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The processes underpinning post-developmental neurogenesis in the mammalian brain continue to be defined. Such
processes involve the proliferation of neural stem cells and neural progenitor cells (NPCs), neuronal migration, differentiation
and integration into a network of functional synapses within the brain. Both intrinsic (cell signalling cascades) and extrinsic
(neurotrophins, neurotransmitters, cytokines, hormones) signalling molecules are intimately associated with adult neurogenesis
and largely dictate the proliferative activity and differentiation capacity of neural cells. Cannabinoids are a unique class of
chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous
cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles
in neural developmental processes. Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, probably through
activation of both CB1 and CB2 receptors. In recent years, a large body of literature has deciphered the signalling networks
involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarizes the evidence that the
cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs and highlights
intrinsic/extrinsic signalling mechanisms that are cannabinoid targets. Overall, these findings identify the central role of the
cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles and hence provide insight into the
processes underlying post-developmental neurogenesis in the mammalian brain.
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Introduction

For decades, the true plasticity of the mammalian CNS was
underestimated and the adult brain was long considered to be
a post-mitotic organ incapable of self-regeneration. However,
pioneering work in the 1960s by Joseph Altman and col-
leagues challenged this long-standing dogma (Altman and
Das, 1965). In this groundbreaking publication, Altman pro-
vided the first evidence that new neurons were generated in
the adult rat hippocampus. Subsequent experiments demon-
strated that adult neurogenesis was not specific to the hip-
pocampus, with the adult olfactory bulb identified as another
brain region where new neurons are added to existing cir-
cuitry throughout life (Altman, 1969). In spite of this work,
the concept of post-developmental neurogenesis in the mam-
malian brain was subject to contemporary scepticism; cur-
rently, however, the phenomenon of adult neurogenesis is
widely studied and research in the intervening years has
confirmed adult neurogenesis in the murine hippocampus
(Cameron et al., 1993; Kempermann et al., 1997), while the
lateral ventricles (Lois and Alvarez-Buylla, 1993), regions
adjacent to the ventricles (such as striatum and septum), as
well as the thalamus and hypothalamus (Pencea et al., 2001)
have been shown to be capable of generating new neurons
during adulthood. In the human brain, evidence continues to
mount to support the absence of neurogenesis in the adult
human neocortex (Rakic, 2006). However, adult neurogenesis
has been described in the hippocampus (Eriksson et al.,
1998), the lateral ventricles (Sanai et al., 2004) and more
recently in the striatum (Ernst et al., 2014).

Cannabinoids incorporate the active components of the
hemp plant Cannabis sativa (the plant-derived cannabi-
noids), the endogenous cannabinoids (endocannabinoids)
produced in humans and animals and the synthetic can-
nabinoid compounds. The cannabinoid system is linked
with all aspects of human physiology and elicits diverse
effects by activating the G protein-coupled cannabinoid
receptors (CB) type 1 (CB1) and type 2 (CB2) subtypes, the
expression of which has been localized on glia, immune
cells and neurons throughout the CNS (Downer, 2011). A
body of data indicates that cannabinoid ligands control cell
genesis in the adult brain, regulating cell proliferation and
overall neurogenesis in the mammalian brain (Kochman
et al., 2006; Mackowiak et al., 2007). Furthermore, neural
progenitor cells (NPCs) express a functional endocannabi-
noid system (Aguado et al., 2005; Compagnucci et al., 2013)
and are producers of endogenous cannabinoids (Butti et al.,
2012). Such findings, alongside a number of knockout
studies targeting enzymes involved in the biosynthesis and
degradation of endocannabinoids (Aguado et al., 2005; Gao
et al., 2010), in addition to CB1 (Jin et al., 2004) and CB2

receptors (Palazuelos et al., 2006), place the cannabinoid
system as a key player in the processes underlying adult
neurogenesis.

Adult neurogenesis

Adult neurogenesis can be loosely divided into four stages:
proliferation of neural stem cells (NSCs) and NPCs, migra-
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tion, neuronal differentiation and finally integration into
functional synaptic networks. The two regions in which adult
neurogenesis has been most extensively studied are the
dentate gyrus of the hippocampus and the lateral ventricles.
NSCs in the dentate gyrus reside predominantly in the sub-
granular zone (SGZ) where four types (type I, type IIa, type IIb
and type III) have been characterized based upon prolifera-
tion rate, protein expression and morphology. In the murine
forebrain, all newborn neurons are derived from type I NPCs,
these cells possess a glial-like radial process, although are
predominantly unipolar/bipolar in contrast to multipolar
astrocytes, express glial fibrillary acidic protein (GFAP) and
the intermediate filament protein nestin (Garcia et al., 2004).
Type I NSCs are characterized by a low rate of proliferation
(Ahn and Joyner, 2005). In contrast, type IIa cells are non-
radial, do not express GFAP and exhibit a considerably higher
proliferation rate compared with the relatively quiescent type
I cells. Type IIa cells maintain nestin expression and both cell
types are positive for the Sox gene family (Suh et al., 2007).
Type IIb cells maintain important properties of stem cells as
they uphold expression of nestin and Sox, but begin to
express markers of neuronal committed progenitors, in par-
ticular the microtubule-associated protein doublecortin
(DCX). If local conditions are favourable, type IIb cells can
mature to the nestin negative/DCX positive early neuronal
type III cell (Kronenberg et al., 2003).

In lateral ventricles, the subventricular zone (SVZ) con-
tains the majority of ventricular NSCs and is one of the key
regions of the brain where neurogenesis occurs throughout
adulthood (Curtis et al., 2007). Three cell types have been
discovered in the SVZ: type B cells much resemble type I
cells in the SGZ; they are GFAP positive, possess a radial
process and have a relatively low proliferation rate. Type C
cells in the SVZ are reminiscent of type II cells in the
SGZ as they are GFAP negative, non-radial and highly pro-
liferative. Both cell types express nestin and Sox (Doetsch
et al., 1997). Type A cells represent a population of neurob-
lasts which migrate at a rate of 30 000 per day along the
rostral migratory stream (RMS) to the olfactory bulb
(Alvarez-Buylla et al., 2001).

NSCs in both the dentate gyrus and the lateral ventricles
have the capacity to produce cells that differentiate to
neurons, astrocytes and oligodendrocytes (Gage, 2000). Neu-
roblasts originating in the SVZ primarily differentiate into
olfactory bulb interneurons (Luskin, 1993). Under the right
conditions, NSCs in the dentate gyrus can migrate to the
granular cell layer and give rise to granular cells that integrate
into the hippocampal circuitry forming glutamatergic syn-
apses with granular neurons, interneurons and pyramidal
cells in cornu ammonis region 3 (Toni et al., 2008). It has been
suggested that these new born granular cells begin to resem-
ble mature neurons, with regard to both their morphology
and electrophysiological properties after approximately 4
weeks, although the maturation process continues for several
months (Suh et al., 2009). In the young adult rat hippocam-
pus, approximately 9000 new cells are generated each day
with 50% of these cells expressing neuronal markers within
5–12 days. Although survival rate is low, it has been estimated
that each month the number of new granular cells generated
equates to about 6% of the total granular cell number
(Cameron and McKay, 2001).

Extrinsic signals in adult neurogenesis

NSC/NPCs are highly sensitive to their microenvironment (i.e.
their stem cell niche) and extrinsic signalling molecules
largely dictate the proliferative activity and differentiation
capacity of these cells. The functions of neurotrophic factors as
extrinsic signalling molecules in adult neurogenesis continues
to be unravelled, with strong evidence indicating that Trk
receptors (and p75NTR co-receptor) are abundant on dividing
progenitor cells in the adult primate SVZ/SGZ (Tonchev et al.,
2007), with a body of literature indicating that brain-derived
neurotrophic factor (BDNF) is a central player in adult neuro-
genesis. A common method of labelling proliferating cells in
the dentate gyrus is to administer the thymidine analogue
5-bromo-2’deoxyuridine (BrdU), which incorporates into the
DNA of cells during the S-phase of the cell cycle thus allowing
the post-mortem identification of cells that have undergone
proliferation. Intrahippocampal infusion of BDNF has been
shown to increase the number of cells positive for BrdU and
the neuron-specific protein neuronal nuclei in adult rats
(Scharfman et al., 2005), while dentate gyrus-specific BDNF
RNA interference reduces net neurogenesis in rats by impair-
ing the survival of immature neurons (Taliaz et al., 2010).
Similarly, NPC-specific deletion of the high-affinity BDNF
receptor TrkB in mice compromises dendritic development
and the survival capacity of immature neurons (Bergami et al.,
2008), while BDNF-TrkB signalling has been shown to be
imperative for hippocampal NSC proliferation in mice (Li
et al., 2008). Of note, two other neurotrophic factors have
been implicated in the regulation of adult neurogenesis;
nerve-growth factor (NGF) has been shown to increase cell
proliferation (Birch and Kelly, 2013) and immature neuron
survival (Frielingsdorf et al., 2007) in the rat dentate gyrus,
while VEGF has also been shown to induce cell proliferation
(Jin et al., 2002) and promote immature neuron survival
(Schanzer et al., 2004) in the SVZ and SGZ of the adult rat.

In addition to neurotrophic factors, data indicate that
several growth factors, including insulin-like growth factor-1
(IGF-1) and FGF-2 are extrinsic factors involved in the regu-
lation of adult neurogenesis. Indeed, s.c. or intraventricular
infusion of IGF-1 enhances neurogenesis in the adult rat
hippocampus (Aberg et al., 2000), while data from Zhao et al.
(2007) demonstrate that conditional deletion of FGFR1
impairs the proliferation of NPCs in the dentate of adult mice
(Zhao et al., 2007).

Neurotransmitters are also important regulators of neuro-
genesis in the adult brain. In particular, Bolteus and Bordey
(2004) demonstrated that GABA has a direct effect on migrat-
ing neuroblasts in the adult mouse SVZ (Bolteus and Bordey,
2004), while many other studies have delineated the role of
GABA in the regulation of NSC proliferative activity, fate
decision and synaptic integration of immature neurons
(Pallotto and Deprez, 2014). Similarly, glutamate can influence
both proliferation and survival of NPCs; activation of the
NMDA glutamate receptor has an inhibitory effect on cell
proliferation and net neurogenesis in the rat (Cameron et al.,
1995) and, in a somewhat paradoxical fashion, induction of
LTP at the perforant path-dentate gyrus pathway in rats
increases proliferation and survival of NPCs/immature
neurons via a NMDA receptor-dependent mechanism
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(Bruel-Jungerman et al., 2006). Furthermore, the NMDA recep-
tor has been shown to regulate survival of neuroblasts migrat-
ing from the mouse SVZ (Platel et al., 2010). Taken together,
this suggests a complex role for glutamate in neurogenesis
regulation. Additionally, monoamine neurotransmitters such
as 5-HT, noradrenaline and dopamine have also been identi-
fied as neurogenic modulators, either via direct links in the
case of dopamine (Van Kampen et al., 2004) or due to the fact
that antidepressants and antipsychotics targeting these
systems can affect neurogenesis (Dranovsky and Hen, 2006).

The immune system can also heavily influence the fate of
NSCs/NPCs with the antiproliferative and antineuronal differ-
entiative effects of inflammatory cytokines such as IL-6, IL-1β
and TNF-α (Kohman and Rhodes, 2013). Elsewhere, the pro-
neurogenic effects of the anti-inflammatory cytokine IL-10
have been demonstrated in the amyloid precursor protein/
presenilin protein 1 transgenic mouse (Kiyota et al., 2012).
Importantly, a body of data indicates that cross-talk may exist
between inflammatory mediators (particularly TNF-α) and
NSCs/NPCs that may have important consequences for neural
development and repair in disease states. Indeed, central
administration of TNF-α to rats increases BrdU incorporation
in SVZ cells (Wu et al., 2000), while inhibiting endogenous
TNF-α signalling regulates the proliferative capacity of mouse
neural precursor cells (Rubio-Araiz et al., 2008). In support of
this, clear evidence indicates that this cytokine is up-regulated
in the mouse brain during demyelination and remyelination,
enhancing the proliferative capacity of oligodendrocyte pro-
genitor cells (Arnett et al., 2001). Furthermore, Katakowski
et al. (2007) have shown that TNF-α-converting enzyme pro-
teolysis promotes stroke-induced SVZ progenitor cell neuro-
genesis in rats (Katakowski et al., 2007), indicating that TNF-α
signalling may intricately impact neural development and
brain repair, particularly in stroke pathogenesis.

Finally, several hormones including thyroid hormones
(Remaud et al., 2014), glucocorticoids and, perhaps more
speculatively, oxytocin (Schoenfeld and Gould, 2012) have
been linked to neurogenesis regulation.

Intrinsic signals in adult neurogenesis

A large body of research has delineated the multiple mecha-
nisms regulating events associated with adult neurogenesis,
including cell proliferation, differentiation, maturation,
migration and integration of neural cells into neuronal net-
works (Gage, 2000). Furthermore, through studies predomi-
nantly performed in rodents, the complexity of the cellular
and molecular signalling processes regulating neurogenesis in
the mammalian brain continues to be deciphered. It is now
clear that key intrinsic signalling pathways involving Sonic
Hedgehog (Shh), Wnt, bone morphogenetic protein (BMP),
Notch and transcription factors are intimately associated
with adult neurogenesis (Faigle and Song, 2013).

Shh is a signalling glycoprotein which acts through the
patched 1 (Ptc1)–smoothened (Smo) receptor complex to
activate intricate signal transduction pathways involved in
the development of the CNS (Ruiz i Altaba et al., 2002).
Indeed, Ptc and Smo are expressed in the adult hippocampus
(Traiffort et al., 1998) and conditional deletion of Smo
reduces the proliferation of progenitor cells in the postnatal

hippocampus and SVZ (Machold et al., 2003). In support of
this, pharmacological inhibition of Shh signalling has been
shown to reduce granule cell proliferation in the adult rat
dentate gyrus (Lai et al., 2003). More recent evidence also
indicates that Shh signalling mediates cellular migration in
the adult mouse mammalian brain (Balordi and Fishell,
2007), indicating the multifaceted role of Shh signalling in
neurogenesis.

The Wnt signalling pathway is a long-standing player in
the regulation of adult neurogenesis (McMahon and Bradley,
1990). Wnt ligands are a family of glycoproteins that play a
role in the maturation of neurons, remodelling of axons and
the maintenance of adult tissue homeostasis (Clevers and
Nusse, 2012). Indeed, Wnt signalling, via β-catenin, mediates
cellular differentiation in adult-derived mouse hippocampal
progenitor cells (Lie et al., 2005) and data elsewhere indicates
that Wnt-mediated neurogenesis requires NeuroD1 in adult
mouse hippocampal NPCs (Gao et al., 2009). Overall, loss of
function of Wnt signalling is strongly associated with deter-
mining the development of CNS disorders (De Ferrari and
Inestrosa, 2000; Lovestone et al., 2007).

BMPs are members of the TGF-β superfamily and consist of
at least 20 growth factors that act as key regulators of axonal
growth in a number of neuronal populations (Hegarty et al.,
2013). Indeed, clear evidence indicates that BMPs act as potent
inhibitors of neuronal differentiation in the adult mouse SVZ
(Lim et al., 2000), while Mira et al. (2010) have demonstrated
that inhibition of BMP signalling in adult mouse SGZ neural
precursor cells differentially regulates neurogenesis.

The components of the Notch signalling pathway are
expressed in the SVZ and SGZ of the adult mammalian brain
and data indicates that this pathway, through the inhibition
of proneural genes, is a key regulator of neurogenesis in the
CNS (Irvin et al., 2004). Indeed, Notch signalling is associated
with reducing the adult mouse neural progenitor pool
(Hitoshi et al., 2002) and promoting the self-renewal of
nestin-expressing cells in the adult mouse SGZ (Ables et al.,
2010). Interestingly, recent evidence indicates that cross-talk
between Notch and EGFR signalling exist, with downstream
consequences on NSCs/NPCs in the adult mouse SVZ (Aguirre
et al., 2010). Furthermore, Notch 1 knockout mice demon-
strate a reduction in dendritic trees associated with granule
cells in the mouse dentate gyrus (Ables et al., 2010), high-
lighting the intrinsic role of Notch signalling in an array of
neurodevelopmental cellular processes.

Recently, several transcription factors have been high-
lighted for their role in adult neurogenesis. In addition to the
long-standing role of cAMP response element-binding
protein (CREB) in regulating cell development (Finkbeiner
et al., 1997), more recent data indicate that CREB phosphor-
ylation robustly enhances progenitor cell proliferation and
controls the survival of new neurons in the adult mouse
hippocampus in vivo (Jagasia et al., 2009). Interestingly, over-
expression of Ascl1 transcription factor regulates the fate of
oligodendrocytes in the mouse SGZ in vivo (Jessberger et al.,
2008) and both the orphan nuclear receptor Tlx (Zhang et al.,
2008) and Sox2 gene family (Ferri et al., 2004) are central in
regulating NSC proliferation in the mouse hippocampus. In
support of this data indicating that transcription factors are
strongly linked to neural differentiation in the rodent brain in
vivo, further evidence has identified that Tbr2 (Hodge et al.,
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2012) and distal-less (Brill et al., 2008) are also associated with
neural differentiation in the mouse dentate gyrus and olfac-
tory bulb respectively.

Cannabinoids

The Cannabis plant has been utilized by humans in several
capacities for thousands of years and Western medicine has
recognized its therapeutic potential since the late 1800s
(Reynolds, 1890). Today, this potential is still recognized
(Robson, 2014) and the properties of the endocannabinoid
system continue to be deciphered.

The CB1 receptor was first described and cloned in the
early 1990s (Matsuda et al., 1990; Gerard et al., 1991); it was
found to be abundantly expressed throughout the CNS, and,
in particular, in areas associated with learning and memory
including the hippocampus (Herkenham et al., 1990). A
second cannabinoid receptor, the CB2 receptor, was also
cloned in the 1990s (Munro et al., 1993) where it was ini-
tially thought to be localized to the periphery; however, its
expression in the CNS has been demonstrated (Gong et al.,
2006). Shortly after the identification of these receptors
[receptor nomenclature follows (Alexander et al., 2013a)],
their endogenous ligands, known as endocannabinoids,
were discovered. The two endocannabinoids that have been
studied in most detail are N-arachidonoylethanolamide (also
known as anandamide; AEA) (Devane et al., 1992) and
2-arachidonoylglycerol (2-AG) (Mechoulam et al., 1995).
AEA is a phospholipid-derived molecule that is an agonist at
the CB1 and CB2 receptor; it is detectable peripherally in the
plasma and throughout the mammalian brain; in particular.
it is found at high concentrations in the hippocampus, cer-
ebellum and cortex (Felder and Glass, 1998). AEA is rapidly
synthesized in neurons following depolarization and subse-
quent Ca2+ influx (Dimarzo et al., 1994). 2-AG, similar to
AEA, is synthesized in an activity-dependent manner, is
ubiquitously found in the CNS and is both a CB1 and CB2

receptor agonist; however, the concentration of 2-AG is up
to 1000 times that of AEA (Sugiura et al., 1995). In neuronal
signaling, endocannabinoids function as retrograde neuro-
transmitters; they are synthesized and released by a postsy-
naptic neuron and activate receptors on presynaptic neurons
(Wilson and Nicoll, 2001). Deactivation of endocannabi-
noids occurs through specific enzymatic reactions. Fatty acid
amide hydrolase (FAAH) is an intracellular membrane-bound
enzyme that degrades fatty acid amides and it is responsible
for inactivating AEA by catalyzing its breakdown to arachi-
donic acid (AA) and ethanolamine (Cravatt et al., 1996).
Deactivation of 2-AG is primarily achieved by the enzyme
monoacylglycerol lipase again producing AA (Dinh et al.,
2002).

In addition to endogenous cannabinoid receptor ligands,
other classes of cannabinoids have been identified. The iden-
tification of Cannabis plant-derived cannabinoids, or phyto-
cannabinoids, including cannabinol, cannabidiol (CBD)
and the main psychoactive component of the plant
Δ9-tetrahydrocannabinol (THC), preceded the discovery of
endocannabinoids by several decades (Mechoulam et al.,
2014). To date, it has been suggested that there is over 100
phytocannabinoids and novel cannabinoids continue to be

isolated from the C. sativa plant (Radwan et al., 2009). Moreo-
ver, many synthetic agonists, inverse agonists and antago-
nists of the cannabinoid receptors have been produced.
The synthetic cannabinoids HU-210 and R-(+)-WIN55212
show a high affinity for both the CB1 and CB2 receptor
(Rinaldi-Carmona et al., 1994), while selective agonists have
also been identified including the CB1 selective agonist
arachidonyl-2′-chloroethylamide (ACEA) (Hillard et al., 1999)
and the CB2 selective agonist JWH-133 (Huffman et al., 1999).
Other synthetic ligands that bind cannbinoid receptors
but evoke inhibitory effects include SR141716A and
SR144528 which exert CB1 and CB2 selectivity respectively
(Rinaldi-Carmona et al., 1994; 1998), as well as the high-
affinity CB1 ligand AM251 (Gatley et al., 1996) and the high-
affinity CB2 ligand AM630 (Ross et al., 1999). Several lines of
evidence suggest that theses ligands not only result in recep-
tor antagonism but also inverse agonism (Pertwee, 2005).

In vivo effect of cannabinoids on
adult neurogenesis

In addition to the various neurogenesis regulators discussed
earlier, there is considerable evidence to suggest that both
exogenous and endogenous cannabinoids can control cell
genesis in the adult brain, although the effects can vary
considerably according to the cannabinoid, dose and dura-
tion of administration (see Table 1). What appears to be a
common characteristic of both synthetic (Mackowiak et al.,
2007) and plant-derived (Kochman et al., 2006) cannabinoids
is that acute administration has no effect on cell proliferation
or overall neurogenesis in the hippocampus; however,
chronic administration of exogenous cannabinoids has been
shown to affect the process. For example, chronic treatment
with the potent synthetic cannabinoid HU-210, a drug that
has a high affinity for both CB1 and CB2 receptors, enhances
both proliferation and survival of cells in the rat dentate
gyrus (Jiang et al., 2005). Similarly, chronic administration of
the CB2 selective agonist HU-308 also exhibits proliferative-
enhancing affects (Palazuelos et al., 2012), raising the possi-
bility that these effects may be mediated, at least in part, by
CB2 receptor signalling. This is supported by evidence that a
number of BrdU+ cells in the dentate gyrus are reduced in
CB2-deficient mice (Palazuelos et al., 2006). In contrast to
this, chronic administration of another synthetic CB1/CB2

agonist WIN55,212-2 to rats during adulthood was found to
have no effect on the number of immature neurons in the
dentate gyrus, however, interestingly, administration during
adolescence decreased the number of immature neurons,
an affect that is attributed to selective suppression of dorsal
but not ventral hippocampal neurogenesis (Abboussi et al.,
2014). Further contrasting effects are observed in the aged
brain where WIN55,212-2 administration partially restored
age-related deficits in hippocampal neurogenesis in rats
(Marchalant et al., 2009), suggesting a unique temporal role
for cannabinoid receptors in the regulation of neurogenesis
throughout the lifespan. The effects of the phytocannabinoid
Δ9-THC appear to be dose- and/or time-dependent; 3 weeks of
oral administration of a weekly escalating dose of Δ9-THC was
found to have no effect on cell proliferation in the mouse
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dentate gyrus (Kochman et al., 2006), whereas, 6 weeks of oral
administration of a static dose of Δ9-THC has been shown to
decrease cell proliferation without having an effect on overall
neurogenesis in mice (Wolf et al., 2010). Interestingly, the
study by Wolf et al. (2010) found that chronic administration
of another phytocannabinoid CBD also decreased prolifera-
tion but, strikingly, and perhaps appearing somewhat coun-
terintuitive, is that CBD induced a substantial increase in net
neurogenesis by a CB1 receptor-dependent mechanism (Wolf
et al., 2010). These data are supported by evidence that
repeated administration of CBD to wild-type mice increases
hippocampal NPC proliferation via CB1 receptors, which may
underlie the anxiolytic effect of CBD in chronically stressed
animals (Campos et al., 2013).

The CB1 receptor inverse agonist AM251 is often used to
oppose the effects of endocannabinoids at the receptor and
acute administration of this drug increases cell proliferation
in the SGZ 24 h post-treatment (Hill et al., 2006; Wolf et al.,

2010). However, this increase reverts to a decrease from 48 h
onwards (Wolf et al., 2010), again suggesting a complex tem-
poral role for cannabinoid signalling in NSC fate. Chroni-
cally, the same inverse agonist was found to have no effect
(Rivera et al., 2011); however, it has been shown to block the
proliferative-enhancing effects of aerobic exercise (Hill et al.,
2010). This raises the possibility that endocannabinoid sig-
nalling via the CB1 receptor may not be important for basal
regulation of NPCs, but rather is essential for mediating the
effects of exercise, which is a well-established, potent neuro-
genesis stimulator (van Praag, 2009). Another drug used to
inhibit endocannabinoid activity, the CB1 and transient
receptor potential cation channel subfamily V member 1
(TRPV1) antagonist SR141716A, has been shown to increase
cell proliferation in the dentate gyrus and the lateral ventri-
cles of mice (Jin et al., 2004). This effect was observed in both
wild-type and CB1, but not TRPV1, knockout mice. Further-
more, Aguado et al. (2006) have observed reduced astroglio-

Table 1
Literature assessing the in vivo effects of cannabinoids in neurogenesis

Treatment Measurement Observation Reference

HU-210 Cell proliferation in the dentate gyrus in adult rats Enhanced Jiang et al. (2005)

HU-308 Hippocampal progenitor proliferation in adult mice Enhanced Palazuelos et al. (2012)

WIN55,212-2 Dorsal hippocampal neurogenesis during adolescence Reduced Abboussi et al. (2014)

WIN55,212-2 Age-related deficits in hippocampal neurogenesis Partial restoration Marchalant et al. (2009)

Δ9-THC/CBD Precursor cell proliferation in the dentate gyrus Reduced Wolf et al. (2010)

CBD Cell survival in the dentate gyrus Enhanced Wolf et al. (2010)

CBD Number of BrdU+ cells colocalized with NeuN+ cells in
hippocampus

Enhanced Campos et al. (2013)

DAGL inhibitor Cell proliferation in the adult SVZ Reduced Goncalves et al. (2008)

URB597/AEA/
WIN55,212-2

Adult hippocampal NPC proliferation Enhanced Aguado et al. (2005)

WIN55,212-2/
JWH-133/URB597

Progenitor cell proliferation in the SVZ Enhanced Goncalves et al. (2008)

AM251 Cell proliferation in the SGZ Enhanced Hill et al. (2006)

AM251 Cell proliferation in the SGZ Enhanced at 24 h/
reduced at 48 h

Wolf et al. (2010)

FAAH−/− Cell proliferation in the dentate gyrus of adult mice Enhanced Aguado et al. (2005)

DAGLα−/− Cell proliferation and number of DCX+ neurons in the hippocampus Reduced Gao et al. (2010)

DAGLβ−/− Cell proliferation in the hippocampus Reduced Gao et al. (2010)

CB1
−/− Cell proliferation in the dentate gyrus and SVZ Reduced Jin et al. (2004)

Kim et al. (2006)

CB1
−/− Number of BrdU+ cells colocalized with S100β+ cells in the SGZ

and granule cell layer of the dentate gyrus
Reduced Aguado et al. (2006)

CB1
−/− Number of BrdU+ cells colocalized with NeuN+ cells in the SGZ

and granule cell layer of the dentate gyrus
Enhanced Aguado et al. (2006)

CB1
−/− Kainic acid-induced hippocampal NPC proliferation Reduced Aguado et al. (2007)

CB1
−/− Cortical thickness Reduced at P2 Diaz-Alonso et al. (2012)

SR141716A Cell proliferation in the SVZ Enhanced Jin et al. (2004)

JTE-907/AM630 Cell proliferation in the SVZ Reduced Goncalves et al. (2008)

CB2
−/− Number of BrdU+ cells in dentate gyrus Reduced Palazuelos et al. (2006)

JTE-907 and AM630 are CB2 receptor antagonists. NeuN, neuronal nuclei.
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genesis and increased neurogenesis in CB1-deficient mice
(Aguado et al., 2006). These findings illustrate that multiple
receptors are responsible for the effects of cannabinoids on
neurogenesis, which may account for the complexity of the
results observed.

Studies utilizing gene knockdown technology to limit the
activity of the endocannabinoid system have provided com-
pelling evidence linking cannabinoids and neurogenesis in
the adult brain. Knockdown of the enzyme responsible for
AEA hydrolysis, FAAH, increases cell proliferation in the
dentate gyrus of adult mice (Aguado et al., 2005), while
Goncalves et al. (2008) have demonstrated that chronic inhi-
bition of the enzyme responsible for the production of 2-AG
almost completely abolished cell proliferation in the mouse
SVZ, while inhibiting FAAH also increased neurogenesis
(Goncalves et al., 2008). These findings illustrate the impor-
tance of basal endocannabinoid tone in maintaining neuro-
genesis. Elsewhere, complete knockdown of the α subtype of
the DAG lipase α (DAGLα) enzyme reduces brain 2-AG and
AEA levels by approximately 80% and 40%, respectively, and
furthermore leads to a decrease in cell proliferation rate and a
50% reduction in immature DCX positive neurons in the
mouse hippocampus (Gao et al., 2010). The same study shows
that a reduction in central 2-AG alone can also interfere with
neurogenesis; knockdown of the DAGLβ subtype reduces
2-AG levels in the brain without significantly affecting AEA
and results in a decrease in cell proliferation in the hippocam-
pus. Further evidence supporting a role for endocannabinoid

signalling in adult hippocampal neurogenesis can be found
in studies involving cannabinoid receptor knockout animals;
a CB1

−/− genotype is accompanied by a 50% decrease in pro-
liferating cells in the dentate gyrus (Jin et al., 2004; Kim et al.,
2006). Furthermore, Aguado and colleagues (2007) have dem-
onstrated that kainic acid-induced hippocampal NPC prolif-
eration is attenuated in CB1

−/− mice, indicating the role of CB1

in neurogenesis induced by excitotoxicity. Intricate data from
the same group indicates that CB1

−/− mice have reduced cor-
tical thickness at postnatal day 2, indicating the integral role
of CB1 receptors in controlling the specification of upper- and
deep-layer cortical neurons (Diaz-Alonso et al., 2012). Finally,
CB2

−/− animals also exhibit a decreased proliferation rate illus-
trating the importance of both the CB1 and CB2 receptors
(Palazuelos et al., 2006). Taken together, these studies suggest
that the endocannabinoid system, acting via multiple
complex mechanisms, is a key player in the regulation of
adult neurogenesis in vivo.

In vitro effect of cannabinoids on
adult neurogenesis

It is known that NPCs (Aguado et al., 2005) express a func-
tional endocannabinoid system and are targeted by cannabi-
noids to promote neurosphere generation and NPC
proliferation (see Table 2). In addition, endocannabinoids are

Table 2
Literature assessing the in vitro effects of cannabinoids in neurogenesis

Treatment Measurement Observation Reference

HU-210/AEA Proliferation of embryonic hippocampal NPCs/NSCs Enhanced Jiang et al. (2005)

HU-308 Proliferation of HiB5 NPCs Enhanced Palazuelos et al. (2012)

HU-308 Proliferation of cortical progenitors in organotypic cultures Enhanced Palazuelos et al. (2012)

AEA/ACEA Differentiation of embryonic murine neural precursors derived
from the cortex towards neural lineage

Enhanced Compagnucci et al.
(2013)

ACEA/JWH-133 Migration of Cor-1 NSC line Enhanced Oudin et al. (2011)

AM251/JTE-907/DAGL
inhibitors

RMS neuroblast migration Reduced Oudin et al.(2011)

ACEA/JWH-133 RMS neuroblast migration Enhanced Oudin et al. (2011)

ACEA/JWH-056 Proliferation of neurospheres Enhanced Rubio-Araiz et al. (2008)

WIN-55,212-2/URB597 Neurosphere generation Enhanced Aguado et al. (2005)

WIN-55,212-2/URB597/
AEA/2-AG

Number of BrdU+ NPCs from dissociated neurospheres Enhanced Aguado et al. (2005)

WIN-55,212-2/URB597/
AEA/2-AG

Number of GFAP+ cells after differentiation of postnatal NPCs for 2
days

Enhanced Aguado et al. (2006)

WIN-55,212-2/URB597/
AEA/2-AG

Number of β-tubulin III+ cells after differentiation of postnatal
NPCs for 2 days

Decreased Aguado et al. (2006)

AM1241 Proliferation/differentiation of human NSCs in presence of Gp120 Enhanced Avraham et al. (2014)

CB2
−/− Neurosphere generation of murine embryonic cortical NPCs Reduced Palazuelos et al. (2006)

HU-308/JWH-133 Primary neurosphere generation and NPC self-renewal Increased Palazuelos et al. (2006)

Hemopressin Oligodendroglial differentiation within SVZ NPC/NSC cultures Increased Xapelli et al. (2014)

Hemopressin is a CB1 inverse agonist.
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central in regulating neural differentiation and migration.
Indeed, in embryonic murine precursors derived from the
cortex, AEA enhances cell differentiation towards a neuronal
lineage via a CB1-dependent mechanism (Compagnucci et al.,
2013). Furthermore, using freshly dissected RMS tissue from
the postnatal brain, Oudin et al. (2011) have shown that
endocannabinoid tone is central in controlling neuroblast
migration from RMS explants (Oudin et al., 2011). Elsewhere,
Butti et al. (2012) demonstrate that SVZ adult mouse NPCs
are producers of AEA and that AEA regulates spontaneous
EPSCs in medium spiny neurons (Butti et al., 2012). Further-
more, the synthetic cannabinoid WIN-55,212-2, in addition
to the selective FAAH inhibitor, URB597, have been shown to
promote neurosphere generation, while WIN-55,212-2,
URB597 and endocannabinoids (both AEA and 2-AG)
increase the number of BrdU+ NPCs from dissociated neuro-
spheres (Aguado et al., 2005). In further experiments from
this group using postnatal rat cortical neural progenitors,
WIN-55,212-2, URB597, AEA and 2-AG increased the number
of GFAP+ cells with a concomitant decrease in β-tubulin III+

cells after differentiation for 2 days, indicating the proglio-
genic action of synthetic and endogenous cannabinoids
during the differentiation process (Aguado et al., 2006). Else-
where, the CB2 specific agonist AM1241 has been shown to
promote the proliferation/differentiation of human NSCs in
the presence of the HIV-1 glycoprotein Gp120, and further-
more, AM1241 prevents DNA fragmentation induced by
administration of Gp120, which suggests a neuroprotective
role of CB2 receptors against impaired neurogenesis, with
relevance to the cognitive deficits seen in HIV-1 patients
(Avraham et al., 2014). Indeed, CB2 knockout reduces the
self-renewal (as determined by neurosphere generation in
vitro) of murine embryonic cortical NPCs (Palazuelos et al.,
2006), while both HU-308 and JWH-133 increase both
primary neurosphere generation and neural progenitor self-
renewal in vitro (Palazuelos et al., 2006). Rubio-Araiz et al.
demonstrated that both CB1 (ACEA) and CB2 (JWH-056) ago-
nists stimulate the proliferation of primary murine cortical
neurospheres (Rubio-Araiz et al., 2008) and recently it has
also been demonstrated that hemopressin (a CB1 inverse
agonist) promotes oligodendroglial differentiation within
SVZ NSC/NPC cultures derived from neonatal mice (Xapelli
et al., 2014). In support of this, the CB1 receptor agonist ACEA
promotes murine neural precursor differentiation via CB1,
with the CB2 receptor agonist JWH-133 being ineffective
(Compagnucci et al., 2013).

Mechanisms of cannabinoid-induced
regulation of intrinsic/extrinsic
signalling in adult neurogenesis

The cellular signalling events orchestrated by cannabinoids
in NPCs continue to be elucidated, with particular roles for
ERK, PI3K and Akt pathways suggested (see Figure 1). In par-
ticular, CB2 couples to the ERK and PI3K/Akt cascades
(Palazuelos et al., 2006; 2012; Molina-Holgado et al., 2007)
and the CB2 agonist HU-308 promotes the proliferation of
NPCs via ERK and PI3K/Akt signalling (Palazuelos et al.,
2006). In support of this, HU-308 is a robust activator of the

PI3K/Akt pathway in the HiB5 hippocampal progenitor cell
line (Palazuelos et al., 2012). Interestingly, mammalian target
of rapamycin complex 1 (mTORC1) signalling is a target of
the PI3K/Akt pathway and hence is central in neural cell
survival/death decision; mTORC signalling also contributes
to CB2-regulated NPC proliferation. Indeed, HU-308 induces
cell proliferation in both embryonic organotypic cortical
slices and in adult hippocampal NPCs via an mTORC1-
dependent mechanism (Palazuelos et al., 2012). Elsewhere,
both CB1 (ACEA) and CB2 (JWH-056) agonists have been
shown to stimulate the proliferation of mouse neural precur-
sor cells via PI3K/Akt pathways (Molina-Holgado et al., 2007)
and TNF-α signalling mechanisms (Rubio-Araiz et al., 2008).
Both the synthetic cannabinoid HU-210 and AEA promote
the proliferation of cultured embryonic hippocampal NPCs
in a concentration-dependent manner involving Gi/o proteins
and the ERK signalling pathways (Jiang et al., 2005). Further
in vitro evidence indicates that ACEA enhances murine neural
precursor differentiation to neurons by targeting ERK signal-
ling (Compagnucci et al., 2013). In addition, ACEA reduces
ERK phosphorylation in neural precursor cells and this reduc-
tion promotes neuronal differentiation. Using neurogenesis
and PCR arrays, Compagnucci et al. (2013) recently demon-
strated that CB1 activation promotes the expression of genes
involved in neuronal maturation and commitment to a neu-
ronal lineage (Compagnucci et al., 2013). In contrast, the
endogenous cannabinoid AEA has been shown to inhibit
cortical neuron progenitor differentiation to mature neuronal
phenotype, decrease the proliferation of primary postnatal
murine NPCs (Soltys et al., 2010) and inhibit the differentia-
tion of the human NSC line, HNSC.100 (Rueda et al., 2002).
These events are CB1 receptor-dependent and as AEA inhibits
NGF-induced ERK activation in PC12 cells via CB1 receptors,
this suggests that AEA inhibits NPC differentiation through
attenuation of the ERK pathway (Rueda et al., 2002).

Further data elsewhere indicate that signalling involving
CREB transcription factor may govern cannabinoid-induced
regulation of NPCs. Indeed, exposure of murine NPCs to AEA
promotes glial and neuronal differentiation, with a possible
role for CREB (Soltys et al., 2010). Much data indicate that
CREB is a cannabinoid target, with recent evidence indicating
that CB2 agonists target CREB signalling in the rat cortex after
subarachnoid haemorrhage (Fujii et al., 2014) and cerebral
ischaemia (Choi et al., 2013). In support of this, THC (Casu
et al., 2005) and AEA (Isokawa, 2009) administration has been
shown to regulate the expression of phosphorylated CREB
in the rat cerebellum and hippocampus, respectively, while
the CB2 receptor agonist, trans-caryophyllene, promotes the
phosphorylation of neural CREB (Choi et al., 2013).

The Sox2 gene family regulate NSC proliferation in the
hippocampus and recent evidence indicates that CB1 receptor
activation enhances the number of Sox2+ cells via Notch
signalling in cultured mouse SVZ cells, suggesting that CB1

receptor activation promotes the self-renewal of SVZ cultures
(Xapelli et al., 2013). Cannabinoids also regulate the expres-
sion of the T-box transcription factor, Tbr, which may be
central in mediating the neurogenic effects of cannabinoids.
Indeed, Saez et al. (2014) has recently demonstrated that pre-
natal exposure of rats to WIN-55,212-2 differentially regulates
the number of glutamatergic intermediate progenitors (Tbr2+)
and post-mitotic neurons (Tbr1+) during embryonic develop-
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ment in the cortex (Saez et al., 2014). Interestingly, this indi-
cates that prenatal exposure to WIN-55,212-2 impacts the
differentiation of glutamatergic neurons in the developing
cerebral cortex. In support of this, data from CB1-deficient
murine embryos indicate that there is a decrease in Tbr2+ cells
in the SVZ (Diaz-Alonso et al., 2014) while Tbr1+ post-mitotic
cells accumulate abnormally during embryogenesis in deep
bins of the cortical plate of CB1-deficient mice when com-
pared with wild-type littermates (Diaz-Alonso et al., 2012).

Neurotrophic factors are strongly linked to adult neuro-
genesis and recent evidence suggests that there is functional
interplay between BDNF and CB1 receptors in the brain (De
Chiara et al., 2010). In support of this, Maison et al. (2009)
demonstrated that BDNF increases the expression of CB1

receptors in rat cultured cerebellar granule neurons (Maison
et al., 2009), while BDNF can also promote the production of
cortical endocannabinoids (Lemtiri-Chlieh and Levine,
2010). In human studies, D’Souza et al. (2009) demonstrated
that i.v. administration of THC enhances the expression of
peripheral BDNF in serum (D’Souza et al., 2009) and this is
supported by evidence that CB2 receptor stimulation pro-
motes BDNF expression in rat neurons (Choi et al., 2013).
Recent evidence also suggests that CB1 receptors can cross-
talk with NGF signalling in adult mouse dorsal root ganglion
neurons (Wang et al., 2014). In addition, intricate new data
from Keimpema et al. (2013) indicate that NGF affects endo-

cannabinoid signalling to promote cholinergic differentia-
tion in mice (Keimpema et al., 2013).

A body of literature indicates that signalling involving
adenosine, PKC, growth factors and IL-1 receptors may
govern cannabinoid-induced regulation of NPCs. Indeed,
using adult neural precursor cells prepared from the whole
brains of 8-week-old mice, Shinjoy and Di Marzo (2013)
recently demonstrated that the major non-THC phytocan-
nabinoid, cannabichromene (CBC), promotes cell survival
during differentiation while blunting cell differentiation into
astroglia. The authors suggest the involvement of ERK, ATP
and adenosine signalling cascades in mediating the effects of
CBC on neural cells (Shinjyo and Di Marzo, 2013). Recent
evidence also indicates that cannabinoids can target the
actin-bundling protein fascin, which plays a role in the
migration of neuroblasts and neural development (Sonego
et al., 2013). Indeed, the CB1 agonist ACEA controls the inter-
action between fascin and PKC, which indicates that CB1-
dependent signalling may regulate actin-bundling activity,
with a subsequent effect on neuroblast migration (Sonego
et al., 2013). EGFR signalling is key in controlling NSC sur-
vival, and using the Cor-1 NSC line, data from Sutterlin et al.
(2013) demonstrate that CB1 and CB2 receptors cooperate
with EGFR in the regulation of NSC expansion (Sutterlin
et al., 2013). Similarly, the CB1 receptor has been shown to
couple activated FGF receptors to axonal growth in rat cer-

Figure 1
Endocannabinoid signalling regulates NPCs in the adult brain. Endocannabinoids acting in an autocrine and paracrine fashion may activate CB1

and/or CB2 receptors. CB1 and CB2 activity can induce both PI3K/Akt/mTORC and MEK/MAPK/CREB signalling pathways that influence cell
proliferation, differentiation and survival, while also promoting integration of immature neurons into existing circuitry. In addition, CREB can
induce transcription of BDNF that can directly influence cell fate and may also increase CB1 expression and endocannbinoid production, possibly
leading to positive feedback within the signalling system.
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ebellar granule neurons (Williams et al., 2003). Finally,
Garcia-Ovejero et al. (2013) have demonstrated that both CB1

and CB2 receptors are co-expressed with IL-1 receptor, type I
and IL-1 receptor, type II in mouse brain neurospheres and
both ACEA and JWH-133 affect IL-1 signalling in primary
cultures of mouse brain-derived neurospheres, increasing
IL-1β, while decreasing IL-1Rα production by neurospheres.
This is significant given that IL-1β negatively regulates neu-
rosphere proliferation (Garcia-Ovejero et al., 2013).

Concluding remarks

While much progress has been made in recent decades in
understanding the process of adult neurogenesis, the under-
lying mechanisms have yet to be fully elucidated. As high-
lighted in this review, the microenvironment clearly
determines the rate of proliferation of NSCs and NPCs, their
survival and their differentiation into mature neurons that
are integrated into functional networks. Endocannabinoids
may play pivotal roles in at least some of these phases of
neurogenesis. Of particular interest are the varying temporal
effects of synthetic, endogenous and plant-derived cannabi-
noids on the proliferation and survival phases of neurogen-
esis, indicating complex physiological regulation of this
process that may be modulated by drugs that target the endo-
cannabinoid system. The functional importance of neurogen-
esis has yet to be clarified; however, the weight of evidence
indicates that impaired neurogenesis is associated with
depression and cognitive impairment. Pharmacological tar-
geting of the cannabinoid system as a regulator of neurogen-
esis may prove a fruitful strategy in the prevention or
treatment of mood or memory disorders.
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