perspectives and Conclusions

Available NOX inhibitors do not specifically target path-
ologic signaling, leaving physiologic signaling intact. The
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perfect NOX inhibitors ought to be both—isoform specific
and cell specific, and preferentially targeting pathological
modes of NOX signaling. This level of specificity could
potentially be achieved by direct interfering with the inter-
face between a particular NOX isoform and the proteins with
which it should interact to become active under pathological
conditions (143). Such a profound understanding of NOX
enzymes and their downstream targets regulation obviously
requires further studies. High-throughput scanning strategies
and the development of more sophisticated delivery tech-
niques are strong indices of upcoming progress in this field.
Airway diseases, with the preferred inhaled or nebulized
mode of drug administration and with the existing ways of
noninvasive monitoring of oxidative stress, seem to be a
perfect setting for NOX-modifying therapy. Knowing the
exact pathophysiology and variable courses of the diseases,
nonspecific NOX inhibitors might be useful in the therapy.
Simultaneously, though, adverse events remain a serious
question. Bacterial and viral infections are common com-
plications of chronic respiratory diseases. Therefore, proba-
ble clinical side effects of NOX inhibitors should emerge
from careful studies of animals and humans carrying genetic
mutations in NOX genes (73, 137).

To date, no therapeutically viable molecule exists but re-
cent studies using current inhibitors have enhanced our
knowledge on the role of NADPH oxidase and its possible
modification strategy in airway diseases. The group of
NADPH oxidase modifiers, particularly inhibitors, is grow-
ing each year; there are more data explaining mechanisms of
their activity, as well as new smaller and larger clinical trials
delineating their safety and potency. This situation certainly
leads to the introduction of specific and effective NOX
modulators, but still, we are a step away of optimal therapy.
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Abbreviations Used

AA¼ arachidonic acid
ADAM17 (TACE)¼ADAM metallopeptidase domain 17

(tumor necrosis factor-a-
converting enzyme)

AEBSF¼ 4-(2-aminoethyl)-benzenesulfonyl
fluoride

ALI¼ acute lung injury
AP-1¼ activator protein 1

ARDS¼ acute respiratory distress syndrome
CF¼ cystic fibrosis

CFTR¼ cystic fibrosis transmembrane
conductance regulator

CGD¼ chronic granulomatous disease
cis-AA¼ cis-arachidonic acid
COPD¼ chronic obstructive pulmonary

disease
COX-2¼ cyclooxygenase-2
cPLA2¼ cytosolic phospholipase A2

DPI¼ diphenylene iodonium
DUOX¼ dual oxidase
EGFR¼ epidermal growth factor receptor
fMLP¼ formyl-methionyl-leucyl-

phenylalanine
HIF-1a¼ hypoxia-inducible factor 1-alpha

ICAM-1¼ intercellular adhesion molecule-1
IFN-c¼ interferon gamma
IGF-1¼ insulin growth factor 1

IPF¼ idiopathic pulmonary fibrosis
LPO¼ lactoperoxidase

MAPK¼mitogen-activated protein kinases
MMP-9¼matrix metalloproteinase-9

MPA¼mycophenolate acid
NF-jB¼ nuclear factor kappa-light-chain-

enhancer of activated B cells
Nrf2¼ nuclear factor erythroid 2-related

factor
PAH¼ pulmonary arterial hypertension
PAO¼ phenylarsine oxide
PDK¼ protein-dependent kinase
PI3K¼ phosphatidylinositol 3-kinase
PIP3¼ phosphatidylinositol 3,4,5-

triphosphate
PKC¼ protein kinase C

PLCc2¼ phospholipase Cc2
PX¼ phox homology

RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species
SCD¼ sickle cell disease
SMC¼ smooth muscle cell
TGF¼ transforming growth factor
Tiam¼T-cell lymphoma invasion and

metastasis 1
TNF¼ tumor necrosis factor

trans-AA¼ trans-arachidonic acid
VCAM-1¼ vascular cell adhesion molecule-1
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